2021-06-04 15:40:54 +02:00
|
|
|
use anyhow::{ensure, Result};
|
|
|
|
|
use itertools::izip;
|
|
|
|
|
|
|
|
|
|
use crate::circuit_builder::CircuitBuilder;
|
|
|
|
|
use crate::field::extension_field::{flatten, Extendable, FieldExtension, OEF};
|
|
|
|
|
use crate::field::field::Field;
|
|
|
|
|
use crate::field::lagrange::{barycentric_weights, interpolant, interpolate};
|
|
|
|
|
use crate::fri::FriConfig;
|
|
|
|
|
use crate::hash::hash_n_to_1;
|
|
|
|
|
use crate::merkle_proofs::verify_merkle_proof;
|
|
|
|
|
use crate::plonk_challenger::{Challenger, RecursiveChallenger};
|
|
|
|
|
use crate::plonk_common::reduce_with_iter;
|
|
|
|
|
use crate::proof::{
|
|
|
|
|
FriInitialTreeProof, FriProof, FriProofTarget, FriQueryRound, Hash, OpeningSet,
|
|
|
|
|
};
|
|
|
|
|
use crate::util::{log2_strict, reverse_bits, reverse_index_bits_in_place};
|
|
|
|
|
|
|
|
|
|
impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
|
|
|
|
|
/// Computes P'(x^arity) from {P(x*g^i)}_(i=0..arity), where g is a `arity`-th root of unity
|
|
|
|
|
/// and P' is the FRI reduced polynomial.
|
|
|
|
|
fn compute_evaluation() {
|
|
|
|
|
todo!();
|
|
|
|
|
// debug_assert_eq!(last_evals.len(), 1 << arity_bits);
|
|
|
|
|
//
|
|
|
|
|
// let g = F::primitive_root_of_unity(arity_bits);
|
|
|
|
|
//
|
|
|
|
|
// // The evaluation vector needs to be reordered first.
|
|
|
|
|
// let mut evals = last_evals.to_vec();
|
|
|
|
|
// reverse_index_bits_in_place(&mut evals);
|
|
|
|
|
// evals.rotate_left(reverse_bits(old_x_index, arity_bits));
|
|
|
|
|
//
|
|
|
|
|
// // The answer is gotten by interpolating {(x*g^i, P(x*g^i))} and evaluating at beta.
|
|
|
|
|
// let points = g
|
|
|
|
|
// .powers()
|
|
|
|
|
// .zip(evals)
|
|
|
|
|
// .map(|(y, e)| ((x * y).into(), e))
|
|
|
|
|
// .collect::<Vec<_>>();
|
|
|
|
|
// let barycentric_weights = barycentric_weights(&points);
|
|
|
|
|
// interpolate(&points, beta, &barycentric_weights)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
fn fri_verify_proof_of_work(
|
|
|
|
|
&mut self,
|
|
|
|
|
proof: &FriProofTarget<D>,
|
|
|
|
|
challenger: &mut RecursiveChallenger,
|
|
|
|
|
config: &FriConfig,
|
|
|
|
|
) -> Result<()> {
|
|
|
|
|
let mut inputs = challenger.get_hash(self).elements.to_vec();
|
|
|
|
|
inputs.push(proof.pow_witness);
|
|
|
|
|
|
|
|
|
|
let hash = self.hash_n_to_m(inputs, 1, false)[0];
|
2021-06-04 17:07:14 +02:00
|
|
|
self.assert_trailing_zeros::<64>(hash, config.proof_of_work_bits);
|
2021-06-04 15:40:54 +02:00
|
|
|
|
|
|
|
|
Ok(())
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// pub fn verify_fri_proof<const D: usize>(
|
|
|
|
|
// purported_degree_log: usize,
|
|
|
|
|
// // Openings of the PLONK polynomials.
|
|
|
|
|
// os: &OpeningSet<F, D>,
|
|
|
|
|
// // Point at which the PLONK polynomials are opened.
|
|
|
|
|
// zeta: F::Extension,
|
|
|
|
|
// // Scaling factor to combine polynomials.
|
|
|
|
|
// alpha: F::Extension,
|
|
|
|
|
// initial_merkle_roots: &[Hash<F>],
|
|
|
|
|
// proof: &FriProof<F, D>,
|
|
|
|
|
// challenger: &mut Challenger<F>,
|
|
|
|
|
// config: &FriConfig,
|
|
|
|
|
// ) -> Result<()> {
|
|
|
|
|
// let total_arities = config.reduction_arity_bits.iter().sum::<usize>();
|
|
|
|
|
// ensure!(
|
|
|
|
|
// purported_degree_log
|
|
|
|
|
// == log2_strict(proof.final_poly.len()) + total_arities - config.rate_bits,
|
|
|
|
|
// "Final polynomial has wrong degree."
