plonky2-verifier/Goldilocks.hs
2024-12-12 13:27:45 +01:00

150 lines
3.8 KiB
Haskell

-- | Reference (simple, but very slow) implementation of the Goldilocks prime field
{-# LANGUAGE BangPatterns, NumericUnderscores #-}
module Goldilocks where
--------------------------------------------------------------------------------
import Prelude hiding ( div )
import qualified Prelude
import Data.Bits
import Data.Word
import Data.Ratio
import Data.Array
import Text.Printf
import System.Random
import GHC.Generics
import Data.Aeson ( ToJSON(..), FromJSON(..) )
--------------------------------------------------------------------------------
type F = Goldilocks
fromF :: F -> Word64
fromF (Goldilocks x) = fromInteger x
toF :: Word64 -> F
toF = mkGoldilocks . fromIntegral
rndF :: IO F
rndF = Goldilocks <$> randomRIO ( 0 , 0xffff_ffff_0000_0000 )
-- | The generator of the multiplicative subgroup of F used by Plonky2
multGen :: F
multGen = 0xc65c18b67785d900
-- | The generator of the largest 2-adic subgroup of F used by Plonky2
twoAdicGen :: F
twoAdicGen = 0x64fdd1a46201e246
-- | Sage code:
--
-- > p = 2^64-2^32+1
-- > F = GF(p)
-- > g = F(0xc65c18b67785d900)
-- > print( g.multiplicative_order() == p-1 )
-- > h = g ^ ( (p-1) / 2^32 )
-- > print( h == F(0x64fdd1a46201e246) )
-- > [ h^(2^(32-k)) for k in range(33) ]
--
rootsOfUnity :: Array Int Goldilocks
rootsOfUnity = listArray (0,32) $ reverse $ go twoAdicGen where
go 1 = [1]
go x = x : go (x*x)
--------------------------------------------------------------------------------
newtype Goldilocks
= Goldilocks Integer
deriving (Eq,Generic)
asInteger :: Goldilocks -> Integer
asInteger (Goldilocks x) = x
instance Show Goldilocks where
show (Goldilocks x) = show x -- decimal
-- show (Goldilocks x) = printf "0x%016x" x -- hex
--------------------------------------------------------------------------------
instance ToJSON Goldilocks where
toJSON x = toJSON (asInteger x)
instance FromJSON Goldilocks where
parseJSON o = mkGoldilocks <$> parseJSON o
--------------------------------------------------------------------------------
instance Num Goldilocks where
fromInteger = mkGoldilocks
negate = neg
(+) = add
(-) = sub
(*) = mul
abs = id
signum _ = Goldilocks 1
square :: Goldilocks -> Goldilocks
square x = x*x
instance Fractional Goldilocks where
fromRational y = fromInteger (numerator y) `div` fromInteger (denominator y)
recip = inv
(/) = div
--------------------------------------------------------------------------------
-- | @p = 2^64 - 2^32 + 1@
goldilocksPrime :: Integer
goldilocksPrime = 0x_ffff_ffff_0000_0001
modp :: Integer -> Integer
modp a = mod a goldilocksPrime
mkGoldilocks :: Integer -> Goldilocks
mkGoldilocks = Goldilocks . modp
--------------------------------------------------------------------------------
neg :: Goldilocks -> Goldilocks
neg (Goldilocks k) = mkGoldilocks (negate k)
add :: Goldilocks -> Goldilocks -> Goldilocks
add (Goldilocks a) (Goldilocks b) = mkGoldilocks (a+b)
sub :: Goldilocks -> Goldilocks -> Goldilocks
sub (Goldilocks a) (Goldilocks b) = mkGoldilocks (a-b)
sqr :: Goldilocks -> Goldilocks
sqr x = mul x x
mul :: Goldilocks -> Goldilocks -> Goldilocks
mul (Goldilocks a) (Goldilocks b) = mkGoldilocks (a*b)
inv :: Goldilocks -> Goldilocks
inv x = pow x (goldilocksPrime - 2)
div :: Goldilocks -> Goldilocks -> Goldilocks
div a b = mul a (inv b)
--------------------------------------------------------------------------------
pow :: Goldilocks -> Integer -> Goldilocks
pow x e
| e == 0 = 1
| e < 0 = pow (inv x) (negate e)
| otherwise = go 1 x e
where
go !acc _ 0 = acc
go !acc !s !expo = case expo .&. 1 of
0 -> go acc (sqr s) (shiftR expo 1)
_ -> go (acc*s) (sqr s) (shiftR expo 1)
--------------------------------------------------------------------------------