
Overview of Plonky2
Plonky2 is a proof system developed by Polygon Zero, based on “Plonkish”
arithmetization and FRI polynomial commitments.

The primary design goal of Plonky2 was to allow very efficient recursive proofs,
and it’s still interesting in that aspect (the next-generation Plonky3 toolkit does
not support recursion, or even Plonk circuits, at the time of writing this).

In this set of notes I try to describe the internal workings of Plonky2 in detail
(as the original authors provided essentially no documentation at all. . . )

Links to the topical notes

• Layout.md - Layout of all the columns
• Gates.md - The different “custom gates” present in the Plonky2 code base
• Selectors.md - Gate selectors and constants
• GateConstraints.md - Gate constraint equations
• Wiring.md - The permutation argument
• Poseidon.md - Poseidon hash function
• FRI.md - FRI commitment scheme
• Challenges.md - Fiat-Shamir challenges
• Protocol.md - Overview of the protocol
• Lookups.md - Lookup gates and the lookup argument
• Recursion.md - Recursive proofs

Some basic design choices
Plonky2 uses a Plonkish arithmetization with wide rows and FRI polynomial
commitment scheme, over a small (64-bit) field.

Features

• Plonkish arithmetization:
– the witness is organized in a 2n × M matrix (called “advice wires”);
– the circuit is described by “gates” and wiring constraints
– with optional lookup tables

• wide rows (by default M = 135)
• gates are single-row, and at most 1 gate in a row (no rotations a la Halo2)
• custom gates (any number of equations per gate)
• relatively high-degree gates (by default, up to 8)
• optimized for recursive proofs

Having such a large number of columns is not a problem in practice, because
using FRI whole rows can be committed (and opened) at together. With KZG
this would be rather expensive.
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Field choice

Plonky2 uses the Goldilocks field Fp with p = 264 − 232 + 1, and a degree two
extension Fp2 = F̃ := Fp[X]/(X2 − 7). This is essentially the smallest irreducible
polynomial over Fp to use.

In theory, the code supports higher degree field extensions too, though I don’t
think they are actually used; the crate implements the degree 4 and 5 extension
Fp[X]/(X4 − 7) and Fp[X]/(X5 − 3).

Recently Telos announced the integration of other fields in their fork.

Hash choice

Plonky2 can use either Keccak or the Poseidon hash (with custom constants)
with t=12 (that is, the internal state is 12 field elements, approximately 750 bits
wide).

For recursive proofs obviously Poseidon is used. To make this fast, a 135 column
wide Poseidon gate is used; see Poseidon.md for more details.

The hash function is used for several purposes:

• the most important is the FRI commitment (both for computing linear
hashes of rows and then the Merkle tree on the top);

• but also used for Fiat-Shamir heuristic;
• and handling of public inputs.

Because the public inputs are always hashed into 4 field elements (approx. 256
bits), in practice all circuits contain a Poseidon gate, and thus are 135 columns
wide.

In theory it’s possible to add further hash function choices, eg. Monolith (faster
proofs) or Poseidon2-BN254 (more efficient EVM-compatible wrapper).

Custom Gates
Plonky2 has about a dozen of custom gates included by default (but the user can
in theory add more). Most of these are intended for implementing the recursive
verifier circuit.

A custom gate is essentially several (low-degree) polynomial constraints over the
witness cells of a single row, plus recipes to calculate some of these (for example
in the Poseidon gate, all cells apart from the 12 inputs are calculated). The
latter is encoded in a so called “Generator” using the SimpleGenerator trait.

On the user side, it seems that custom gates are abstracted away behind “gadgets”.

Unfortunately the actual gate equations never appear explicitly in the code,
only routines to calculate them (several ones for different contexts. . . ), which 1)
makes it hard to read and debug; and 2) makes the code very non-modular.
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However, there is also a good reason for this: The actual equations, if described
as (multivariate) polynomials, can be very big and thus inefficient to calculate,
especially in the case of the Poseidon gate. This is because of the lack of sharing
between intermediate variables. Instead, you need to described an efficient
algorithm to compute these polynomials (think for example Horner evaluation
vs. naive polynomial evaluation).

Note that while in theory a row could contain several non-overlapping gates, the
way Plonky2 organizes its gate equations would make this unsound (it would also
complicate the system even more). See the details at the protocol description.

List of gates

The default gate set is:

- arithmetic_base
- arithmetic_extension
- base_sum
- constant
- coset_interpolation
- exponentiation
- lookup
- lookup_table
- multiplication_extension
- noop
- poseidon
- poseidon_mds
- public_input
- random_access
- reducing
- reducing_extension

Arithmetic gates

These evaluate the constraint w = c0xy + c1z, either in the base field or in the
quadratic extension field, possibly in many copies, but with shared c0, c1 ∈ F
(these seem to be always in the base field?)

Note: in ArithmeticExtensionGate, since the constraints are normally already
calculated in the extension field, we in fact compute in a doubly-extended field
F̃[Y ]/(Y 2 − 7)! Similarly elsewhere when we reason about F̃.

Base sum gate

This evaluates the constraint x =
∑k

i=0 aiB
i (where B is the radix or base). It

can be used for example for simple range checks.

The the coefficient ranges 0 ≤ ai < B are checked very naively as
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∀ i.

B−1∏
k=0

(ai − k) = 0

which is a degree B equation, so this is only useful for very small B-s (typically
B = 2).

The corresponding witness row looks like [x, a0, a1, . . . aB−1, 0, . . . , 0].

Constant gate

A very simple gate enforcing the xi = ci. Here the ci are the same type of
constants as in the arithmetic circuit. The reason for the existence of this is
presumably that the constant columns are not routed columns, otherwise you
could use the permutation (wiring) argument to enforce such constants.

I’m not convinced this is the right design choice, but probably depends on the
circumstances.

Coset interpolation gate

This gate interpolates a set of values yi ∈ F̃ on a coset ηH of a small subgroup
H (typically of size 24), and evaluates the resulting polynomial at an arbitrary
location ζ ∈ F̃.

The formula is the barycentric form of Lagrange polynomials, but slightly
modified to be chunked and to be iterative.

This is used for recursion.

Exponentiation

This computes y = xk using the standard fast exponentiation algorithm, where
k is number fitting into some number of bits (depending on the row width).

I believe it first decomposes k into digits, and then does the normal thing.
Though for some reason it claims to be a degree 4 gate, and I think it should be
degree 3. . . TODO: sanity check this

Lookups

There are two kind of lookup gates, one containing (inp, out) pairs, and the other
containing (inp, out, mult) triples.

Neither imposes any constraint, as lookups are different from usual gates, as
their behaviour is hardcoded in the protocol.

The 2 gates (LookupGate for the one without multiplicities and LookupTableGate
for the one with) encode the lookup usage and the table(s) themselves, respec-
tively. Plonky2 uses a logarithmic derivative based lookup argument.
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See Lookups.md for more details.

Multiplication extension gate

This is the same as ArithmeticExtensionGate, except that it misses the addi-
tion. So the constraint is z = c0xy ∈ F̃. In exchange, you can pack 13 of these
into 80 columns instead of 10.

Noop gate

This doesn’t enforce any constraint. It’s used as a placeholder so each row
corresponds to exactly a single gate; and also lookup tables as implemented
require an empty row.

Poseidon gate

This computes the Poseidon hash (with Plonky2’s custom constants and MDS
matrix).

The poseidon gate packs all the (inputs of the) nonlinear sbox-es into a 135 wide
row, this results in the standard configuration being 135 advice columns.

Poseidon hash is used for several purposes: hashing the public inputs into 4
field elements; the recursion verification of FRI; and generating challenges in the
verifier.

See Poseidon.md for more details.

Poseidon MDS gate

This simply computes the multiplication by the 12x12 MDS matrix (so all linear
constraints), but with the input vector consisting of field extension elements. It
is used in the recursive proof circuit.

Public input gate

This simply packs the hash of the public inputs (4 field elements) into the first
four cells of a row.

The actual public inputs are presumably at arbitrary locations in the routed
advice wires; then Poseidon gates are automatically added and wired to compute
the hash of those. The final hash result is “wired” to be equal to these values.