|
|
|
|
|
// );
|
|
|
|
|
//
|
|
|
|
|
// // Size of the LDE domain.
|
|
|
|
|
// let n = proof.final_poly.len() << total_arities;
|
|
|
|
|
//
|
|
|
|
|
// // Recover the random betas used in the FRI reductions.
|
|
|
|
|
// let betas = proof
|
|
|
|
|
// .commit_phase_merkle_roots
|
|
|
|
|
// .iter()
|
|
|
|
|
// .map(|root| {
|
|
|
|
|
// challenger.observe_hash(root);
|
|
|
|
|
// challenger.get_extension_challenge()
|
|
|
|
|
// })
|
|
|
|
|
// .collect::<Vec<_>>();
|
|
|
|
|
// challenger.observe_extension_elements(&proof.final_poly.coeffs);
|
|
|
|
|
//
|
|
|
|
|
// // Check PoW.
|
|
|
|
|
// fri_verify_proof_of_work(proof, challenger, config)?;
|
|
|
|
|
//
|
|
|
|
|
// // Check that parameters are coherent.
|
|
|
|
|
// ensure!(
|
|
|
|
|
// config.num_query_rounds == proof.query_round_proofs.len(),
|
|
|
|
|
// "Number of query rounds does not match config."
|
|
|
|
|
// );
|
|
|
|
|
// ensure!(
|
|
|
|
|
// !config.reduction_arity_bits.is_empty(),
|
|
|
|
|
// "Number of reductions should be non-zero."
|
|
|
|
|
// );
|
|
|
|
|
//
|
|
|
|
|
// for round_proof in &proof.query_round_proofs {
|
|
|
|
|
// fri_verifier_query_round(
|
|
|
|
|
// os,
|
|
|
|
|
// zeta,
|
|
|
|
|
// alpha,
|
|
|
|
|
// initial_merkle_roots,
|
|
|
|
|
// &proof,
|
|
|
|
|
// challenger,
|
|
|
|
|
// n,
|
|
|
|
|
// &betas,
|
|
|
|
|
// round_proof,
|
|
|
|
|
// config,
|
|
|
|
|
// )?;
|
|
|
|
|
// }
|
|
|
|
|
//
|
|
|
|
|
// Ok(())
|
|
|
|
|
// }
|
|
|
|
|
//
|
|
|
|
|
// fn fri_verify_initial_proof<F: Field>(
|
|
|
|
|
// x_index: usize,
|
|
|
|
|
// proof: &FriInitialTreeProof<F>,
|
|
|
|
|
// initial_merkle_roots: &[Hash<F>],
|
|
|
|
|
// ) -> Result<()> {
|
|
|
|
|
// for ((evals, merkle_proof), &root) in proof.evals_proofs.iter().zip(initial_merkle_roots) {
|
|
|
|
|
// verify_merkle_proof(evals.clone(), x_index, root, merkle_proof, false)?;
|
|
|
|
|
// }
|
|
|
|
|
//
|
|
|
|
|
// Ok(())
|
|
|
|
|
// }
|
|
|
|
|
//
|
|
|
|
|
// fn fri_combine_initial<F: Field + Extendable<D>, const D: usize>(
|
|
|
|
|
// proof: &FriInitialTreeProof<F>,
|
|
|
|
|
// alpha: F::Extension,
|
|
|
|
|
// os: &OpeningSet<F, D>,
|
|
|
|
|
// zeta: F::Extension,
|
|
|
|
|
// subgroup_x: F,
|
|
|
|
|
// config: &FriConfig,
|
|
|
|
|
// ) -> F::Extension {
|
|
|
|
|
// assert!(D > 1, "Not implemented for D=1.");
|
|
|
|
|
// let degree_log = proof.evals_proofs[0].1.siblings.len() - config.rate_bits;
|
|
|
|
|
// let subgroup_x = F::Extension::from_basefield(subgroup_x);
|
|
|
|
|
// let mut alpha_powers = alpha.powers();
|
|
|
|
|
// let mut sum = F::Extension::ZERO;
|
|
|
|
|
//
|
|
|
|
|
// // We will add three terms to `sum`:
|
|
|
|
|
// // - one for polynomials opened at `x` only
|
|
|
|
|
// // - one for polynomials opened at `x` and `g x`
|
|
|
|
|
// // - one for polynomials opened at `x` and its conjugate
|
|
|
|
|
//
|
|
|
|
|
// let evals = [0, 1, 4]
|
|
|
|
|
// .iter()
|
|
|
|
|
// .flat_map(|&i| proof.unsalted_evals(i, config))
|
|
|
|
|
// .map(|&e| F::Extension::from_basefield(e));
