Shrink STARK proofs to a constant degree
The goal here is to end up with a single "root" circuit representing any EVM proof. I.e. it must verify each STARK, but be general enough to work with any combination of STARK sizes (within some range of sizes that we chose to support). This root circuit can then be plugged into our aggregation circuit.
In particular, for each STARK, and for each initial `degree_bits` (within a range that we choose to support), this adds a "shrinking chain" of circuits. Such a chain shrinks a STARK proof from that initial `degree_bits` down to a constant, `THRESHOLD_DEGREE_BITS`.
The root circuit then combines these shrunk-to-constant proofs for each table. It's similar to `RecursiveAllProof::verify_circuit`; I adapted the code from there and I think we can remove it after. The main difference is that now instead of having one verification key per STARK, we have several possible VKs, one per initial `degree_bits`. We bake the list of possible VKs into the root circuit, and have the prover indicate the index of the VK they're actually using.
This also partially removes the default feature of CTLs. So far we've used filters instead of defaults. Until now it was easy to keep supporting defaults just in case, but here maintaining support would require some more work. E.g. we couldn't use `exp_u64` any more, since the size delta is now dynamic, it can't be hardcoded. If there are no concerns, I'll fully remove the feature after.
2022-12-27 18:15:18 -08:00
|
|
|
use std::collections::BTreeMap;
|
|
|
|
|
use std::ops::Range;
|
|
|
|
|
|
|
|
|
|
use itertools::Itertools;
|
|
|
|
|
use plonky2::field::extension::Extendable;
|
|
|
|
|
use plonky2::hash::hash_types::RichField;
|
|
|
|
|
use plonky2::hash::hashing::SPONGE_WIDTH;
|
|
|
|
|
use plonky2::iop::challenger::RecursiveChallenger;
|
|
|
|
|
use plonky2::iop::target::Target;
|
|
|
|
|
use plonky2::iop::witness::{PartialWitness, WitnessWrite};
|
|
|
|
|
use plonky2::plonk::circuit_builder::CircuitBuilder;
|
|
|
|
|
use plonky2::plonk::circuit_data::{CircuitConfig, CircuitData};
|
|
|
|
|
use plonky2::plonk::config::{AlgebraicHasher, GenericConfig, Hasher};
|
|
|
|
|
use plonky2::plonk::proof::{ProofWithPublicInputs, ProofWithPublicInputsTarget};
|
|
|
|
|
use plonky2::util::timing::TimingTree;
|
|
|
|
|
|
|
|
|
|
use crate::all_stark::{all_cross_table_lookups, AllStark, Table, NUM_TABLES};
|
|
|
|
|
use crate::config::StarkConfig;
|
|
|
|
|
use crate::cpu::cpu_stark::CpuStark;
|
|
|
|
|
use crate::cross_table_lookup::{verify_cross_table_lookups_circuit, CrossTableLookup};
|
|
|
|
|
use crate::generation::GenerationInputs;
|
|
|
|
|
use crate::keccak::keccak_stark::KeccakStark;
|
|
|
|
|
use crate::keccak_sponge::keccak_sponge_stark::KeccakSpongeStark;
|
|
|
|
|
use crate::logic::LogicStark;
|
|
|
|
|
use crate::memory::memory_stark::MemoryStark;
|
|
|
|
|
use crate::permutation::{get_grand_product_challenge_set_target, GrandProductChallengeSet};
|
|
|
|
|
use crate::proof::StarkProofWithMetadata;
|
|
|
|
|
use crate::prover::prove;
|
|
|
|
|
use crate::recursive_verifier::{
|
|
|
|
|
add_common_recursion_gates, recursive_stark_circuit, PlonkWrapperCircuit, PublicInputs,
|
|
|
|
|
StarkWrapperCircuit,
|
|
|
|
|
};
|
|
|
|
|
use crate::stark::Stark;
|
|
|
|
|
|
|
|
|
|
/// The recursion threshold. We end a chain of recursive proofs once we reach this size.
|
|
|
|
|
const THRESHOLD_DEGREE_BITS: usize = 13;
|
|
|
|
|
|
|
|
|
|
/// Contains all recursive circuits used in the system. For each STARK and each initial
|
|
|
|
|
/// `degree_bits`, this contains a chain of recursive circuits for shrinking that STARK from
|
|
|
|
|
/// `degree_bits` to a constant `THRESHOLD_DEGREE_BITS`. It also contains a special root circuit
|
|
|
|
|
/// for combining each STARK's shrunk wrapper proof into a single proof.