Finally these four values are constrained (with 4 linear equations) to be the
actual hash values, which I guess is how the verifier checks these (that is, the
hash values are hardcoded in the equations).
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Random access gate

This gate allows dynamically indexing (relatively short) vector of size 2n.

The idea is to decompose the index into bits idx =
∑

bi2i; then if you can write
down “selectors” like for example

S11 := S0b1011 := b0(1 − b1)b2b3 =
{

1, if idx = 0b1011 = 11
0, if idx ̸= 11

Then Aidx =
∑2n−1

i=0 Si · Ai.

Or at least that’s how I would do it :)

The degree of the gate is n + 1, so they probably inline the above selector
definitions.

In the actual implementation, they repeat this as many times as it fits in the
routed wires, followed by (at most) 2 cells used the same way as in the constant
gate, finally followed by the bit decompositions

So the cells look like (for n=4): copies ++ consts ++ bits with

copies = [ i,a[i],a0,...,a15; j,b[j],b0,...b15; ... ]
consts = [ c0, c1 ]
bits = [ i0,i1,2,i3; j0,j1,j2,j3; ...; 0... ]

Reducing gates

These compute y =
∑k

i=0 αi · ci with the coefficients ci in either the base field or
the extension field, however with α ∈ F̃ always in the extension field.

It assumes that everything fits into a single row.

Selectors and constants
The circuit descriptions consists not only of the permutation, but also the gate
selectors and gate constants.

(There are also “lookup selectors”, for those see Lookups)

Typically we have 2 or 3 selector columns (to switch between the different gates)
and 2 constant columns (for the constants of the arithmetic and other gates).

For example in the Fibonacci example circuit uses 5 gates, which are:

• NoopGate
• ConstantGate { num_consts: 2 }
• PublicInputGate
• ArithmeticGate { num_ops: 20 }
• PoseidonGate(...)<WIDTH=12>
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(in fact the NoopGate is used only when changing from the 100th Fibonacci
number to say the 200th one, because apparently the 100 example just fills the
trace exactly. . . )

This can be seen for example by serializing the CommonCircuitData struct.

The Poseidon gate is present because Plonky2 handles public input by always
hashing it into 4 field element (encoded in the public input gate).

These gates are numbered 0..4. Looking at the selector polynomials in the
Fibonacci example, in the first one we see a lot of 3 (arithmetic gates, encoding
the Fibonacci computation); a UNUSEDGATE = 2ˆ32-1, which is a placeholder for
gates not using the given selector polynomial, a 2 (public input), an 1 (constants),
and some 0-s (no-op). In the other selector columns, it’s all UNUSED except
one 4 (Poseidon hash gate), exactly where the other one is unused.

We can see that a full selector column is only used for Poseidon, while the first
column is used for everything else.

This makes sense, as the selector strategy of Plonky2 is the following: Enumarates
the gates 0..#ngates-1; it then groups as many gates into a single selector as
many is possible with the equation degree limit. If you have K gates gatei in a
single selector column, then the corresponding selector polynomials have degree
K:

Sk(x) =
∏
i ̸=k

U(x) − gatei

gatek − gatei

Sk(ωi) =

 1, if S(ωi) = gatek

?, if S(ωi) = 232 − 1
0, otherwise

where U(x) is the (degree N − 1) polynomial encoding the given selector column.
Observe that the normalization is actually not necessary (as the gate equations
are all normalized to zero) and Plonky2 doesn’t do it. The actual polynomials
used by Plonky2 are instead

Sk(x) :=
(
(232 − 1) − U(x)

)
·
∏
i ̸=k

(
gatei − U(x)

)
The factor cancelling unused gates is only added if there are more than 1 selector
columns, but because the Poseidon gate is always included (to handle the public
input), and has degree 7, this is always the case.

The Poseidon gate has degree 7, while the degree limit is 8, so we can only use
a degree 1 or 2 selector there (note that the degree limit is for the quotient
polynomial, which is always “one less”. Though it seems to me that the code
has ±1 error here, and as a result is overly cautious. . . ).

The arithmetic gate has degree 3 (because deg(c0xy) = 3: the constant coef-
ficients also count!); the noop has degree 0 and both the constant and public
input gates have degree 1. As 4 + max(3, 0, 1, 1) = 7 ≤ 9 this still fits.
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The constant columns contain the c0, c1 constants for the arithmetic gates (they
are all 1 here); also the values for the constant gates. For the remaining gates
(Poseidon, public input and noop) they are simply set to zero.

Gate constraints
Each type of gate (see Gates.md for the different gates supported by Plonky2)
is defined by a set of polynomial equations (up to degree 8, though via a usual
±1 error Plonky2 may restrict this to degree 7) whose variables are cells in a
single row in the witness.

TODO: continue

Wiring (or permutation argument)
The wiring constraints enfore equalities between concrete cells in the (routed)
witness columns (by default the first 80 columns out of the 135 in total).

This is done essentially the same way as in the original Plonk paper, except
generalized for more columns (80 instead of 3), and reducing the number of
required running product columns because Plonky2 needs high-degree constraints
anyway.

Sub-protocol

The verifier samples βi, γi ∈ Fp challenges for the permutations. There are
r = num_challenges number of these, which is set so that (deg /|F|)r is small
enough. Typically r ∈ {2, 3}, in this case r = 2.

If “lookup gates” are present, the corresponding ∆j challenges (4r in total, but
2r reuses βi, γi) are also sampled at this point.

The permutation σ polynomials are encoded on as many disjoint cosets kiH
as many routed columns are. The ki ∈ F is chosen simply as gi with g be-
ing a multiplicative generator of F× (however, these ki-s are listed in the
CircuitCommonData, with the very helpful name "k_is". . . ) They use the
following generators:

g = 0xc65c18b67785d900 = 14293326489335486720

h = 0x64fdd1a46201e246 = 7277203076849721926 = g(p−1)/232

ω = h(232/2n) where H = ⟨ω⟩

(remark: the smallest generator would be g = 7).

So the Plonk permutation σ is a permutation of [N ] × [M ] where there are
N = 2n rows and M routed columns (in the default configuration we have
M = 80. The cells indices are then mapped into F by
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ϕ : [N ] × [M ] −→ F×

(i , j) 7−→ kj · ωi

where ω is the generator of the subgroup H ⊂ F× of size n.

We can then form the 2M polynomials encoding the permutation (these are part
of the fixed circuit description - though in practice we don’t store Sid as that’s
easy to compute):

S
(j)
id (ωi) := ϕ( (i, j))

S(j)
σ (ωi) := ϕ(σ(i, j))

Next, we would normally compute the partial products

Ak :=
k−1∏
i=0

M−1∏
j=0

Wi,j + β · ϕ((i, j)) + γ

Wi,j + β · ϕ(σ(i, j)) + γ

for k ≤ 0 < M , exactly as in the Plonk protocol. However, a problem with this
is that corresponding equations would have degree M, which is too big (recall
that in our case M = 80).

The actual layout

So what Plonky2 does, is to just enumerate all the N × M terms

Ti,j := Wi,j + β · ϕ((i, j)) + γ

Wi,j + β · ϕ(σ(i, j)) + γ

into chunks determined by the maximal degree we allow (max_quotient_degree_factor
= 8). Note: This can be confusing when looking at the Fibonacci example, as
there we also have N = 23 = 8, but this is just a coincidence!

So we should get NM/maxdeg partial products. In our case M/maxdeg = 80/8 =
10, so we can organize this into an N × 10 matrix (in row-major order), resulting
10 “partial product columns”.

Essentially the 80 routed columns’ permutation argument is compressed into
10 partial product columns, and we will have equations ensuring that these are
constructed correctly, and that the full product is 1 (which in turn proves the
wire constraints).
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Note: the Plonky2 source code uses some absolute horrible names here, and
then does shiftings, reorderings, basically moving the last column to the first
one, and calls this “z” while the rest “partial products”, and then reorders even
these between the challenge rounds; but I think this is just a +1 error and
programmers not understanding what they are doing. . . Note that the first
column needs to also opened “on the next row”, while the rest only on “this
row”, but really, that’s not a valid reason to do all this shit.

