plonky2/evm/src/logic.rs

339 lines
12 KiB
Rust
Raw Normal View History

use std::marker::PhantomData;
use itertools::izip;
use plonky2::field::extension_field::{Extendable, FieldExtension};
use plonky2::field::packed_field::PackedField;
use plonky2::hash::hash_types::RichField;
use crate::constraint_consumer::{ConstraintConsumer, RecursiveConstraintConsumer};
use crate::stark::Stark;
use crate::vars::{StarkEvaluationTargets, StarkEvaluationVars};
// Total number of bits per input/output.
const VAL_BITS: usize = 256;
// Number of bits stored per field element. Ensure that this fits; it is not checked.
const PACKED_LIMB_BITS: usize = 16;
// Number of field elements needed to store each input/output at the specified packing.
const PACKED_LEN: usize = (VAL_BITS + PACKED_LIMB_BITS - 1) / PACKED_LIMB_BITS;
pub(crate) mod columns {
use std::cmp::min;
use std::ops::Range;
use super::{PACKED_LEN, PACKED_LIMB_BITS, VAL_BITS};
pub const IS_AND: usize = 0;
pub const IS_OR: usize = IS_AND + 1;
pub const IS_XOR: usize = IS_OR + 1;
pub const INPUT0_PACKED: Range<usize> = (IS_XOR + 1)..(IS_XOR + 1) + PACKED_LEN;
pub const INPUT1_PACKED: Range<usize> = INPUT0_PACKED.end..INPUT0_PACKED.end + PACKED_LEN;
pub const RESULT: Range<usize> = INPUT1_PACKED.end..INPUT1_PACKED.end + PACKED_LEN;
pub const INPUT0_BITS: Range<usize> = RESULT.end..RESULT.end + VAL_BITS;
pub const INPUT1_BITS: Range<usize> = INPUT0_BITS.end..INPUT0_BITS.end + VAL_BITS;
pub fn limb_bit_cols_for_input(input_bits: Range<usize>) -> impl Iterator<Item = Range<usize>> {
(0..PACKED_LEN).map(move |i| {
let start = input_bits.start + i * PACKED_LIMB_BITS;
let end = min(start + PACKED_LIMB_BITS, input_bits.end);
start..end
})
}
pub const NUM_COLUMNS: usize = INPUT1_BITS.end;
}
#[derive(Copy, Clone)]
pub struct LogicStark<F, const D: usize> {
pub f: PhantomData<F>,
}
enum Op {
And,
Or,
Xor,
}
fn check_op_flags<F: RichField>(lv: &[F; columns::NUM_COLUMNS]) -> Op {
let is_and = lv[columns::IS_AND].to_canonical_u64();
assert!(is_and <= 1);
let is_or = lv[columns::IS_OR].to_canonical_u64();
assert!(is_or <= 1);
let is_xor = lv[columns::IS_XOR].to_canonical_u64();
assert!(is_xor <= 1);
assert_eq!(is_and + is_or + is_xor, 1);
if is_and == 1 {
Op::And
} else if is_or == 1 {
Op::Or
} else if is_xor == 1 {
Op::Xor
} else {
panic!("unknown operation")
}
}
fn check_limb_length<F: RichField>(lv: &[F; columns::NUM_COLUMNS]) {
for (packed_input_cols, bit_cols) in [
(columns::INPUT0_PACKED, columns::INPUT0_BITS),
(columns::INPUT1_PACKED, columns::INPUT1_BITS),
] {
let limb_bit_cols_iter = columns::limb_bit_cols_for_input(bit_cols);
// Not actually reading/writing the bit columns, but this is a convenient way of
// calculating the size of each limb.
