plonky2/src/prover.rs

225 lines
7.9 KiB
Rust
Raw Normal View History

2021-03-25 15:20:14 -07:00
use std::time::Instant;
use log::info;
use rayon::prelude::*;
2021-03-25 15:20:14 -07:00
2021-03-30 13:30:31 -07:00
use crate::circuit_data::{CommonCircuitData, ProverOnlyCircuitData};
use crate::constraint_polynomial::EvaluationVars;
2021-03-30 13:30:31 -07:00
use crate::field::fft::{fft, ifft};
2021-02-09 21:25:21 -08:00
use crate::field::field::Field;
2021-03-21 11:17:00 -07:00
use crate::generator::generate_partial_witness;
2021-03-30 20:16:20 -07:00
use crate::hash::merkle_root_bit_rev_order;
2021-03-30 23:12:47 -07:00
use crate::plonk_common::{reduce_with_powers, eval_l_1};
2021-03-30 20:16:20 -07:00
use crate::polynomial::division::divide_by_z_h;
use crate::polynomial::polynomial::{PolynomialCoeffs, PolynomialValues};
use crate::proof::Proof;
use crate::util::transpose_poly_values;
2021-03-21 11:57:33 -07:00
use crate::wire::Wire;
2021-03-21 11:17:00 -07:00
use crate::witness::PartialWitness;
2021-02-09 21:25:21 -08:00
2021-03-21 11:17:00 -07:00
pub(crate) fn prove<F: Field>(
2021-02-09 21:25:21 -08:00
prover_data: &ProverOnlyCircuitData<F>,
common_data: &CommonCircuitData<F>,
2021-03-21 11:17:00 -07:00
inputs: PartialWitness<F>,
2021-03-30 10:02:00 -07:00
) -> Proof<F> {
2021-03-30 23:47:29 -07:00
let start_proof_gen = Instant::now();
2021-03-25 15:20:14 -07:00
let start_witness = Instant::now();
2021-03-30 23:47:29 -07:00
let mut witness = inputs;
2021-03-25 15:20:14 -07:00
info!("Running {} generators", prover_data.generators.len());
2021-03-21 11:17:00 -07:00
generate_partial_witness(&mut witness, &prover_data.generators);
2021-03-30 23:47:29 -07:00
info!("{} to generate witness",
start_witness.elapsed().as_secs_f32());
2021-03-21 11:17:00 -07:00
2021-03-21 11:57:33 -07:00
let config = common_data.config;
let num_wires = config.num_wires;
2021-03-25 15:20:14 -07:00
let start_wire_ldes = Instant::now();
2021-03-30 10:02:00 -07:00
let degree = common_data.degree();
2021-03-21 11:57:33 -07:00
let wire_ldes = (0..num_wires)
2021-03-30 10:02:00 -07:00
.into_par_iter()
.map(|i| compute_wire_lde(i, &witness, degree, config.rate_bits))
2021-03-21 11:57:33 -07:00
.collect::<Vec<_>>();
2021-03-30 23:47:29 -07:00
info!("{} to compute wire LDEs",
start_wire_ldes.elapsed().as_secs_f32());
2021-03-25 15:20:14 -07:00
2021-03-30 10:02:00 -07:00
// TODO: Could try parallelizing the transpose, or not doing it explicitly, instead having
// merkle_root_bit_rev_order do it implicitly.
let start_wire_transpose = Instant::now();
2021-03-30 13:30:31 -07:00
let wire_ldes_t = transpose_poly_values(wire_ldes);
2021-03-30 23:47:29 -07:00
info!("{} to transpose wire LDEs",
start_wire_transpose.elapsed().as_secs_f32());
2021-03-30 10:02:00 -07:00
// TODO: Could avoid cloning if it's significant?