Here is an ASCII graphics explaning what happens in the source code (indices
denote the corresponding partial product):

zs | partial_products
+-----------------+ +-----------------+ +----+--------------+
| 1 2 ... 9 10 | | 1 2 ... 9 0 | | 0 | 1 2 ... 9 |
| 11 12 ... 19 20 | | 11 12 ... 19 10 | | 10 | 11 12 ... 19 |
| 21 22 ... 29 30 | -> | 21 22 ... 29 20 | -> | 20 | 21 22 ... 29 |
| 31 32 ... 39 40 | | 31 32 ... 39 30 | | 30 | 31 32 ... 39 |
| | | 40 | | 40 | |

First, the partial products are generated as in the first table. The final one (in
the bottom-right corner) should be equal to 1. Then, the last column is shifted
down, with constant 1 coming (denoted by 0 index) appearing in the top-right
corner. Then, the last column is moved in the front. Finally (no picture for
the lack of space), the first columns are separated from the rest and bundled
together, so for r challeges you will get r first columns (called "zs"), and then
9r of the remaning columns (called "partial products"). Seriously, WTF.

In any case, then we commit to these (reordered!) 10 × r columns (together,
as before). If there are lookup gates, the corresponding polynomials are also
included here. The commitments are added to the Fiat-Shamir transcript too.

Constraints

There are two types constraints (repeated for all challenge rounds): that the
starting (and also ending, because of the cyclic nature of the multiplicative
subgroup) value should equal to 1:

L0(x) ·
[
A0(x) − 1]

where L denotes the Lagrange polynomials and A0(x) denotes the first column;
and 10 transition constraints (one for each column), ensuring that the partial
products are formed correctly:

Ai+1(x) = Ai(x) ·
7∏

j=0

W8i+j + β · k8i+jx + γ

W8i+j + β · Σ8i+j(x) + γ
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where Ai denotes the i-th partial product column – with the convention A10(x) =
A0(ωx) to simplify the notation –, and Σj denotes the “sigma” columns encoding
the permutation.

Multiplying with the denominator we get a degree 9 constraint, but that’s fine
because the quotient polynomial will have only degree 8.

Poseidon hash
Plonky2 primarily uses the Poseidon hash function (while Keccak is also sup-
ported in the code, as we are interested in recursive proofs, that’s not really
relevant here).

Poseidon itself is based on the sponge construction: it’s defined by a concrete,
fixed permutation π : Ft → Ft (in our case t = 12).

Using the permutation
For linear hashing, Plonky2 uses the permutation in standard sponge fashion
(with rate=8 and capacity=4), except in “overwrite mode”. Plonky2 does not
use any padding, but normally all the inputs should have constant length. The
only exception seems to be the Fiat-Shamir domain separator, which is unused
by default.

Here overwrite mode means that instead of adding in the new input to the
existing state, it overwrites it. It’s claimed that this is still secure (see this paper
from the Keccak authors).

Hashing in linear mode is used when committing the matrices (constants, wit-
ness, permutation argument, quotient polynomial): First the rows of the (LDE
extensions of the) matrices are hashed, and then a Merkle tree of the size corre-
sponding to the number of rows is built on the top of these hashes. This means
you have to open full rows, but normally you want to do that anyway.

For Merkle tree compression function, the standard f(x, y) := π(x, y, 0)0 con-
struction is used.

To generate challenges, Plonky2 uses the permutation in an “overwrite duplex”
mode. Duplex means that input and output is interleaved (this makes a lot of
sense for IOPs). This is implemented in iop/challenger.rs.

Poseidon gate
A Poseidon permutation is implemented as a “custom gate”, in a single row
of size 135 (each of the 135 cells containing a field element). These essentially
contain the inputs of the sboxes, and you have a separate equation for each such
cell (except the inputs, so 135 - 12 = 123 equations). The cells are:

• 12 cells for the permutation input

11

https://eprint.iacr.org/2019/458
https://en.wikipedia.org/wiki/Sponge_function
https://en.wikipedia.org/wiki/Sponge_function#Overwrite_mode
https://keccak.team/files/SpongeDuplex.pdf


• 12 cells for the permutation output
• 5 cells for “swapping” the inputs of the Merkle compression function (1

indicating a swap bit, and 4 deltas). This is to make Merkle proofs easier
and/or more efficient.

• 3 × 12 cells for the inputs of the initial full layer sbox-es (the very first
ones are linear in the input so don’t require separate cells)

• 22 cells for the inputs of the inner, partial layer sbox-es
• 4 × 12 cells for the inputs of the final full layer sbox-es

Adding these together you get 135, which is also the number of columns in the
standard recursion configuration. An advantage of this “wide” setting, is that a
whole row is a leaf of the Merkle tree, so the Merkle tree is shallower.

Some remarks:

• When using “standard Plonk gates” or other less wide custom gates, you
can pack many of those (in a SIMD-like fashion) in a single row. This
allows the large number of columns not being (too) wasteful

• The newer Plonky3 system in fact packs several permutations in a single
row (in the examples, 8 permutations). Plonky3 is significantly faster, this
may be one of the reasons (??)

• Deriving the equations for each cell (each sbox) can be done by relatively
simple computer algebra. However, this is not done anywhere in the
Plonky2 codebase. Instead, an algorithm evaluating these constraints is
written manually as native code. Indeed, if we would naively write down
the equations as polynomials, the size of the resulting polynomials would
blow up - you actually need sharing of intermediate results to be able to
evaluate them effectively.

• Plonky2 uses their own, non-standard round constants (generated by
chacha20), and their own MDS matrix too.

See gates/poseidon.rs for the details.

Poseidon MDS gate

There is also a second Poseidon-related gate. Apparently this is used in recursive
proof circuits. It appears to do simply a multiplication by the MDS matrix (but
in the extension field?)

TODO: figure out why and how is this used

FRI protocol
Plonky2 uses a “wide” FRI commitment (committing to whole rows), and then
a batched opening proofs for all the 4 commitments (namely: constants, witness,
running product and quotient polynomial).
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Initial Merkle commitment(s)

To commit to a matrix of size 2n × M , the columns, interpreted as values of
polynomials on a multiplicative subgroup, are “low-degree extended”, that is,
evaluated (via an IFFT-FFT pair) on a (coset of a) larger multiplicative subgroup
of size 2n+rate−1 . In the standard configuration we have rate = 1/8, so we get 8x
larger columns, that is, size 2n+3. The coset Plonky2 uses is the one shifted by
the multiplicative generator of the field

g := 0xc65c18b67785d900 = 14293326489335486720 ∈ F

When configured for zero-knowledge, each row (Merkle leaf) is “blinded” by the
addition of SALT_SIZE = 4 extra random columns (huh?).

Finally, each row is hashed (well, if the number of columns is at most 4, they are
left as they are, but this should never happen in practice), and a Merkle tree is
built on the top of these leaf hashes.

WARNING: before building the Merkle tree, the leaves are reorderd by reversing
the order of the bits in the index!!!!

So we get a Merkle tree whose leaves correspond to full rows (2n+3 leaves).

Note that in Plonky2 we have in total 4 such matrices, resulting in 4 Merkle
caps:

• constants (including selectors and sigmas)
• the witness (135 columns)
• the wiring (and lookup) protocol’s running products (resp. sums)
• the quotient polynomial

Merkle caps Instead of using a single Merkle root to commit, we can use
any fixed layer (so the commitment will be 2k hashes instead of just 1). As the
paths become shorter, this is a tradeoff between commitment size and proof size
/ verification cost. In case we have a lot of Merkle openings for a given tree
(like in FRI low-degree proofs here), clearly this makes sense. In the default
configuration Plonky2 uses Merkle caps of size 24 = 16

FRI configuration

An FRI proof is configured by the following parameters:

struct FriConfig {
rate_bits: usize, // rate = 2^{-rate_bits}.
cap_height: usize, // Height of Merkle tree caps.
proof_of_work_bits: u32, // Number of bits used for grinding.
num_query_rounds: usize, // Number of query rounds to perform.
reduction_strategy: FriReductionStrategy,

}
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Here the “reduction strategy” defines how to select the layers. For example it
can always do 8->1 reduction (instead of the naive 2->1), or optimize and have
different layers; also where to stop: If you already reduced to say a degree 3
polynomial, it’s much more efficient to just send the 8 coefficients than doing 3
more folding steps.