for (packed_limb_col, limb_bit_cols) in packed_input_cols.zip(limb_bit_cols_iter) {
let packed_limb = lv[packed_limb_col].to_canonical_u64();
let limb_length = limb_bit_cols.end - limb_bit_cols.start;
assert_eq!(packed_limb >> limb_length, 0);
}
}
}
fn make_bit_decomposition<F: RichField>(lv: &mut [F; columns::NUM_COLUMNS]) {
for (packed_input_cols, bit_cols) in [
(columns::INPUT0_PACKED, columns::INPUT0_BITS),
(columns::INPUT1_PACKED, columns::INPUT1_BITS),
] {
for (i, limb_col) in packed_input_cols.enumerate() {
let limb = lv[limb_col].to_canonical_u64();
let limb_bits_cols = bit_cols
.clone()
.skip(i * PACKED_LIMB_BITS)
.take(PACKED_LIMB_BITS);
for (j, col) in limb_bits_cols.enumerate() {
let bit = (limb >> j) & 1;
lv[col] = F::from_canonical_u64(bit);
}
}
}
}
fn make_result<F: RichField>(lv: &mut [F; columns::NUM_COLUMNS], op: Op) {
for (res_col, limb_in0_col, limb_in1_col) in izip!(
columns::RESULT,
columns::INPUT0_PACKED,
columns::INPUT1_PACKED
) {
let limb_in0 = lv[limb_in0_col].to_canonical_u64();
let limb_in1 = lv[limb_in1_col].to_canonical_u64();
let res = match op {
Op::And => limb_in0 & limb_in1,
Op::Or => limb_in0 | limb_in1,
Op::Xor => limb_in0 ^ limb_in1,
};
lv[res_col] = F::from_canonical_u64(res);
}
}
impl<F: RichField, const D: usize> LogicStark<F, D> {
pub fn generate(&self, lv: &mut [F; columns::NUM_COLUMNS]) {
let op = check_op_flags(lv);
check_limb_length(lv);
make_bit_decomposition(lv);
make_result(lv, op);
}
}
impl<F: RichField + Extendable<D>, const D: usize> Stark<F, D> for LogicStark<F, D> {
const COLUMNS: usize = columns::NUM_COLUMNS;
const PUBLIC_INPUTS: usize = 0;
fn eval_packed_generic<FE, P, const D2: usize>(
&self,
vars: StarkEvaluationVars<FE, P, { Self::COLUMNS }, { Self::PUBLIC_INPUTS }>,
yield_constr: &mut ConstraintConsumer<P>,
) where
FE: FieldExtension<D2, BaseField = F>,
P: PackedField<Scalar = FE>,
{
let lv = &vars.local_values;
// IS_AND, IS_OR, and IS_XOR come from the CPU table, so we assume they're valid.
let is_and = lv[columns::IS_AND];
let is_or = lv[columns::IS_OR];
let is_xor = lv[columns::IS_XOR];
// The result will be `in0 OP in1 = sum_coeff * (in0 + in1) + and_coeff * (in0 AND in1)`.
// `AND => sum_coeff = 0, and_coeff = 1`
// `OR => sum_coeff = 1, and_coeff = -1`
// `XOR => sum_coeff = 1, and_coeff = -2`
let sum_coeff = is_or + is_xor;
let and_coeff = is_and - is_or - is_xor * FE::TWO;
// Ensure that all bits are indeed bits.
for input_bits_cols in [columns::INPUT0_BITS, columns::INPUT1_BITS] {
for i in input_bits_cols {
let bit = lv[i];
yield_constr.constraint(bit * (bit - P::ONES));
}
}
// Check that the bits match the packed inputs.
for (input_bits_cols, input_packed_cols) in [
(columns::INPUT0_BITS, columns::INPUT0_PACKED),
(columns::INPUT1_BITS, columns::INPUT1_PACKED),
] {
for (limb_bits_cols, limb_col) in
columns::limb_bit_cols_for_input(input_bits_cols).zip(input_packed_cols)
{
let limb_from_bits: P = limb_bits_cols
.enumerate()
.map(|(i, bit_col)| {
let bit = lv[bit_col];
bit * FE::from_canonical_u64(1 << i)
})
.sum();
let limb = lv[limb_col];
yield_constr.constraint(limb - limb_from_bits);
}
}
// Form the result
for (result_col, x_col, y_col, x_bits_cols, y_bits_cols) in izip!(
columns::RESULT,
columns::INPUT0_PACKED,
columns::INPUT1_PACKED,
columns::limb_bit_cols_for_input(columns::INPUT0_PACKED),
columns::limb_bit_cols_for_input(columns::INPUT1_PACKED),
) {
let x = lv[x_col];
let y = lv[y_col];
let x_bits = x_bits_cols.map(|i| lv[i]);
let y_bits = y_bits_cols.map(|i| lv[i]);
let x_land_y: P = izip!(0.., x_bits, y_bits)
.map(|(i, x_bit, y_bit)| x_bit * y_bit * FE::from_canonical_u64(1 << i))
.sum();
let x_op_y = sum_coeff * (x + y) + and_coeff * x_land_y;
yield_constr.constraint(lv[result_col] - x_op_y);
}
}
fn eval_ext_circuit(
&self,
builder: &mut plonky2::plonk::circuit_builder::CircuitBuilder<F, D>,
vars: StarkEvaluationTargets<D, { Self::COLUMNS }, { Self::PUBLIC_INPUTS }>,
yield_constr: &mut RecursiveConstraintConsumer<F, D>,
) {
let lv = &vars.local_values;
// IS_AND, IS_OR, and IS_XOR come from the CPU table, so we assume they're valid.