|
|
|
|
|
// let openings = os
|
|
|
|
|
// .constants
|
|
|
|
|
// .iter()
|
|
|
|
|
// .chain(&os.plonk_sigmas)
|
|
|
|
|
// .chain(&os.quotient_polys);
|
|
|
|
|
// let numerator = izip!(evals, openings, &mut alpha_powers)
|
|
|
|
|
// .map(|(e, &o, a)| a * (e - o))
|
|
|
|
|
// .sum::<F::Extension>();
|
|
|
|
|
// let denominator = subgroup_x - zeta;
|
|
|
|
|
// sum += numerator / denominator;
|
|
|
|
|
//
|
|
|
|
|
// let ev: F::Extension = proof
|
|
|
|
|
// .unsalted_evals(3, config)
|
|
|
|
|
// .iter()
|
|
|
|
|
// .zip(alpha_powers.clone())
|
|
|
|
|
// .map(|(&e, a)| a * e.into())
|
|
|
|
|
// .sum();
|
|
|
|
|
// let zeta_right = F::Extension::primitive_root_of_unity(degree_log) * zeta;
|
|
|
|
|
// let zs_interpol = interpolant(&[
|
|
|
|
|
// (zeta, reduce_with_iter(&os.plonk_zs, alpha_powers.clone())),
|
|
|
|
|
// (
|
|
|
|
|
// zeta_right,
|
|
|
|
|
// reduce_with_iter(&os.plonk_zs_right, &mut alpha_powers),
|
|
|
|
|
// ),
|
|
|
|
|
// ]);
|
|
|
|
|
// let numerator = ev - zs_interpol.eval(subgroup_x);
|
|
|
|
|
// let denominator = (subgroup_x - zeta) * (subgroup_x - zeta_right);
|
|
|
|
|
// sum += numerator / denominator;
|
|
|
|
|
//
|
|
|
|
|
// let ev: F::Extension = proof
|
|
|
|
|
// .unsalted_evals(2, config)
|
|
|
|
|
// .iter()
|
|
|
|
|
// .zip(alpha_powers.clone())
|
|
|
|
|
// .map(|(&e, a)| a * e.into())
|
|
|
|
|
// .sum();
|
|
|
|
|
// let zeta_frob = zeta.frobenius();
|
|
|
|
|
// let wire_evals_frob = os.wires.iter().map(|e| e.frobenius()).collect::<Vec<_>>();
|
|
|
|
|
// let wires_interpol = interpolant(&[
|
|
|
|
|
// (zeta, reduce_with_iter(&os.wires, alpha_powers.clone())),
|
|
|
|
|
// (zeta_frob, reduce_with_iter(&wire_evals_frob, alpha_powers)),
|
|
|
|
|
// ]);
|
|
|
|
|
// let numerator = ev - wires_interpol.eval(subgroup_x);
|
|
|
|
|
// let denominator = (subgroup_x - zeta) * (subgroup_x - zeta_frob);
|
|
|
|
|
// sum += numerator / denominator;
|
|
|
|
|
//
|
|
|
|
|
// sum
|
|
|
|
|
// }
|
|
|
|
|
//
|
|
|
|
|
// fn fri_verifier_query_round<F: Field + Extendable<D>, const D: usize>(
|
|
|
|
|
// os: &OpeningSet<F, D>,
|
|
|
|
|
// zeta: F::Extension,
|
|
|
|
|
// alpha: F::Extension,
|
|
|
|
|
// initial_merkle_roots: &[Hash<F>],
|
|
|
|
|
// proof: &FriProof<F, D>,
|
|
|
|
|
// challenger: &mut Challenger<F>,
|
|
|
|
|
// n: usize,
|
|
|
|
|
// betas: &[F::Extension],
|
|
|
|
|
// round_proof: &FriQueryRound<F, D>,
|
|
|
|
|
// config: &FriConfig,
|
|
|
|
|
// ) -> Result<()> {
|
|
|
|
|
// let mut evaluations: Vec<Vec<F::Extension>> = Vec::new();
|
|
|
|
|
// let x = challenger.get_challenge();
|
|
|
|
|
// let mut domain_size = n;
|
|
|
|
|
// let mut x_index = x.to_canonical_u64() as usize % n;
|
|
|
|
|
// fri_verify_initial_proof(
|
|
|
|
|
// x_index,
|
|
|
|
|
// &round_proof.initial_trees_proof,
|
|
|
|
|
// initial_merkle_roots,
|
|
|
|
|
// )?;
|
|
|
|
|
// let mut old_x_index = 0;
|
|
|
|
|
// // `subgroup_x` is `subgroup[x_index]`, i.e., the actual field element in the domain.
