plonky2/src/fri/verifier.rs

255 lines
7.7 KiB
Rust
Raw Normal View History

2021-05-05 18:23:59 +02:00
use crate::field::field::Field;
use crate::field::lagrange::{barycentric_weights, interpolant, interpolate};
use crate::fri::FriConfig;
use crate::hash::hash_n_to_1;
use crate::merkle_proofs::verify_merkle_proof;
use crate::plonk_challenger::Challenger;
2021-05-06 17:09:55 +02:00
use crate::polynomial::commitment::SALT_SIZE;
2021-05-05 18:23:59 +02:00
use crate::polynomial::polynomial::PolynomialCoeffs;
use crate::proof::{FriInitialTreeProof, FriProof, FriQueryRound, Hash};
use crate::util::{log2_strict, reverse_bits, reverse_index_bits_in_place};
use anyhow::{ensure, Result};
/// Computes P'(x^arity) from {P(x*g^i)}_(i=0..arity), where g is a `arity`-th root of unity
/// and P' is the FRI reduced polynomial.
fn compute_evaluation<F: Field>(
x: F,
old_x_index: usize,
arity_bits: usize,
last_evals: &[F],
beta: F,
) -> F {
debug_assert_eq!(last_evals.len(), 1 << arity_bits);
let g = F::primitive_root_of_unity(arity_bits);
// The evaluation vector needs to be reordered first.
let mut evals = last_evals.to_vec();
reverse_index_bits_in_place(&mut evals);
evals.rotate_left(reverse_bits(old_x_index, arity_bits));
// The answer is gotten by interpolating {(x*g^i, P(x*g^i))} and evaluating at beta.
let points = g
.powers()
.zip(evals)
.map(|(y, e)| (x * y, e))
.collect::<Vec<_>>();
let barycentric_weights = barycentric_weights(&points);
interpolate(&points, beta, &barycentric_weights)
}
fn fri_verify_proof_of_work<F: Field>(
proof: &FriProof<F>,
challenger: &mut Challenger<F>,
config: &FriConfig,
) -> Result<()> {
let hash = hash_n_to_1(
challenger
.get_hash()
.elements
.iter()
.copied()
.chain(Some(proof.pow_witness))
.collect(),
false,
);
ensure!(
hash.to_canonical_u64().leading_zeros()
>= config.proof_of_work_bits + F::ORDER.leading_zeros(),
"Invalid proof of work witness."
);
Ok(())
}
pub fn verify_fri_proof<F: Field>(
purported_degree_log: usize,
// Point-evaluation pairs for polynomial commitments.
points: &[(F, F)],
// Scaling factor to combine polynomials.
alpha: F,
initial_merkle_roots: &[Hash<F>],
proof: &FriProof<F>,
challenger: &mut Challenger<F>,
config: &FriConfig,
) -> Result<()> {
let total_arities = config.reduction_arity_bits.iter().sum::<usize>();
ensure!(
purported_degree_log
== log2_strict(proof.final_poly.len()) + total_arities - config.rate_bits,
"Final polynomial has wrong degree."
);
// Size of the LDE domain.
let n = proof.final_poly.len() << total_arities;
// Recover the random betas used in the FRI reductions.
let betas = proof
.commit_phase_merkle_roots
.iter()
.map(|root| {
challenger.observe_hash(root);
challenger.get_challenge()
})
.collect::<Vec<_>>();
challenger.observe_elements(&proof.final_poly.coeffs);
// Check PoW.
fri_verify_proof_of_work(proof, challenger, config)?;
// Check that parameters are coherent.
ensure!(
config.num_query_rounds == proof.query_round_proofs.len(),
"Number of query rounds does not match config."
);
ensure!(
!config.reduction_arity_bits.is_empty(),
"Number of reductions should be non-zero."