The “default” standard_recursion_config uses rate = 1/8 (rate_bits = 3),
markle cap height = 4, proof of work (grinding) = 16 bits, query rounds = 28,
reduction startegy of arity 24 (16->1 folding) and final polynomial having degree
(at most) 25. For example for a recursive proof fitting into 212 rows, we have
the degree sequence 212 → 28 → 24, with the final polynomial having degree
24 = 16 ≤ 25

For recursion you don’t want fancy reduction strategies, it’s better to have
something uniform.

Grinding is used to improve security. This means that the verifier sends a
challenge x ∈ F, and a prover needs to answer with a witness w ∈ F such that
H(x∥w) starts with as many zero bits as specified.

The conjectured security level is apparently rate_bits * num_query_rounds
+ proof_of_work_bits, in the above case 3 × 28 + 16 = 100. Plonky2 targets
100 bits of security in general. Remark: this is measured in number of hash
invocations.

FRI proof

An FRI proof consists of:

struct FriProof<F: RichField + Extendable<D>, H: Hasher<F>, const D: usize> {
commit_phase_merkle_caps: Vec<MerkleCap<F, H>>, // A Merkle cap for each reduced polynomial in the commit phase.
query_round_proofs: Vec<FriQueryRound<F, H, D>>, // Query rounds proofs
final_poly: PolynomialCoeffs<F::Extension>, // The final polynomial in coefficient form.
pow_witness: F, // Witness showing that the prover did PoW.

}

The type parameters are: F is the base field, D is the extension degree (usually
D=2), and H is the hash function.

During both the proof and verification process, the verifier challenges are calcu-
lated. These are:

struct FriChallenges<F: RichField + Extendable<D>, const D: usize> {
fri_alpha: F::Extension, // Scaling factor to combine polynomials.
fri_betas: Vec<F::Extension>, // Betas used in the FRI commit phase reductions.
fri_pow_response: F, // proof-of-work challenge
fri_query_indices: Vec<usize>, // Indices at which the oracle is queried in FRI.

}

Here powers of α ∈ F̃ is used to combine several polynomials into a single one,
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and βi ∈ F̃ are the coefficients used in the FRI “folding steps”. Query indices
(size is num_query_rounds) is presumably the indices in the first layer LDE
where the Merkle oracle is queried.

See Challenges.md for how these Fiat-Shamir challenges are generated.

Remark: batch_fri: There is also batch_fri subdirectory in the repo, which is
not clear to me what actually does, as it doesn’t seems to be used anywhere. . .

The FRI protocol

The FRI protocol proves that a committed Reed-Solomon codeword, which is a
priori just a vector, is in fact “close” to a codeword (with high probability).

This is done in two phases: The commit phase, and the query phase. Note that
this “commit” is not the same as the above commitment to the witness etc!

In Plonky2, we want to execute this protocol on many polynomials (remember
that each column is a separate polynomial)! That would be very expensive,
so instead they (well, not exactly them) are combined by the prover with the
random challenge α, and the protocol is executed on this combined polynomial.

Combined polynomial So we want to prove that Fi(xi) = yi where Fi(X)
are a set of (column) polynomials. In our case {Fi} consists of two batches,
and xi ∈ {ζ, ωζ} are constants on the batches. The first batch of the all the
column polynomials, the second only those which needs to be evaluated at ωζ too
("zs" and the lookup polynomials). We can then form the combined quotient
polynomial:

P (X) :=
∑

i

αi Fi(X) − yi

X − xi
=

∑
b

αkb

X − xb

mb∑
j=0

αj
[
Fb,j(X) − yb,j

]
In practice this is done per batch (see the double sum), because the division
is more efficient that way. This polynomial P (X) is what we execute the FRI
protocol on, proving a degree bound.

Remark: In the actual protocol, Fi will be the columns and yi will be the
openings. Combining the batches, we end up with 2 terms:

P (X) = P0(X) + αM0 · P1(X) = G0(X) − Y0

X − ζ
+ αM · G1(X) − Y1

X − ωζ

The pair (Y0, Y1) are called “precomputed reduced openings” in the code (calcu-
lated from the opening set, involving two rows), and X will be substituted with
X 7→ ηquery_index (calculated from the “initial tree proofs”, involving one row).
Here η is the generator of the LDE subgroup, so ω = η1/ρ.
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NOTE1: while the above would be the logical version, here AGAIN Plonky2
does something twisted instead, just because:

P (X) := αM1 · P0(X) + P1(X)

where M0, M1 denote the number of terms in the sums in P0, P1, respectively.

NOTE2: in all these sums (well in the zero-index ones), the terms are reordered
so that the lookups are now at the very end. This is frankly just stupid because
the both kind of inputs are in a different order, and in the case of Merkle tree
openings, you couldn’t even change that order. . .

Commit phase Recall that we have a RS codeword of size 2n+(1/ρ) (encoding
the combined polynomial P (X) above), which the prover committed to.

The prover then repeatedly “folds” these vectors using the challenges βi, until
it gets something with low enough degree, then sends the coefficients of the
corresponding polynomial in clear.

As example, consider a starting polynomial of degree 213 − 1. With ρ = 1/8 this
gives a codeword of size 216. This is committed to (but the see the note below!).
Then a challenge β0 is generated, and we fold this (with an arity of 24), getting a
codeword of size 212, representing a polynomial of degree 29 − 1. We commit to
this too. Then generate another challenge β1, and fold again with that. Now we
get a codeword of size 28, however, this is represented by a polynomial of at most
degree 31, so we just send the 32 coefficients of that instead of a commitment.

Notes: as an optimization, when creating these Merkle trees, we always put
cosets of size 2arity on the leaves, as we will have to open them all together anyway.
To achieve this grouping, Plonky2 reverses the order of elements by reversing
the order of bits in the indices; this way, members of cosets (which were before
far from each other) become a continuous range.

Furthermore, we use Merkle caps, so the proof lengths are shorter by the
corresponding amount (4 by default, because we have 16 mini-roots in a cap).
So the Merkle proofs are for a LDE size 2k have length k − arity_bits − cap_bits,
typically k − 8.

step Degree
LDE
size

Tree
depth prf. len fold with

send &
absorb

0 213 − 1 216 12 8 β0 Merkle cap
1 29 − 1 212 8 4 β1 Merkle cap
2 25 − 1 28 – – – 25 coeffs

Grinding At this point (why here?) the grinding challenge is executed.

16



Query phase This is repeated num_query_rounds = 28 times (in the default
configuration).

A query round consists of two pieces:

• the initial tree proof
• and the folding steps

The initial tree proof consist of a single row of the 4 LDE matrices (the index
of this row is determined by the query index challenges), and a Merkle proof
against the 4 commited Merkle caps.

The steps consist of pairs of evaluations on cosets (of size 2arity) and corresponding
Merkle proofs against the commit phase Merkle caps.

From the “initial tree proof” values {Fj(ηk)} and the openings {yj , zj}, we can
evaluate the combined polynomial at ηk := ηquery_idx:

P (ηk) = 1
ηk − ζ

M1−1∑
j=0

αj
[
Fj(ηk) − yj

]
+ 1

ηk − ωζ

M2−1∑
j=M1

αj
[
Fj(ηk) − zj

]
Then in each folding step, a whole coset is opened in the “upper layer”, one
element of which was known from the previous step (or in the very first step, can
be computed from the “initial tree proofs” and the openings themselves) which
is checked to match. Then the folded element of the next layer is computed by a
small 2arity sized FFT, and this is repeated until the final step.

Folding math details

So the combined polynomial P (x) is a polynomial of degree (one less than)
N = 2n+(1/ρ) over F̃. We first commit to the evaluations

{
P (g · ηi) : 0 ≤ i < N

}
of this polynomial on the coset gH = {g ·ηk} where η is generator of the subgroup
of size N , and g ∈ F× is a fixed generator of the whole multiplicative group of
the field.

However, the commitment is done not on individual values, but smaller cosets
Ck := {g · ηi(N/arity)+k : 0 ≤ i < arity} of size arity = 16.

To achieve this, the above vector of evaluation is reordered, so that the bits of
vector indices are reversed.