|
|
|
|
|
pub struct AllRecursiveCircuits<F, C, const D: usize>
|
|
|
|
|
where
|
|
|
|
|
F: RichField + Extendable<D>,
|
|
|
|
|
C: GenericConfig<D, F = F>,
|
|
|
|
|
{
|
|
|
|
|
/// The root circuit, which aggregates the (shrunk) per-table recursive proofs.
|
|
|
|
|
pub root: RootCircuitData<F, C, D>,
|
|
|
|
|
/// Holds chains of circuits for each table and for each initial `degree_bits`.
|
|
|
|
|
by_table: [RecursiveCircuitsForTable<F, C, D>; NUM_TABLES],
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Data for the special root circuit, which is used to combine each STARK's shrunk wrapper proof
|
|
|
|
|
/// into a single proof.
|
|
|
|
|
pub struct RootCircuitData<F, C, const D: usize>
|
|
|
|
|
where
|
|
|
|
|
F: RichField + Extendable<D>,
|
|
|
|
|
C: GenericConfig<D, F = F>,
|
|
|
|
|
{
|
|
|
|
|
pub circuit: CircuitData<F, C, D>,
|
|
|
|
|
proof_with_pis: [ProofWithPublicInputsTarget<D>; NUM_TABLES],
|
|
|
|
|
/// For each table, various inner circuits may be used depending on the initial table size.
|
|
|
|
|
/// This target holds the index of the circuit (within `final_circuits()`) that was used.
|
|
|
|
|
index_verifier_data: [Target; NUM_TABLES],
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
impl<F, C, const D: usize> AllRecursiveCircuits<F, C, D>
|
|
|
|
|
where
|
|
|
|
|
F: RichField + Extendable<D>,
|
|
|
|
|
C: GenericConfig<D, F = F>,
|
|
|
|
|
C::Hasher: AlgebraicHasher<F>,
|
|
|
|
|
[(); C::Hasher::HASH_SIZE]:,
|
|
|
|
|
[(); CpuStark::<F, D>::COLUMNS]:,
|
|
|
|
|
[(); KeccakStark::<F, D>::COLUMNS]:,
|
|
|
|
|
[(); KeccakSpongeStark::<F, D>::COLUMNS]:,
|
|
|
|
|
[(); LogicStark::<F, D>::COLUMNS]:,
|
|
|
|
|
[(); MemoryStark::<F, D>::COLUMNS]:,
|
|
|
|
|
{
|
|
|
|
|
/// Preprocess all recursive circuits used by the system.
|
|
|
|
|
pub fn new(
|
|
|
|
|
all_stark: &AllStark<F, D>,
|
|
|
|
|
degree_bits_range: Range<usize>,
|
|
|
|
|
stark_config: &StarkConfig,
|
|
|
|
|
) -> Self {
|
|
|
|
|
let cpu = RecursiveCircuitsForTable::new(
|
|
|
|
|
Table::Cpu,
|
|
|
|
|
&all_stark.cpu_stark,
|
|
|
|
|
degree_bits_range.clone(),
|
|
|
|
|
&all_stark.cross_table_lookups,
|
|
|
|
|
stark_config,
|
|
|
|
|
);
|
|
|
|
|
let keccak = RecursiveCircuitsForTable::new(
|
|
|
|
|
Table::Keccak,
|
|
|
|
|
&all_stark.keccak_stark,
|
|
|
|
|
degree_bits_range.clone(),
|
|
|
|
|
&all_stark.cross_table_lookups,
|
|
|
|
|
stark_config,
|
|
|
|
|
);
|
|
|
|
|
let keccak_sponge = RecursiveCircuitsForTable::new(
|
|
|
|
|
Table::KeccakSponge,
|
|
|
|
|
&all_stark.keccak_sponge_stark,
|
|
|
|
|
degree_bits_range.clone(),
|
|
|
|
|
&all_stark.cross_table_lookups,
|
|
|
|
|
stark_config,
|
|
|
|
|
);
|
|
|
|
|
let logic = RecursiveCircuitsForTable::new(
|
|
|
|
|
Table::Logic,
|
|
|
|
|
&all_stark.logic_stark,
|
|
|
|
|
degree_bits_range.clone(),
|
|
|
|
|
&all_stark.cross_table_lookups,
|
|
|
|
|
stark_config,
|
|
|
|
|
);
|
|
|
|
|
let memory = RecursiveCircuitsForTable::new(
|
|
|
|
|
Table::Memory,
|
|
|
|
|
&all_stark.memory_stark,
|
|
|
|
|
degree_bits_range,
|
|
|
|
|
&all_stark.cross_table_lookups,
|
|
|
|
|
stark_config,
|
|
|
|
|
);
|
|
|
|
|
|
|
|
|
|
let by_table = [cpu, keccak, keccak_sponge, logic, memory];