let is_and = lv[columns::IS_AND];
let is_or = lv[columns::IS_OR];
let is_xor = lv[columns::IS_XOR];
// The result will be `in0 OP in1 = sum_coeff * (in0 + in1) + and_coeff * (in0 AND in1)`.
// `AND => sum_coeff = 0, and_coeff = 1`
// `OR => sum_coeff = 1, and_coeff = -1`
// `XOR => sum_coeff = 1, and_coeff = -2`
let sum_coeff = builder.add_extension(is_or, is_xor);
let and_coeff = {
let and_coeff = builder.sub_extension(is_and, is_or);
builder.mul_const_add_extension(-F::TWO, is_xor, and_coeff)
};
// Ensure that all bits are indeed bits.
for input_bits_cols in [columns::INPUT0_BITS, columns::INPUT1_BITS] {
for i in input_bits_cols {
let bit = lv[i];
let constr = builder.mul_sub_extension(bit, bit, bit);
yield_constr.constraint(builder, constr);
}
}
// Check that the bits match the packed inputs.
for (input_bits_cols, input_packed_cols) in [
(columns::INPUT0_BITS, columns::INPUT0_PACKED),
(columns::INPUT1_BITS, columns::INPUT1_PACKED),
] {
for (limb_bits_cols, limb_col) in
columns::limb_bit_cols_for_input(input_bits_cols).zip(input_packed_cols)
{
let limb_from_bits = limb_bits_cols.enumerate().fold(
builder.zero_extension(),
|acc, (i, bit_col)| {
let bit = lv[bit_col];
builder.mul_const_add_extension(F::from_canonical_u64(1 << i), bit, acc)
},
);
let limb = lv[limb_col];
let constr = builder.sub_extension(limb, limb_from_bits);
yield_constr.constraint(builder, constr);
}
}
// Form the result
for (result_col, x_col, y_col, x_bits_cols, y_bits_cols) in izip!(
columns::RESULT,
columns::INPUT0_PACKED,
columns::INPUT1_PACKED,
columns::limb_bit_cols_for_input(columns::INPUT0_PACKED),
columns::limb_bit_cols_for_input(columns::INPUT1_PACKED),
) {
let x = lv[x_col];
let y = lv[y_col];
let x_bits = x_bits_cols.map(|i| lv[i]);
let y_bits = y_bits_cols.map(|i| lv[i]);
let x_land_y = izip!(0usize.., x_bits, y_bits).fold(
builder.zero_extension(),
|acc, (i, x_bit, y_bit)| {
builder.arithmetic_extension(
F::from_canonical_u64(1 << i),
F::ONE,
x_bit,
y_bit,
acc,
)
},
);
let x_op_y = {
let x_op_y = builder.mul_extension(sum_coeff, x);
let x_op_y = builder.mul_add_extension(sum_coeff, y, x_op_y);
builder.mul_add_extension(and_coeff, x_land_y, x_op_y)
};
let constr = builder.sub_extension(lv[result_col], x_op_y);
yield_constr.constraint(builder, constr);
}
}
fn constraint_degree(&self) -> usize {
3
}
}
#[cfg(test)]
mod tests {
use anyhow::Result;
use plonky2::plonk::config::{GenericConfig, PoseidonGoldilocksConfig};
use crate::logic::LogicStark;
use crate::stark_testing::{test_stark_circuit_constraints, test_stark_low_degree};
#[test]
fn test_stark_degree() -> Result<()> {
const D: usize = 2;
type C = PoseidonGoldilocksConfig;
type F = <C as GenericConfig<D>>::F;
type S = LogicStark<F, D>;
let stark = S {
f: Default::default(),
};
test_stark_low_degree(stark)
}
#[test]
fn test_stark_circuit() -> Result<()> {
const D: usize = 2;
type C = PoseidonGoldilocksConfig;
type F = <C as GenericConfig<D>>::F;
type S = LogicStark<F, D>;
let stark = S {
f: Default::default(),
};
test_stark_circuit_constraints::<F, C, S, D>(stark)
}
}