Then the query index (in each query round) selects a single element of the vector.
Note that the bits of the query_index are also reversed - however as the Merkle
tree leaves are reordered too, this is not apparent at first! So mathematically
speaking the locations look like x0 = g · ηrev(idx). . .
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From that, we can derive its coset, which we open with a Merkle proof. We
can check the consistency of the selected element (combined polynomial value)
vs. the original polynomial commitments using the formula for the combined
polynomial.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

C_k | | |##| | | |
+-----------+-----------+-----------+-----------+
\ ^^ /

\ ____ ______ /
\ _____ ______ /

\ /
\ /

+--+- -+--+--+--+- -+--+
C_(k>>4) | ... |##| ... |

+--+- -+--+--+--+- -+--+
0 ^^ 15

(k mod 16)

Next, we want to “fold this coset”, so that we can repeat this operation until
we get the final polynomial, we we simply check the final folded value aginst an
evaluation of the final polynomial.

On the prover side, the folding step looks like this:

P (x) =
arity−1∑

i=0
xi · Pi(xarity) −→ P ′(y) :=

arity−1∑
i=0

βi · Pi(y)

The folded polynomial P ′(x) will be then evaluated on the (shrunken) coset

H ′ := Harity =
{

(gηi)arity : i
}

=
{

garity(ηarity)i′
: 0 ≤ i′ < N/arity

}
and so on.

Now the verifier has the evaluations {P (x0 · ηiN/arity)} on a small coset (of size
arity) offset by x0 where x0 = g · ηrev(arity·k) and k = ⌊query_idx/arity⌋ (these bit
reversions kill me. . . ).

Ok, let’s just try and calculate this. I’ll use arity = 8 for brevity. Let ω denote
an 8-th root of unity, and let’s write P (x) =

∑
i aix

i in coefficient form. Then
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Pk(x) =
∑

j

ak+8jxj

Pk(x8) =
∑

j

ak+8jx8j =
∑

i

aix
i−k ·

{
1 if i ≡ k mod 8)
0 if i ̸≡ k mod 8)

}
=

=
∑

i

aix
i−k · 1

8

7∑
l=0

ωl(i−k) = 1
8

7∑
l=0

ω−lkx−k
∑

i

aix
iωli =

= 1
8

7∑
l=0

(xωl)−k · P (xωl)

As what we really want to compute is
∑

k βkPk(x8
0), we can see that what really

do here is a small inverse FFT (on a coset) of the values we have, then just
combine them with β.

This can be reinterpreted as interpolating a degree arity-1 polynomial from
these values, and evaluating it at β, and indeed this is how Plonky2 implements
it.

FRI verifier summary

So what does the verifier needs to check at the end?

• check if the public parameters match the proof “shape” (arities, number of
query rounds, Merkle cap sizes, etc)

• check the proof-of-work response
• then for each query round:

– check the initial tree Merkle proofs against the 4 commitments (con-
stants, witness, partial products and quotient)

– compute the evaluation of the combined polynomial from these values
(a single row) at the query location

– for each folding step:
∗ check the coset opening proof against the corresponding commit

phase Merkle cap
∗ check if the right element in the coset values matches the evalua-

tion coming from the previous step (in the very first step, against
the above compute value)

∗ calculate the folded value, and pass it to the next step
– check the final folded value against the evaluation of the final polyno-

mial
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FRI verification cost

We can try and estimate the cost of the FRI verifier. Presumably the cost will
be dominated by the hashing, so let’s try to count the hash permutation calls.
Let the circuit size be N = 2n rows.

• public input: ⌈#PI/8⌉ (we hash with a rate 8 sponge)
• challenges: approximately 95-120. The primary variations seem to be

number (and size) of commit phase Merkle caps, and the size of the final
polynomial

• then for each query round (typically 28 of them), approx 40-100 per round:
– check the opened LDE row against the 4 matrix commitments (“initial

tree proof”):
∗ hash a row (typical sizes: 85, 135, 20, 16; resulting in 11, 17, 3

and 2 calls, respectively; in total 11 + 7 + 3 + 2 = 33)
∗ check a Merkle proof (size n + rate_bits - cap_height = n

+ 3 - 4 = n-1)
∗ in total 33 + 4(n-1) calls

– check the folding steps:
∗ for each step, hash the coset (16 F̃ elements, that’s 4 permuta-

tions)
∗ then recompute the Merkle root: the first one is n+3-8 (more

precisely: n + rate_bits - cap_height - arity_bits), the
next is n+3-12 etc

For example in the case of a recursive proof of size N = 212, we have 114
permutation calls for the challenges, and then 28 × (77 + 11 + 7), resulting in
total

114 + 28 × (77 + 11 + 7) = 2774

Poseidon permutation calls (with t=12), which matches the actual code.

We can further break down this to sponge vs. compression calls. Let’s concentrate
on the FRI proof only, as that dominates:

• sponge is (33 + 4 + 4 . . . ) per round
• compression is 4(n - 1) + (n-5) + (n-9) + . . . per round

In case of n = 12, we have 41 (sponge) vs. 54 (compression). As compression
is more than half of the cost, it would make sense to optimize that to t=8 (say
with the Jive construction); on the other hand, use a larger arity (say t=16) for
the sponge.

It seems also worthwhile to use even wider Merkle caps than the default 24.
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Soundness

Soundness is bit tricky because of the small field. Plonky2 uses a mixture of
sampling from a field extension and repeated challenges to achieve a claimed
~100 bit security:

Sub-protocol Soundness boost
Permutation argument parallel repeatition
Combining constraints parallel repeatition
Lookup argument parallel repeatition
Polynomial equality test extension field
FRI protocol extension field + grinding

See this 2023 paper for more precise soundness arguments along these lines.

Fiat-Shamir Challenges
The verifier challenges are genered via Fiat-Shamir heuristics.

This uses the hash permutation in a duplex construction, alternatively absorb-
ing the transcript and squeezing challenge elements. This is implemented in
iop/challenger.rs.

All the challenges in the proof are summarized in the following data structure

struct ProofChallenges<F: RichField + Extendable<D>, const D: usize> {
plonk_betas: Vec<F>, // Random values used in Plonk's permutation argument.
plonk_gammas: Vec<F>, // Random values used in Plonk's permutation argument.
plonk_alphas: Vec<F>, // Random values used to combine PLONK constraints.
plonk_deltas: Vec<F>, // Lookup challenges (4 x num_challenges many).
plonk_zeta: F::Extension, // Point at which the PLONK polynomials are opened.
fri_challenges: FriChallenges<F, D>,

}

And the FRI-specific challenges are:

struct FriChallenges<F: RichField + Extendable<D>, const D: usize> {
fri_alpha: F::Extension, // Scaling factor to combine polynomials.
fri_betas: Vec<F::Extension>, // Betas used in the FRI commit phase reductions.
fri_pow_response: F, // proof-of-work challenge response
fri_query_indices: Vec<usize>, // Indices at which the oracle is queried in FRI.

}

Duplex construction

TODO
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Transcript

Usually the communication (in an IOP) between the prover and the verifier
is called “the transcript”, and the Fiat-Shamir challenger should absorb all
messages of the prover.

The duplex state is initialized by absorbing the “circuit digest”.

This is the hash of the following data:

• the Merkle cap of the constant columns (including the selectors and per-
mutation sigmas)

• the hash of the optional domain separator data (which is by default an
empty vector)

• the size (number of rows) of the circuit

Thus the challenge generation starts by absorbing:

• the circuit digest
• the hash of the public inputs
• the Merkle cap of the witness matrix commitment

Then the β ∈ Fr and γ ∈ Fr challenges are generated, where r =
num_challenges.

If lookups are present, next the lookup challenges are generated. This is a bit
ugly. We need 4 × r such challenges, but as an optimization, the β, γ are reused.
So 2 × r more δ challenges are generated, then these are concatenated into
(β∥γ∥δ) ∈ F4r, and finally this vector is chunked into r pieces of 4-vectors. . .

Next, the Merkle cap of the partial product columns is absorbed; and after that,
the α ∈ Fr combining challenges are generated.

Then, the Merkle cap of the quotient polynomials is absorbed, and the ζ ∈ F̃
evaluation point is generated.

Finally, the FRI challenges are generated.

FRI challenges

First, we absorb all the opening (a full row, involving all the 4 committed matrix;
and some parts of the “next row”).

Then the α ∈ F̃ combining challenge is generated (NOTE: this is different from
the above α-s!)