|
|
|
|
|
let root = Self::create_root_circuit(&by_table, stark_config);
|
|
|
|
|
Self { root, by_table }
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
fn create_root_circuit(
|
|
|
|
|
by_table: &[RecursiveCircuitsForTable<F, C, D>; NUM_TABLES],
|
|
|
|
|
stark_config: &StarkConfig,
|
|
|
|
|
) -> RootCircuitData<F, C, D> {
|
|
|
|
|
let inner_common_data: [_; NUM_TABLES] =
|
|
|
|
|
std::array::from_fn(|i| &by_table[i].final_circuits()[0].common);
|
|
|
|
|
|
|
|
|
|
let mut builder = CircuitBuilder::new(CircuitConfig::standard_recursion_config());
|
|
|
|
|
let recursive_proofs =
|
|
|
|
|
std::array::from_fn(|i| builder.add_virtual_proof_with_pis::<C>(inner_common_data[i]));
|
|
|
|
|
let pis: [_; NUM_TABLES] = std::array::from_fn(|i| {
|
|
|
|
|
PublicInputs::from_vec(&recursive_proofs[i].public_inputs, stark_config)
|
|
|
|
|
});
|
|
|
|
|
let index_verifier_data = std::array::from_fn(|_i| builder.add_virtual_target());
|
|
|
|
|
|
|
|
|
|
let mut challenger = RecursiveChallenger::<F, C::Hasher, D>::new(&mut builder);
|
|
|
|
|
for pi in &pis {
|
|
|
|
|
for h in &pi.trace_cap {
|
|
|
|
|
challenger.observe_elements(h);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
let ctl_challenges = get_grand_product_challenge_set_target(
|
|
|
|
|
&mut builder,
|
|
|
|
|
&mut challenger,
|
|
|
|
|
stark_config.num_challenges,
|
|
|
|
|
);
|
|
|
|
|
// Check that the correct CTL challenges are used in every proof.
|
|
|
|
|
for pi in &pis {
|
|
|
|
|
for i in 0..stark_config.num_challenges {
|
|
|
|
|
builder.connect(
|
|
|
|
|
ctl_challenges.challenges[i].beta,
|
|
|
|
|
pi.ctl_challenges.challenges[i].beta,
|
|
|
|
|
);
|
|
|
|
|
builder.connect(
|
|
|
|
|
ctl_challenges.challenges[i].gamma,
|
|
|
|
|
pi.ctl_challenges.challenges[i].gamma,
|
|
|
|
|
);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
let state = challenger.compact(&mut builder);
|
|
|
|
|
for k in 0..SPONGE_WIDTH {
|
|
|
|
|
builder.connect(state[k], pis[0].challenger_state_before[k]);
|
|
|
|
|
}
|
|
|
|
|
// Check that the challenger state is consistent between proofs.
|
|
|
|
|
for i in 1..NUM_TABLES {
|
|
|
|
|
for k in 0..SPONGE_WIDTH {
|
|
|
|
|
builder.connect(
|
|
|
|
|
pis[i].challenger_state_before[k],
|
|
|
|
|
pis[i - 1].challenger_state_after[k],
|
|
|
|
|
);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Verify the CTL checks.
|
|
|
|
|
verify_cross_table_lookups_circuit::<F, C, D>(
|
|
|
|
|
&mut builder,
|
|
|
|
|
all_cross_table_lookups(),
|
|
|
|
|
pis.map(|p| p.ctl_zs_last),
|
|
|
|
|
stark_config,
|
|
|
|
|
);
|
|
|
|
|
|
|
|
|
|
for (i, table_circuits) in by_table.iter().enumerate() {
|
|
|
|
|
let final_circuits = table_circuits.final_circuits();
|
|
|
|
|
for final_circuit in &final_circuits {
|
|
|
|
|
assert_eq!(
|
|
|
|
|
&final_circuit.common, inner_common_data[i],
|
|
|
|
|
"common_data mismatch"
|
|
|
|
|
);
|
|
|
|
|
}
|
|
|
|
|
let mut possible_vks = final_circuits
|
|
|
|
|
.into_iter()
|
|
|
|
|
.map(|c| builder.constant_verifier_data(&c.verifier_only))
|
|
|
|
|
.collect_vec();
|
|
|
|
|
// random_access_verifier_data expects a vector whose length is a power of two.