);
let interpolant = interpolant(points);
for round_proof in &proof.query_round_proofs {
fri_verifier_query_round(
&interpolant,
points,
alpha,
initial_merkle_roots,
&proof,
challenger,
n,
&betas,
round_proof,
config,
)?;
}
Ok(())
}
fn fri_verify_initial_proof<F: Field>(
x_index: usize,
proof: &FriInitialTreeProof<F>,
initial_merkle_roots: &[Hash<F>],
) -> Result<()> {
for ((evals, merkle_proof), &root) in proof.evals_proofs.iter().zip(initial_merkle_roots) {
verify_merkle_proof(evals.clone(), x_index, root, merkle_proof, false)?;
}
Ok(())
}
fn fri_combine_initial<F: Field>(
proof: &FriInitialTreeProof<F>,
alpha: F,
interpolant: &PolynomialCoeffs<F>,
points: &[(F, F)],
subgroup_x: F,
config: &FriConfig,
) -> F {
let e = proof
.evals_proofs
.iter()
.enumerate()
.flat_map(|(i, (v, _))| &v[..v.len() - if config.blinding[i] { SALT_SIZE } else { 0 }])
2021-05-05 18:23:59 +02:00
.rev()
.fold(F::ZERO, |acc, &e| alpha * acc + e);
let numerator = e - interpolant.eval(subgroup_x);
let denominator = points.iter().map(|&(x, _)| subgroup_x - x).product();
numerator / denominator
}
fn fri_verifier_query_round<F: Field>(
interpolant: &PolynomialCoeffs<F>,
points: &[(F, F)],
alpha: F,
initial_merkle_roots: &[Hash<F>],
proof: &FriProof<F>,
challenger: &mut Challenger<F>,
n: usize,
betas: &[F],
round_proof: &FriQueryRound<F>,
config: &FriConfig,
) -> Result<()> {
let mut evaluations: Vec<Vec<F>> = Vec::new();
let x = challenger.get_challenge();
let mut domain_size = n;
let mut x_index = x.to_canonical_u64() as usize % n;
fri_verify_initial_proof(
x_index,
&round_proof.initial_trees_proof,
initial_merkle_roots,
)?;
let mut old_x_index = 0;
// `subgroup_x` is `subgroup[x_index]`, i.e., the actual field element in the domain.
let log_n = log2_strict(n);
let mut subgroup_x = F::MULTIPLICATIVE_GROUP_GENERATOR
* F::primitive_root_of_unity(log_n).exp_usize(reverse_bits(x_index, log_n));
for (i, &arity_bits) in config.reduction_arity_bits.iter().enumerate() {
let arity = 1 << arity_bits;
let next_domain_size = domain_size >> arity_bits;
let e_x = if i == 0 {
fri_combine_initial(
&round_proof.initial_trees_proof,
alpha,
interpolant,
points,
subgroup_x,
config,
)
} else {
let last_evals = &evaluations[i - 1];
// Infer P(y) from {P(x)}_{x^arity=y}.
compute_evaluation(
subgroup_x,
old_x_index,
config.reduction_arity_bits[i - 1],
last_evals,
betas[i - 1],
)
};
let mut evals = round_proof.steps[i].evals.clone();
// Insert P(y) into the evaluation vector, since it wasn't included by the prover.
evals.insert(x_index & (arity - 1), e_x);
evaluations.push(evals);
verify_merkle_proof(
evaluations[i].clone(),
x_index >> arity_bits,
proof.commit_phase_merkle_roots[i],
&round_proof.steps[i].merkle_proof,
false,
)?;
if i > 0 {
// Update the point x to x^arity.
for _ in 0..config.reduction_arity_bits[i - 1] {
subgroup_x = subgroup_x.square();
}
}
domain_size = next_domain_size;
old_x_index = x_index;
x_index >>= arity_bits;
}
let last_evals = evaluations.last().unwrap();
let final_arity_bits = *config.reduction_arity_bits.last().unwrap();
let purported_eval = compute_evaluation(
subgroup_x,
old_x_index,
final_arity_bits,
last_evals,
*betas.last().unwrap(),
);
for _ in 0..final_arity_bits {
subgroup_x = subgroup_x.square();
}
// Final check of FRI. After all the reductions, we check that the final polynomial is equal
// to the one sent by the prover.
ensure!(
proof.final_poly.eval(subgroup_x) == purported_eval,
"Final polynomial evaluation is invalid."
);
Ok(())
}