Next, the commit_phase_merkle_caps are absorbed, and after each one, a
βi ∈ F̃ is generated (again, different β-s from above!).

Then we absorb the coefficients of the final (low-degree) folded FRI polynomial.
This is at most 25 = 32 coefficients in the default configuration.
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Next, the proof-of-work “grinding” is handled. This is done a bit strange way:
first we absorb the candidate prover witness, then we generate the response, and
check the leading zeros of that. I guess you can get away with 1 less hashing in
the verifier this way. . .

Finally, we generate the FRI query indices. These are indices of rows in the
LDE matrix, that is, 0 ≤ qi < 2n+rate_bits.

For this, we generate num_query_rounds field elements, and take them modulo
this size.

The Plonky2 protocol (IOP)
I try to collect together here the phases of the Plonky2 protocol. Some of this is
very briefly described in the only existing piece of official documentation, the
“whitepaper”.

Circuit building

First the static parameters of the circuit are determined:

• global parameters
• set of custom gates
• number of rows (always a power of two)
• gate selectors & gate constants
• wiring permutation
• optional lookup selectors

The constant columns are committed (see also Layout.md for the details of
these), and the circuit digest (hash) is computed. The latter seems to be used
primarily to seed the Fiat-Shamir challenge generator.

Witness generation

The 2n × M witness matrix is generated based on the circuit.

This then again committed via FRI (see FRI.md for the details).

Notes: - in practice, we want to pre-commit to the constant columns, as these
describe the circuit itself. - full rows of the (LDE extended) matrices are hashed
using the sponge construction, and an Merkle tree is built on these rows, resulting
in Merkle root commitment. - in practice however instead a single root, a wider
“Merkle cap” is used (this is an optimization)

At this point, the circuit digest, the hash of the public inputs, and these Merkle
caps are added to the Fiat-Shamir transcript (which was probably empty before,
though Plonky2 has support for initializing with a “proof domain separator”).
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Gate constraints

For each gate type, a set of gate equations (“filtered” using the gate selector
polynomials) are evaluated at ζ ∈ F̃, and these are combined “vertically” by
simple addition; so we get as many values as the maximum number of equations
in a single gate.

This unusual combination (simple summation) is safe to do because the selector
polynomials ensure that on each element of the multiplicative subgroup, at most
1 gate constraint do not vanish. And what we prove at the end is that (with
very high probability) the resulting (vertically combined) constraints vanish on
the whole multiplicative subgroup (but we do this by evaluating outside this
subgroup).

See GateConstraints.md for the details.

Permutation argument

The verifier samples βi, γi ∈ Fp challenges for the permutations. There are
r = num_challenges number of these, which is set so that (deg /|F|)r is small
enough. See (see Challenges.md for the details).

If there are lookups, the lookup challenges are also sampled here, 4 × r ones.
However, as an inelegant optimization, Plonky2 reuses the already computed 2r
challenges βi, γi for this, so there are only (4r − 2r) = 2r new ones generated.
These are called δj .

As many “sigma columns” as there are routed advice columns (by default 80)
were computed (when buildig the circuit), encoded as though the different routed
columns correspond to different cosets.

The running product vectors are computed; these are compressed by adding as
many terms in a single step as the degree limit allows (by default 8), so from 8k
routed columns we get k running product columns. But this is again repeated r
times.

See Wiring.md for the details how it’s done

These are also committed to. So we will have (at the end) the following 4
commitments:

• constants and sigmas (only depends on the circuit)
• witness (or wires)
• running products and lookups
• quotient polynomial chunks (see below)

Lookups

When lookups are present, this is done next to the permutation argument. See
Lookups.md for the details.
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Combined constraints

Verifier samples αi ∈ (Fp)r challenges to combine the constraints.

All constraints are combined via powers of α, namely (in this order):

• the grand products starts/ends with 1
• partial products are built correctly - see Wiring.md
• lookups - see Lookups.md
• all the gate constraints - see GateConstraints.md

Quotient polynomials

Prover computes the combined quotient polynomial(s), by which we mean 1
quotient polynomial per challenge rounds, so in total r many. These are then
partitioned into degree N chunks:

Q(x) =
maxdeg−1∑

k=0
xN · Q(k)(x)

and these are committed to in the usual way (so this should be at most r×maxdeg
columns).

Evaluation

Verifier samples ζ ∈ F̃ evaluation challenge (in the 128 bit extension field!).

We open all commitments, that is (see Layout.md for more details):

• selectors & circuit constants & sigmas (in a typical case, 2+2+80 columns)
• witness wires (135 columns)
• partial products (r × 10 columns)
• optionally, lookup RE and partial sums (r × (1 + 6) columns, if presents)
• quotient chunks (r × maxdeg columns)

at this challenge ζ, and the case of the first column “zs” of the partial products
(and also the lookup ones), also at ω · ζ.

Corresponding (batched) FRI evaluation proofs are also produced for all these.

That’s basically all the prover does.

Verifier

The verifier essentially does three things (?):

• checks the FRI opening proofs
• compute combined constraints (one for each challenge round 1 . . . r) at ζ
• finally check the quotient equation Q(ζ)ZH(ζ) = P(ζ)
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Note: the quotient polynomial is “chunked”, so the verifier needs to reconstruct
it as

Q(ζ) =
maxdeg−1∑

k=0
ζk · Qk(ζ)

TODO: details

Lookup tables
Plonky2 has added support lookup tables only relatively recently, and thus it is
not documented at all (not even mentioned in the “whitepaper”, and no example
code either).

Logarithmic derivatives

Plonky2 doesn’t use the classical plookup protocol, but the more recent approach
based on the paper Multivariate lookups based on logarithmic derivatives, with
the implementation following the Tip5 paper.

In logarithmic derivative based lookups, the core equation is

LHS(X) :=
K−1∑
j=0

1
X − wj

=
N−1∑
i=0

mi

X − ti
:= RHS(X)

where wj is the witness, ti is the table, and we want to prove that {wj} ⊂ {ti},
by providing the multiplicities mi of wi appearing in {ti}. This then becomes a
scalar equation, after the subtitution X 7→ α, where α ∈ F is a random number
(chosen by the verifier).

Note that the above equation is simply the logarithmic derivative (wrt. X) of
the more familiar permutation argument:

∏
j

(X − wj) =
∏

i

(X − ti)mi

The reason for the logarithmic derivative is to move the multipliers from the
exponent to a simple multiplication.

Binary lookups

Plonky2 only allows lookups of the form input->output, encoding equations
like y = f(x) where the function f is given by the table. In this case we have
ti := xi + a · yi (for some verifier-chosen a ∈ F) and similarly for the witness.
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Gates

Plonky2 uses two types of gates for lookups:

• LookupGate instances encode the actual lookups
• while LookupTableGate instances encode the tables themselves

Each LookupGate can contain up to ⌊80/2⌋ = 40 lookups, encoded as (inp, out)
pairs; and each LookupTableGate can contain up to ⌊80/3⌋ = 26 table entries,
encoded as (inp, out, mult) triples.

This (questionable) design decision has both advantages and disadvantages:

• tables can be encoded in less rows than their size, allowing them to be
used in small circuits

• up to 40 lookups can be done in a single row; though they are repeated at
their actual usage locations, and need to be connected by “wiring”

• on the other hand, encoding the tables in the witness means that the verifier
has to do a relatively expensive (linear in the table size!) verification of
the tables

• and the whole things is rather over-complicated

The idea behind the protocol

Four challenges (repeated num_challenges times) are used in the lookup argu-
ment: a, b ∈ F are used to combine the input and output, in the above argument
and the “table consistency argument”, respectively; α ∈ F is the above random
element; and δ ∈ F is the point to evaluate the lookup polynomial on. NOTE:
in the actual implementation, two out of the four are reused from the from
permutation argument (called β, γ there).

A sum like the above can be computed using a running sum, similar to the
running product used in the permutation argument:

Uk :=
k−1∑
i=0

multi

α − (inpi + a · outi)

Then the correctness can be ensured by a simple equation:

(Uk+1 − Uk) ·
(
α − (inpi + a · outi)

)
= multi

with the boundary constraints U0 = UN+K = 0, if we merge the LHS and the
RHS of the original into a single sum of size N + K.