|
|
|
|
|
// To satisfy this, we will just add some duplicates of the first VK.
|
|
|
|
|
while !possible_vks.len().is_power_of_two() {
|
|
|
|
|
possible_vks.push(possible_vks[0].clone());
|
|
|
|
|
}
|
|
|
|
|
let inner_verifier_data =
|
|
|
|
|
builder.random_access_verifier_data(index_verifier_data[i], possible_vks);
|
|
|
|
|
|
|
|
|
|
builder.verify_proof::<C>(
|
|
|
|
|
&recursive_proofs[i],
|
|
|
|
|
&inner_verifier_data,
|
|
|
|
|
inner_common_data[i],
|
|
|
|
|
);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
RootCircuitData {
|
|
|
|
|
circuit: builder.build(),
|
|
|
|
|
proof_with_pis: recursive_proofs,
|
|
|
|
|
index_verifier_data,
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Create a proof for each STARK, then combine them, eventually culminating in a root proof.
|
|
|
|
|
pub fn prove_root(
|
|
|
|
|
&self,
|
|
|
|
|
all_stark: &AllStark<F, D>,
|
|
|
|
|
config: &StarkConfig,
|
|
|
|
|
generation_inputs: GenerationInputs,
|
|
|
|
|
timing: &mut TimingTree,
|
|
|
|
|
) -> anyhow::Result<ProofWithPublicInputs<F, C, D>> {
|
|
|
|
|
let all_proof = prove::<F, C, D>(all_stark, config, generation_inputs, timing)?;
|
|
|
|
|
let mut root_inputs = PartialWitness::new();
|
|
|
|
|
for table in 0..NUM_TABLES {
|
|
|
|
|
let stark_proof = &all_proof.stark_proofs[table];
|
|
|
|
|
let original_degree_bits = stark_proof.proof.recover_degree_bits(config);
|
|
|
|
|
let table_circuits = &self.by_table[table];
|
|
|
|
|
let shrunk_proof = table_circuits.by_stark_size[&original_degree_bits]
|
|
|
|
|
.shrink(stark_proof, &all_proof.ctl_challenges)?;
|
|
|
|
|
let index_verifier_data = table_circuits
|
|
|
|
|
.by_stark_size
|
|
|
|
|
.keys()
|
|
|
|
|
.position(|&size| size == original_degree_bits)
|
|
|
|
|
.unwrap();
|
|
|
|
|
root_inputs.set_target(
|
|
|
|
|
self.root.index_verifier_data[table],
|
|
|
|
|
F::from_canonical_usize(index_verifier_data),
|
|
|
|
|
);
|
|
|
|
|
root_inputs.set_proof_with_pis_target(&self.root.proof_with_pis[table], &shrunk_proof);
|
|
|
|
|
}
|
|
|
|
|
self.root.circuit.prove(root_inputs)
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
struct RecursiveCircuitsForTable<F, C, const D: usize>
|
|
|
|
|
where
|
|
|
|
|
F: RichField + Extendable<D>,
|
|
|
|
|
C: GenericConfig<D, F = F>,
|
|
|
|
|
{
|
|
|
|
|
/// A map from `log_2(height)` to a chain of shrinking recursion circuits starting at that
|
|
|
|
|
/// height.