2021-03-30 10:02:00 -07:00
let start_wires_root = Instant::now();
let wires_root = merkle_root_bit_rev_order(wire_ldes_t.clone());
2021-03-30 23:47:29 -07:00
info!("{} to Merklizing wire LDEs",
start_wires_root.elapsed().as_secs_f32());
2021-03-21 11:57:33 -07:00
2021-03-30 23:47:29 -07:00
let start_plonk_z = Instant::now();
let plonk_z_vecs = compute_zs(&common_data);
2021-03-30 13:30:31 -07:00
let plonk_z_ldes = PolynomialValues::lde_multiple(plonk_z_vecs, config.rate_bits);
let plonk_z_ldes_t = transpose_poly_values(plonk_z_ldes);
2021-03-30 23:47:29 -07:00
info!("{}s to compute Z's and their LDEs",
start_plonk_z.elapsed().as_secs_f32());
let start_plonk_z_root = Instant::now();
let plonk_z_root = merkle_root_bit_rev_order(plonk_z_ldes_t.clone());
2021-03-30 23:47:29 -07:00
info!("{}s to Merklize Z's",
start_plonk_z_root.elapsed().as_secs_f32());
2021-03-30 23:12:47 -07:00
let beta = F::ZERO; // TODO
let gamma = F::ZERO; // TODO
let alpha = F::ZERO; // TODO
2021-03-21 11:57:33 -07:00
let start_vanishing_poly = Instant::now();
let vanishing_poly = compute_vanishing_poly(
2021-03-30 23:12:47 -07:00
common_data, prover_data, wire_ldes_t, plonk_z_ldes_t, beta, gamma, alpha);
2021-03-30 23:47:29 -07:00
info!("{} to compute vanishing poly",
start_vanishing_poly.elapsed().as_secs_f32());
2021-03-30 13:30:31 -07:00
let quotient_poly_start = Instant::now();
let vanishing_poly_coeffs = ifft(vanishing_poly);
let plonk_t = divide_by_z_h(vanishing_poly_coeffs, degree);
// Split t into degree-n chunks.
let plonk_t_chunks = plonk_t.chunks(degree);
2021-03-30 23:47:29 -07:00
info!("{} to compute quotient poly",
quotient_poly_start.elapsed().as_secs_f32());
2021-03-30 11:46:58 -07:00
// Need to convert to coeff form and back?
2021-03-30 13:30:31 -07:00
let plonk_t_ldes = PolynomialCoeffs::lde_multiple(plonk_t_chunks, config.rate_bits);
let plonk_t_ldes = plonk_t_ldes.into_iter().map(fft).collect();
let plonk_t_root = merkle_root_bit_rev_order(transpose_poly_values(plonk_t_ldes));
2021-03-21 11:57:33 -07:00
2021-03-30 13:30:31 -07:00
let openings = Vec::new(); // TODO
2021-03-30 23:47:29 -07:00
info!("{}s for overall witness+proof generation",
start_proof_gen.elapsed().as_secs_f32());
2021-03-21 11:57:33 -07:00
2021-03-30 10:02:00 -07:00
Proof {
2021-03-21 11:57:33 -07:00
wires_root,
plonk_z_root,
plonk_t_root,
openings,
}
}
2021-03-30 13:30:31 -07:00
fn compute_zs<F: Field>(common_data: &CommonCircuitData<F>) -> Vec<PolynomialValues<F>> {
(0..common_data.config.num_checks)
.map(|i| compute_z(common_data, i))
.collect()
}
2021-03-30 13:30:31 -07:00
fn compute_z<F: Field>(common_data: &CommonCircuitData<F>, i: usize) -> PolynomialValues<F> {
PolynomialValues::zero(common_data.degree()) // TODO
}
2021-03-30 23:47:29 -07:00
// TODO: Parallelize.