Similarly to the permutation argument, Plonky2 batches several such “running
updates” together, since it’s already have high-degree constraints:
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Uk+d−Uk =
d−1∑
i=0

multk+i

α − inpk+i − a · outk+i
=

∑k+d−1
i=k multi ·

∏
j ̸=i(α − inpi − a · outi)∏k+d−1

i=k (α − inpi − a · outi)

Also similarly to the permutation argument, they don’t start from “zero”, and
reorder the columns so the final sum is at the beginning.

Consistency check

Since the lookup table itself is part of the witness, instead of being some pre-
committed polynomials, the verifier needs to check the authenticity of that
too. For this purpose, what Plonky2 does is to create new combinations (called
“combos” in the codebase):

combo′
i := inpi + b · outi

then out of these, build a running sum of partial Horner evaluations of the
polynomial whose coefficients are combo′

i:

REn :=
26n−1∑

i=0
δ26n−1−i (inpi + b · outi)

(recall that in the standard configuration, there are 26 = ⌊80/3⌋ entries per row).
This running sum is encoded in a single column (the first column of the lookup
columns).

Then the verifier recomputes all this (which have cost linear in the size of the
table!), and checks the initial constraint (RE0 = 0), the final constrint REN is the
expected sum, and the transition constraints:

REn+1 = REn +
25∑

j=0
δ25−j · combo′

26n+j

(note that this could be also written in Horner form).

Naming conventions

As the code is based (very literally) on the Tip5 paper, it also inherits some of
the really badly chosen names for there.

• RE, short for “running evaluation”, refers to the table consistency check;
basically the evaluation of a polynomial whose coefficients are the lookup
table “combos” (in reverse order. . . )
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• LDC, short for “logarithmic derivative ???”, refers to the sum of fractions
(with coefficients 1) on the left hand side of the fundamental equation,
encoding the usage

• Sum, short for “summation” (really?!), refers the sum of fractions (with
coefficients multi) on the right hand side of the fundamental equation

• SLDC means Sum - LDC (we only compute a single running sum)
• combo means the linear combination inpk + a · outk.

In formulas (it’s a bit more complicated if there are more than 1 lookup tables,
but this is the idea):

REfinal =
K−1∑
k=0

δK−1−k
[
inpk + b · outk

]
LDCfinal =

∑
j

1
α − (inpj + a · outj)

Sumfinal =
K−1∑
k=0

multk

α − (inpk + a · outk

)
SLDCk = Sumk − LDCk

Layout

Lookup tables are encoded in several LookupTable gates, which are just below
each other, ordered from the left to right and from bottom to top. At the
very bottom (so “before” the lookup table) there is an empty NoopGate. At the
top of the lookup table gates are the actual lookup gates, but these are ordered
from top to bottom. So the witness will look like this:

| .... |
--- +---------------+
v | |
v | LU #1 | <- lookups in the first lookup table
v | |

--- +---------------+
^ | |
^ | |
^ | LUT #1 | <- table entries (with multiplicities)
^ | | of the first lookup table

--- +---------------+
| NOOP | <- empty row (all zeros)

--- +---------------+
v | |
v | LU #2 | <- lookups in the second lookup table
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--- +---------------+
^ | |
^ | LUT #2 | <- table entries in the second table
^ | |

--- +---------------+
| NOOP | <- empty row
+---------------+
| .... |

Both type of gates are padded if necessary to get full rows. The Lookup gates are
padded with the first entry in the corresponding table, while the LookupTable
gates used to be padded with zeros (which was actually a soundness bug, as you
could prove that (0,0) is an element of any table whose length is not divisible
by 26), but this was fixed in commit 091047f, and now that’s also padded by the
first entry.

Lookup selectors

Lookups come with their own selectors. There are always 4 + #luts of them,
nested between the gate selector columns and the constant columns.

These encode:

• 0: indicator function for the LookupTable gates rows
• 1: indicator function for the Lookup gate rows
• 2: indicator for the empty rows, or {last_lut_row + 1} (a singleton set

for each LUT)
• 3: indicator for {first_lu_row}
• 4,5. . . : indicators for {first_lut_row} (each a singleton set)

Note: the lookup table gates are in bottom-to-top order, so the meaning of
“first” and “last” in the code are sometimes not switched up. . . I tried to use
the logical meaning above.

In the code these are called, respectively:

• 0: TransSre is for Sum and RE transition constraints.
• 1: TransLdc is for LDC transition constraints.
• 2: InitSre is for the initial constraint of Sum and Re.
• 3: LastLdc is for the final (S)LDC constraint.
• 4: StartEnd indicates where lookup end selectors begin.

These are used in the lookup equations.

This ASCII art graphics should be useful:

witness 0 1 2 3 4 5
+---------------+ - +-+-+-+-+-+-+
| | | |#| |#| |
| LU #1 | | |#| | | |
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| | | |#| | | |
+---------------+ - +-+-+-+-+-+-+
| | |#| |#| |
| | |#| | | |
| LUT #1 | |#| | | |
| | |#| | | |
+---------------+ - +-+-+-+-+-+-+
| NOOP | | |#| |
+---------------+ - +-+-+-+-+-+-+
| | | |#| |#| |
| LU #2 | | |#| | | |
+---------------+ - +-+-+-+-+-+-+
| | |#| |#|
| LUT #2 | |#| | |
| | |#| | |
| | |#| | |
+---------------+ - +-+-+-+-+-+-+
| NOOP | | |#| |
+---------------+ - +-+-+-+-+-+-+

witness 0 1 2 3 4 5

If there are several lookup tables, the last column is repeated for each of them;
hence we have 4+#luts lookup selector columns in total.

The constraints

The number of constraints is 4 + #luts + 2 * #sldc, where #luts denotes
the number of different lookup tables, and #sldc denotes the number of SLDC
columns (these contain the running sums). The latter is determined as

#sldc = #lu_slots
lookup_deg

=
⌈

⌊80/2⌋
maxdeg − 1

⌉
= ⌈40/7⌉ = 6

Let’s denote the SLDC columns with Ai (for 0 ≤ i < 6), the RE column with R,
the witness columns with Wj , and the selectors columns with Sk. Similarly to
the permutation argument, the running sum is encoded in row-major order with
degree 7 “chunks”, but here it’s read from the bottom to the top order. . .

Then these constraints are:

• the final SLDC sum is zero: SLastLDC(x) · A5(x) = 0 (this corresponds to
actual core equation above)

• the initial Sum is zero: SInitSre(x) · A0(x) = 0
• the inital RE is zero: SInitSre(x) · R(x) = 0
• final RE is the expected value, separately for each LUT: S4+i(x) · R(x) =

expectedi where i runs over the set of lookup tables, and the expected
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value is calculated simply as a polynomial evaluation as described above
• RE row transition constraint:

STransSre(x)

R(x) − δ26R(ωx) −
25∑

j=0
δ25−j

(
W3j(x) + bW3j+1(x)

) = 0

• row transition constraints for LDC and SUM, separately:

0 = STransLDC(x)
{

Ak(x) − Ak−1(x) −
∑7k+6

i=7k ·
∏

j ̸=i(α − W2i(x) − aW2i+1(x))∏7k+6
i=7k (α − W2i(x) − aW2i+1(x))

}

where for convience, let’s have A−1(x) := A5(ωx)

and similarly for the SUM constraint (but with mulitplicities included there). This
is very similar to the how the partial products work, just way over-complicated. . .

In the source code, all this can be found in the check_lookup_constraints()
function in vanishing_poly.rs.

Remark: we have lookup_deg = 7 instead of 8 because the selector adds an
extra plus 1 to the degree. Since 40 is not divisible by 7, the last column will
have a smaller product. Similarly, in the SUM case they use a smaller degree
instead, namely: lutdegree = ⌈26/7⌉ = 4; also with a truncated last column.

