2021-04-25 17:05:27 -07:00
|
|
|
use std::collections::HashMap;
|
|
|
|
|
|
|
|
|
|
use rayon::prelude::*;
|
|
|
|
|
|
|
|
|
|
use crate::field::field::Field;
|
|
|
|
|
use crate::polynomial::polynomial::PolynomialValues;
|
|
|
|
|
use crate::target::Target;
|
|
|
|
|
use crate::wire::Wire;
|
|
|
|
|
|
|
|
|
|
#[derive(Debug, Clone)]
|
|
|
|
|
pub struct TargetPartitions {
|
|
|
|
|
partitions: Vec<Vec<Target>>,
|
|
|
|
|
indices: HashMap<Target, usize>,
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
impl Default for TargetPartitions {
|
|
|
|
|
fn default() -> Self {
|
|
|
|
|
TargetPartitions::new()
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
impl TargetPartitions {
|
|
|
|
|
pub fn new() -> Self {
|
|
|
|
|
Self {
|
|
|
|
|
partitions: Vec::new(),
|
|
|
|
|
indices: HashMap::new(),
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
pub fn get_partition(&self, target: Target) -> &[Target] {
|
|
|
|
|
&self.partitions[self.indices[&target]]
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Add a new partition with a single member.
|
|
|
|
|
pub fn add_partition(&mut self, target: Target) {
|
|
|
|
|
let index = self.partitions.len();
|
|
|
|
|
self.partitions.push(vec![target]);
|
|
|
|
|
self.indices.insert(target, index);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Merge the two partitions containing the two given targets. Does nothing if the targets are
|
|
|
|
|
/// already members of the same partition.
|
|
|
|
|
pub fn merge(&mut self, a: Target, b: Target) {
|
|
|
|
|
let a_index = self.indices[&a];
|
|
|
|
|
let b_index = self.indices[&b];
|
|
|
|
|
if a_index != b_index {
|
|
|
|
|
// Merge a's partition into b's partition, leaving a's partition empty.
|
|
|
|
|
// We have to clone because Rust's borrow checker doesn't know that
|
|
|
|
|
// self.partitions[b_index] and self.partitions[b_index] are disjoint.
|
|
|
|
|
let mut a_partition = self.partitions[a_index].clone();
|
|
|
|
|
let b_partition = &mut self.partitions[b_index];
|
|
|
|
|
for a_sibling in &a_partition {
|
|
|
|
|
*self.indices.get_mut(a_sibling).unwrap() = b_index;
|
|
|
|
|
}
|
|
|
|
|
b_partition.append(&mut a_partition);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
pub fn to_wire_partitions(&self) -> WirePartitions {
|
|
|
|
|
// Here we just drop all CircuitInputs, leaving all GateInputs.
|
|
|
|
|
let mut partitions = Vec::new();
|
|
|
|
|
let mut indices = HashMap::new();
|
|
|
|
|
|
|
|
|
|
for old_partition in &self.partitions {
|
|
|
|
|
let mut new_partition = Vec::new();
|
|
|
|
|
for target in old_partition {
|
|
|
|
|
if let Target::Wire(w) = *target {
|
|
|
|
|
new_partition.push(w);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
partitions.push(new_partition);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
for (&target, &index) in &self.indices {
|
|
|
|
|
if let Target::Wire(gi) = target {
|
|
|
|
|
indices.insert(gi, index);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
WirePartitions {
|
|
|
|
|
partitions,
|
|
|
|
|
indices,
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
pub struct WirePartitions {
|
|
|
|
|
partitions: Vec<Vec<Wire>>,
|
|
|
|
|
indices: HashMap<Wire, usize>,
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
impl WirePartitions {
|
|
|
|
|
/// Find a wire's "neighbor" in the context of Plonk's "extended copy constraints" check. In
|
|
|
|
|
/// other words, find the next wire in the given wire's partition. If the given wire is last in
|
|
|
|
|
/// its partition, this will loop around. If the given wire has a partition all to itself, it
|
|
|
|
|
/// is considered its own neighbor.
|
|
|
|
|
fn get_neighbor(&self, wire: Wire) -> Wire {
|
|
|
|
|
let partition = &self.partitions[self.indices[&wire]];
|
|
|
|
|
let n = partition.len();
|
|
|
|
|
for i in 0..n {
|
|
|
|
|
if partition[i] == wire {
|
|
|
|
|
let neighbor_index = (i + 1) % n;
|
|
|
|
|
return partition[neighbor_index];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
panic!("Wire not found in the expected partition")
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
pub(crate) fn get_sigma_polys<F: Field>(
|
|
|
|
|
&self,
|
|
|
|
|
degree_log: usize,
|
|
|
|
|
k_is: &[F],
|
|
|
|
|
) -> Vec<PolynomialValues<F>> {
|
|
|
|
|
let degree = 1 << degree_log;
|
|
|
|
|
let subgroup_generator = F::primitive_root_of_unity(degree_log);
|
|
|
|
|
let sigma = self.get_sigma_map(degree);
|
|
|
|
|
|
|
|
|
|
sigma
|
|
|
|
|
.chunks(degree)
|
|
|
|
|
.map(|chunk| {
|
|
|
|
|
let values = chunk
|
|
|
|
|
.par_iter()
|
2021-05-19 12:17:43 +02:00
|
|
|
.map(|&x| k_is[x / degree] * subgroup_generator.exp((x % degree) as u64))
|
2021-04-25 17:05:27 -07:00
|
|
|
.collect::<Vec<_>>();
|
|
|
|
|
PolynomialValues::new(values)
|
|
|
|
|
})
|
|
|
|
|
.collect()
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Generates sigma in the context of Plonk, which is a map from `[kn]` to `[kn]`, where `k` is
|
|
|
|
|
/// the number of routed wires and `n` is the number of gates.
|
|
|
|
|
fn get_sigma_map(&self, degree: usize) -> Vec<usize> {
|
|
|
|
|
debug_assert_eq!(self.indices.len() % degree, 0);
|
|
|
|
|
let num_routed_wires = self.indices.len() / degree;
|
|
|
|
|
|
|
|
|
|
let mut sigma = Vec::new();
|
|
|
|
|
for input in 0..num_routed_wires {
|
|
|
|
|
for gate in 0..degree {
|
|
|
|
|
let wire = Wire { gate, input };
|
|
|
|
|
let neighbor = self.get_neighbor(wire);
|
|
|
|
|
sigma.push(neighbor.input * degree + neighbor.gate);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
sigma
|
|
|
|
|
}
|
|
|
|
|
}
|