|
|
|
|
|
// let log_n = log2_strict(n);
|
|
|
|
|
// let mut subgroup_x = F::MULTIPLICATIVE_GROUP_GENERATOR
|
|
|
|
|
// * F::primitive_root_of_unity(log_n).exp(reverse_bits(x_index, log_n) as u64);
|
|
|
|
|
// for (i, &arity_bits) in config.reduction_arity_bits.iter().enumerate() {
|
|
|
|
|
// let arity = 1 << arity_bits;
|
|
|
|
|
// let next_domain_size = domain_size >> arity_bits;
|
|
|
|
|
// let e_x = if i == 0 {
|
|
|
|
|
// fri_combine_initial(
|
|
|
|
|
// &round_proof.initial_trees_proof,
|
|
|
|
|
// alpha,
|
|
|
|
|
// os,
|
|
|
|
|
// zeta,
|
|
|
|
|
// subgroup_x,
|
|
|
|
|
// config,
|
|
|
|
|
// )
|
|
|
|
|
// } else {
|
|
|
|
|
// let last_evals = &evaluations[i - 1];
|
|
|
|
|
// // Infer P(y) from {P(x)}_{x^arity=y}.
|
|
|
|
|
// compute_evaluation(
|
|
|
|
|
// subgroup_x,
|
|
|
|
|
// old_x_index,
|
|
|
|
|
// config.reduction_arity_bits[i - 1],
|
|
|
|
|
// last_evals,
|
|
|
|
|
// betas[i - 1],
|
|
|
|
|
// )
|
|
|
|
|
// };
|
|
|
|
|
// let mut evals = round_proof.steps[i].evals.clone();
|
|
|
|
|
// // Insert P(y) into the evaluation vector, since it wasn't included by the prover.
|
|
|
|
|
// evals.insert(x_index & (arity - 1), e_x);
|
|
|
|
|
// evaluations.push(evals);
|
|
|
|
|
// verify_merkle_proof(
|
|
|
|
|
// flatten(&evaluations[i]),
|
|
|
|
|
// x_index >> arity_bits,
|
|
|
|
|
// proof.commit_phase_merkle_roots[i],
|
|
|
|
|
// &round_proof.steps[i].merkle_proof,
|
|
|
|
|
// false,
|
|
|
|
|
// )?;
|
|
|
|
|
//
|
|
|
|
|
// if i > 0 {
|
|
|
|
|
// // Update the point x to x^arity.
|
|
|
|
|
// for _ in 0..config.reduction_arity_bits[i - 1] {
|
|
|
|
|
// subgroup_x = subgroup_x.square();
|
|
|
|
|
// }
|
|
|
|
|
// }
|
|
|
|
|
// domain_size = next_domain_size;
|
|
|
|
|
// old_x_index = x_index;
|
|
|
|
|
// x_index >>= arity_bits;
|
|
|
|
|
// }
|
|
|
|
|
//
|
|
|
|
|
// let last_evals = evaluations.last().unwrap();
|
|
|
|
|
// let final_arity_bits = *config.reduction_arity_bits.last().unwrap();
|
|
|
|
|
// let purported_eval = compute_evaluation(
|
|
|
|
|
// subgroup_x,
|
|
|
|
|
// old_x_index,
|
|
|
|
|
// final_arity_bits,
|
|
|
|
|
// last_evals,
|
|
|
|
|
// *betas.last().unwrap(),
|
|
|
|
|
// );
|
|
|
|
|
// for _ in 0..final_arity_bits {
|
|
|
|
|
// subgroup_x = subgroup_x.square();
|
|
|
|
|
// }
|
|
|
|
|
//
|
|
|
|
|
// // Final check of FRI. After all the reductions, we check that the final polynomial is equal
|
|
|
|
|
// // to the one sent by the prover.
|
|
|
|
|
// ensure!(
|
|
|
|
|
// proof.final_poly.eval(subgroup_x.into()) == purported_eval,
|
|
|
|
|
// "Final polynomial evaluation is invalid."
|
|
|
|
|
// );
|
|
|
|
|
//
|
|
|
|
|
// Ok(())
|
|
|
|
|
// }
|
|
|
|
|
}
|