|
|
|
|
|
by_stark_size: BTreeMap<usize, RecursiveCircuitsForTableSize<F, C, D>>,
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
impl<F, C, const D: usize> RecursiveCircuitsForTable<F, C, D>
|
|
|
|
|
where
|
|
|
|
|
F: RichField + Extendable<D>,
|
|
|
|
|
C: GenericConfig<D, F = F>,
|
|
|
|
|
C::Hasher: AlgebraicHasher<F>,
|
|
|
|
|
[(); C::Hasher::HASH_SIZE]:,
|
|
|
|
|
{
|
|
|
|
|
fn new<S: Stark<F, D>>(
|
|
|
|
|
table: Table,
|
|
|
|
|
stark: &S,
|
|
|
|
|
degree_bits_range: Range<usize>,
|
|
|
|
|
all_ctls: &[CrossTableLookup<F>],
|
|
|
|
|
stark_config: &StarkConfig,
|
|
|
|
|
) -> Self
|
|
|
|
|
where
|
|
|
|
|
[(); S::COLUMNS]:,
|
|
|
|
|
{
|
|
|
|
|
let by_stark_size = degree_bits_range
|
|
|
|
|
.map(|degree_bits| {
|
|
|
|
|
(
|
|
|
|
|
degree_bits,
|
|
|
|
|
RecursiveCircuitsForTableSize::new::<S>(
|
|
|
|
|
table,
|
|
|
|
|
stark,
|
|
|
|
|
degree_bits,
|
|
|
|
|
all_ctls,
|
|
|
|
|
stark_config,
|
|
|
|
|
),
|
|
|
|
|
)
|
|
|
|
|
})
|
|
|
|
|
.collect();
|
|
|
|
|
Self { by_stark_size }
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// For each initial `degree_bits`, get the final circuit at the end of that shrinking chain.
|
|
|
|
|
/// Each of these final circuits should have degree `THRESHOLD_DEGREE_BITS`.
|
|
|
|
|
fn final_circuits(&self) -> Vec<&CircuitData<F, C, D>> {
|
|
|
|
|
self.by_stark_size
|
|
|
|
|
.values()
|
|
|
|
|
.map(|chain| {
|
|
|
|
|
chain
|
|
|
|
|
.shrinking_wrappers
|
|
|
|
|
.last()
|
|
|
|
|
.map(|wrapper| &wrapper.circuit)
|
|
|
|
|
.unwrap_or(&chain.initial_wrapper.circuit)
|
|
|
|
|
})
|
|
|
|
|
.collect()
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// A chain of shrinking wrapper circuits, ending with a final circuit with `degree_bits`
|
|
|
|
|
/// `THRESHOLD_DEGREE_BITS`.
|
|
|
|
|
struct RecursiveCircuitsForTableSize<F, C, const D: usize>
|
|
|
|
|
where
|
|
|
|
|
F: RichField + Extendable<D>,
|
|
|
|
|
C: GenericConfig<D, F = F>,
|
|
|
|
|
{
|
|
|
|
|
initial_wrapper: StarkWrapperCircuit<F, C, D>,
|
|
|
|
|
shrinking_wrappers: Vec<PlonkWrapperCircuit<F, C, D>>,
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
impl<F, C, const D: usize> RecursiveCircuitsForTableSize<F, C, D>
|
|
|
|
|
where
|
|
|
|
|
F: RichField + Extendable<D>,
|
|
|
|
|
C: GenericConfig<D, F = F>,
|
|
|
|
|
C::Hasher: AlgebraicHasher<F>,
|
|
|
|
|
[(); C::Hasher::HASH_SIZE]:,
|
|
|
|
|
{
|
|
|
|
|
fn new<S: Stark<F, D>>(
|
|
|
|
|
table: Table,
|
|
|
|
|
stark: &S,
|
|
|
|
|
degree_bits: usize,
|
|
|
|
|
all_ctls: &[CrossTableLookup<F>],
|
|
|
|
|
stark_config: &StarkConfig,
|
|
|
|
|
) -> Self
|
|
|
|
|
where
|
|
|
|
|
[(); S::COLUMNS]:,
|
|
|
|
|
{
|
|
|
|
|
let initial_wrapper = recursive_stark_circuit(
|
|
|
|
|
table,
|
|
|
|
|
stark,
|
|
|
|
|
degree_bits,
|
|
|
|
|
all_ctls,
|
|
|
|
|
stark_config,
|
|
|
|
|
&shrinking_config(),
|
|
|
|
|
THRESHOLD_DEGREE_BITS,
|
|
|
|
|
);
|
|
|
|
|
let mut shrinking_wrappers = vec![];
|
|
|
|
|
|
|
|
|
|
// Shrinking recursion loop.