fn compute_vanishing_poly<F: Field>(
common_data: &CommonCircuitData<F>,
prover_data: &ProverOnlyCircuitData<F>,
wire_ldes_t: Vec<Vec<F>>,
plonk_z_lde_t: Vec<Vec<F>>,
2021-03-30 23:12:47 -07:00
beta: F,
gamma: F,
alpha: F,
2021-03-30 13:30:31 -07:00
) -> PolynomialValues<F> {
let lde_size = common_data.lde_size();
let lde_gen = common_data.lde_generator();
let mut result = Vec::with_capacity(lde_size);
let mut point = F::ONE;
for i in 0..lde_size {
debug_assert!(point != F::ONE);
let i_next = (i + 1) % lde_size;
let local_wires = &wire_ldes_t[i];
let next_wires = &wire_ldes_t[i_next];
let local_constants = &prover_data.constant_ldes_t[i];
let next_constants = &prover_data.constant_ldes_t[i_next];
let local_plonk_zs = &plonk_z_lde_t[i];
let next_plonk_zs = &plonk_z_lde_t[i_next];
2021-03-30 23:12:47 -07:00
let s_sigmas = &prover_data.sigma_ldes_t[i];
debug_assert_eq!(local_wires.len(), common_data.config.num_wires);
debug_assert_eq!(local_plonk_zs.len(), common_data.config.num_checks);
let vars = EvaluationVars {
local_constants,
next_constants,
local_wires,
next_wires,
};
result.push(compute_vanishing_poly_entry(
2021-03-30 23:12:47 -07:00
common_data, point, vars, local_plonk_zs, next_plonk_zs, s_sigmas, beta, gamma, alpha));
point *= lde_gen;
}
debug_assert_eq!(point, F::ONE);
2021-03-30 13:30:31 -07:00
PolynomialValues::new(result)
}
2021-03-30 23:12:47 -07:00
/// Evaluate the vanishing polynomial at `x`. In this context, the vanishing polynomial is a random
/// linear combination of gate constraints, plus some other terms relating to the permutation
/// argument. All such terms should vanish on `H`.
fn compute_vanishing_poly_entry<F: Field>(
common_data: &CommonCircuitData<F>,
2021-03-30 23:12:47 -07:00
x: F,
vars: EvaluationVars<F>,
local_plonk_zs: &[F],
next_plonk_zs: &[F],
2021-03-30 23:12:47 -07:00
s_sigmas: &[F],
beta: F,
gamma: F,
alpha: F,
) -> F {
2021-03-30 23:12:47 -07:00
let constraint_terms = common_data.evaluate(vars);
// The L_1(x) (Z(x) - 1) vanishing terms.
let mut vanishing_z_1_terms = Vec::new();
// The Z(x) f'(x) - g'(x) Z(g x) terms.
let mut vanishing_v_shift_terms = Vec::new();
for i in 0..common_data.config.num_checks {
let z_x = local_plonk_zs[i];
let z_gz = next_plonk_zs[i];
vanishing_z_1_terms.push(eval_l_1(common_data.degree(), x) * (z_x - F::ONE));
let mut f_prime = F::ONE;
let mut g_prime = F::ONE;
for j in 0..common_data.config.num_routed_wires {
let wire_value = vars.local_wires[j];
let k_i = common_data.k_is[j];
let s_id = k_i * x;
let s_sigma = s_sigmas[j];
f_prime *= wire_value + beta * s_id + gamma;
g_prime *= wire_value + beta * s_sigma + gamma;
}
vanishing_v_shift_terms.push(f_prime * z_x - g_prime * z_gz);
}
let vanishing_terms = [
vanishing_z_1_terms,
vanishing_v_shift_terms,
constraint_terms,
].concat();
reduce_with_powers(vanishing_terms, alpha)
}
2021-03-21 11:57:33 -07:00
fn compute_wire_lde<F: Field>(
input: usize,
witness: &PartialWitness<F>,
degree: usize,
2021-03-25 15:20:14 -07:00
rate_bits: usize,
2021-03-30 13:30:31 -07:00
) -> PolynomialValues<F> {
2021-03-25 15:20:14 -07:00
let wire_values = (0..degree)
2021-03-21 19:50:05 -07:00
// Some gates do not use all wires, and we do not require that generators populate unused
// wires, so some wire values will not be set. We can set these to any value; here we
// arbitrary pick zero. Ideally we would verify that no constraints operate on these unset
// wires, but that isn't trivial.
.map(|gate| witness.try_get_wire(Wire { gate, input }).unwrap_or(F::ZERO))
2021-03-21 11:57:33 -07:00
.collect();
2021-03-30 13:30:31 -07:00
PolynomialValues::new(wire_values).lde(rate_bits)
2021-02-09 21:25:21 -08:00
}