|
|
|
|
|
loop {
|
|
|
|
|
let last = shrinking_wrappers
|
|
|
|
|
.last()
|
|
|
|
|
.map(|wrapper: &PlonkWrapperCircuit<F, C, D>| &wrapper.circuit)
|
|
|
|
|
.unwrap_or(&initial_wrapper.circuit);
|
|
|
|
|
let last_degree_bits = last.common.degree_bits();
|
|
|
|
|
assert!(last_degree_bits >= THRESHOLD_DEGREE_BITS);
|
|
|
|
|
if last_degree_bits == THRESHOLD_DEGREE_BITS {
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
let mut builder = CircuitBuilder::new(shrinking_config());
|
|
|
|
|
let proof_with_pis_target = builder.add_virtual_proof_with_pis::<C>(&last.common);
|
|
|
|
|
let last_vk = builder.constant_verifier_data(&last.verifier_only);
|
|
|
|
|
builder.verify_proof::<C>(&proof_with_pis_target, &last_vk, &last.common);
|
|
|
|
|
builder.register_public_inputs(&proof_with_pis_target.public_inputs); // carry PIs forward
|
|
|
|
|
add_common_recursion_gates(&mut builder);
|
|
|
|
|
let circuit = builder.build();
|
|
|
|
|
|
|
|
|
|
assert!(
|
|
|
|
|
circuit.common.degree_bits() < last_degree_bits,
|
|
|
|
|
"Couldn't shrink to expected recursion threshold of 2^{}; stalled at 2^{}",
|
|
|
|
|
THRESHOLD_DEGREE_BITS,
|
|
|
|
|
circuit.common.degree_bits()
|
|
|
|
|
);
|
|
|
|
|
shrinking_wrappers.push(PlonkWrapperCircuit {
|
|
|
|
|
circuit,
|
|
|
|
|
proof_with_pis_target,
|
|
|
|
|
});
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
Self {
|
|
|
|
|
initial_wrapper,
|
|
|
|
|
shrinking_wrappers,
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
fn shrink(
|
|
|
|
|
&self,
|
|
|
|
|
stark_proof_with_metadata: &StarkProofWithMetadata<F, C, D>,
|
|
|
|
|
ctl_challenges: &GrandProductChallengeSet<F>,
|
|
|
|
|
) -> anyhow::Result<ProofWithPublicInputs<F, C, D>> {
|
|
|
|
|
let mut proof = self
|
|
|
|
|
.initial_wrapper
|
|
|
|
|
.prove(stark_proof_with_metadata, ctl_challenges)?;
|
|
|
|
|
for wrapper_circuit in &self.shrinking_wrappers {
|
|
|
|
|
proof = wrapper_circuit.prove(&proof)?;
|
|
|
|
|
}
|
|
|
|
|
Ok(proof)
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2023-01-03 11:23:28 -08:00
|
|
|
/// Our usual recursion threshold is 2^12 gates, but for these shrinking circuits, we use a few more
|
|
|
|
|
/// gates for a constant inner VK and for public inputs. This pushes us over the threshold to 2^13.
|
|
|
|
|
/// As long as we're at 2^13 gates, we might as well use a narrower witness.
|
Shrink STARK proofs to a constant degree
The goal here is to end up with a single "root" circuit representing any EVM proof. I.e. it must verify each STARK, but be general enough to work with any combination of STARK sizes (within some range of sizes that we chose to support). This root circuit can then be plugged into our aggregation circuit.
In particular, for each STARK, and for each initial `degree_bits` (within a range that we choose to support), this adds a "shrinking chain" of circuits. Such a chain shrinks a STARK proof from that initial `degree_bits` down to a constant, `THRESHOLD_DEGREE_BITS`.
The root circuit then combines these shrunk-to-constant proofs for each table. It's similar to `RecursiveAllProof::verify_circuit`; I adapted the code from there and I think we can remove it after. The main difference is that now instead of having one verification key per STARK, we have several possible VKs, one per initial `degree_bits`. We bake the list of possible VKs into the root circuit, and have the prover indicate the index of the VK they're actually using.
This also partially removes the default feature of CTLs. So far we've used filters instead of defaults. Until now it was easy to keep supporting defaults just in case, but here maintaining support would require some more work. E.g. we couldn't use `exp_u64` any more, since the size delta is now dynamic, it can't be hardcoded. If there are no concerns, I'll fully remove the feature after.
2022-12-27 18:15:18 -08:00
|
|
|
fn shrinking_config() -> CircuitConfig {
|
|
|
|
|
CircuitConfig {
|
|
|
|
|
num_routed_wires: 40,
|
|
|
|
|
..CircuitConfig::standard_recursion_config()
|
|
|
|
|
}
|
|
|
|
|
}
|