Recursive proofs
One of Plonky2 main features is its support for efficient recursive proofs. In a
recursive proof system, an outer circuit verifies an inner proof by re-implementing
the entire verification protocol as arithmetic constraints. This allows us to
aggregate many proofs into one final (relatively small) proof. In Plonky2,
recursion proceeds with the following steps:

1. Virtual Targets

Before the outer (recursive) circuit can verify an inner proof, it must take the
inner proof’s data as circuit targets. This is done by two main helper functions:

• 1. add_virtual_proof_with_pis

let inner_proof_target =
builder.add_virtual_proof_with_pis(&inner_common_circuit_data);

```
This creates a virtual target (`ProofWithPublicInputsTarget`) that represents the entire inner proof along with its public inputs. this virtual target contains the same components of the plonky proofs i.e. the following
```rust
pub struct ProofTarget<const D: usize> {
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pub wires_cap: MerkleCapTarget,
pub plonk_zs_partial_products_cap: MerkleCapTarget,
pub quotient_polys_cap: MerkleCapTarget,
pub openings: OpeningSetTarget<D>,
pub opening_proof: FriProofTarget<D>,

}

Along with the above ProofTarget, a vector of public input targets
corresponding exactly to the number public inputs of the inner proof
is also added. As seen above adding a virtual target for the proof
requires the common circuit data for the inner proof. This is required
because the proof’s components (which contain vectors of targets) need
to be of known size (not dynamic). For instance, the MerkleCapTarget
requires the cap_height for the inner circuit. These values are taken
from the common circuit data which contain many paramaters (mostly
in usize) and some are taken to generate the targets required for the
proof. For all params see here but most importantly for the proof we
require: cap_height, num_public_inputs, num_wires, num_challenges,
num_partial_products, num_lookup_polys, num_constants, quotient_degree_factor,
and FriParams.

• 2. add_virtual_verifier_data

let inner_verifier_data =
builder.add_virtual_verifier_data(cap_height);

This function creates a target (VerifierCircuitTarget) representing the
inner verifier’s data. Again this includes the same components as the
VerifierOnlyCircuitData:

pub struct VerifierCircuitTarget {
/// A commitment to each constant polynomial and each permutation polynomial.
pub constants_sigmas_cap: MerkleCapTarget,
/// A digest of the "circuit" which can be used to
/// seed Fiat-Shamir.
pub circuit_digest: HashOutTarget,

}

– constants_sigmas_cap: A Merkle cap commitment to the constant
columns and the permutation “sigma” polynomials. These values
describe the fixed (circuit-dependent) data. Because this component
is MerkleCapTarget, it requires cap_height, hence the need to input
cap_height when calling add_virtual_verifier_data.

– circuit_digest: A hash computed from the circuit’s fixed data. The
digest is later used to seed the Fiat–Shamir transcript.

Together, the ProofTarget and VerifierCircuitTarget allow the outer circuit
to “see” all of the inner proof’s components and the associated verifier data, so
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that it can re-execute the inner verifier’s checks as part of its own constraints.

2. Re-Computing Fiat–Shamir Challenges

Verifying an inner proof requires re-generating the random challenges that the
inner prover originally got using the Fiat–Shamir heuristic. Plonky2’s inner
proofs require several challenges (see above in section Fiat-Shamir Challenges).
The outer (recursive) circuit recomputes these challenges from the committed
data in the VerifierCircuitTarget.

In the code, recomputing these challenges is implemented by a function
get_challenges which uses a Challenger (or RecursiveChallenger in the
recursive setting) that “observes” each commitment (with functions such
as observe_hash and observe_cap) and then “squeezes” the required
challenges at different stages. The challenges are then packaged into a
ProofChallengesTarget that is later used to verify the proof.

The “Challenger” is seeded by: - The circuit digest . - The hash of the
public inputs. - The fri openings

the challenges produced are: - plonk_betas - plonk_gammas - plonk_deltas
(if lookups are present) - plonk_alphas - plonk_zeta - And the FRI chal-
lenges: fri_alpha, fri_betas, fri_pow_response, and fri_query_indices.
See above in FRI section for what these are.

3. Proof Verification With the Challenges

Once the challenges are generated, the proof verification proceeds in-circuit
(using the circuit builder) in similar way as out of the circuit, i.e. following the
steps (in short):

1. Evaluating the Vanishing and Quotient Polynomials Inside the
recursive circuit, the following steps are performed:

• Vanishing Polynomial Evaluation:
The function eval_vanishing_poly_circuit evaluates the combined
vanishing polynomial at the challenge point ζ. This involves:

– Evaluating each gate’s constraint (with selectors filtering which
gate constraints are active on each row).

– Checking lookup constraints (if present).
– Computing the permutation argument (using the running prod-

ucts).
• Quotient Polynomial Recombination:

The inner proof provides the quotient polynomial in several chunks in
OpeningSetTarget in the proof structure. The recursive verifier uses a
reducing factor (ReducingFactorTarget) to recombine these chunks.
It then multiplies the recombined quotient polynomial by ZH(ζ)
and enforces that the result equals the evaluation of the combined
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constraints (from previous step). Equality is enfored by “connect”
here.

2. FRI Proof Verification Inside the Circuit: The recursive verifier
implements FRI verification protocol inside the circuit as follows:

• Merkle Cap Verification:
The inner proof commits to several matrices (for the witness, constants,
running products, and quotient polynomial) via “Merkle caps.” The
verifier uses these caps and the Merkle proofs (in the inner FRI proof)
to check that the evaluations at the queried indices are consistent
with the commitments.

• Reduction (Folding) Steps:
The FRI protocol “folds” the LDE repeatedly each round reducing the
degree until a final low-degree polynomial is reached. The recursive
verifier simulates these folding steps by:

– Decomposing the query index into bits (to select the appropriate
coset in the LDE).

– Interpolate the coset evaluations (via helpers like compute_evaluation)
to get the folded value.

– Verifying that the folded evaluation is consistent with the previous
one.

– Checking the Merkle proofs at every reduction round.

• Proof-of-Work (PoW) Check:
A PoW challenge is enforced by checking that a provided PoW witness
(a field element) has the required number of leading zeros.

For more details refer to the section on FRI.

The Recursive Workflow in Practice

The overall workflow when building a recursive proof in Plonky2 is as follows:

1. Circuit Building and Witness Generation:
• An inner proof is generated over a standard Plonky2 circuit.
• The inner proof is then imported into a new circuit by

calling add_virtual_proof_with_pis (for the proof) and
add_virtual_verifier_data (for the verifier data).

2. Proof Verification as Constraints:
• The outer circuit calls its own verify_proof method. This method:

– Computes the Fiat–Shamir challenges.
– Evaluates the combined vanishing polynomial at the challenge

point and enforces that it equals to the expected one.
– Invokes the FRI verification routine to simulate the full FRI

verification protocol inside the circuit.
3. Finalization:
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• Once all the recursive verification constraints are added to the outer
circuit, the outer circuit is built and proved as usual.

Notes on The VerifierData

Verifier data are important part of the recursive proof system because they
contain the verification key for the inner circuit. that is, the circuit digest
and the commitment to the constant and permutation (“sigma”) polynomials.
Although the outer circuit only receives the common circuit data (which describes
the structure and sizing of the proof components), that data alone does not bind
the outer circuit to a specific inner circuit. So, a prover could provide any proof
and verifier data that matches to the common data structure, even if they do
not correspond to the intended inner circuit.

To prevent this, the verifier data must be made available to the verifier by: either
registering the verifier data as public input or hardcoding it in the outer circuit
(this option would limit the outer circuit to the specific inner circuit).

The simplist option is that the verifier data should be registered as
public inputs in the outer circuit. This is typically done by calling
add_verifier_data_public_inputs, which simply calls add_virtual_verifier_data
and then registers every target in the resulting VerifierCircuitTarget as a
public input. Additionally, it is important that the inner proof’s public inputs
(or at least a hash of it) are also exposed as public inputs. these steps ensure
that the inner proof is linked to a specific, publicly known verification key.

Exposing the verifier data as public inputs, requires the verifier to check it “off-
circuit”, Plonky2 provides the function check_cyclic_proof_verifier_data.
(ignoring its name, it applies to any recursive proof where the verifier data
are public.) This function compares the verifier data extracted from the inner
proof’s public inputs with the expected verifier data. this check is especially
important in cyclic recursion, where every inner proof must be linked to the
same verification key.

It is technically possible to hardcode the verifier data in the circuit, but plonky2
doesn’t seem to support this! might require a lot of refactoring!

Recursion Tools

Plonky2 implements a few (limited!) number of tools (functions) for recursion,
mainly it is the following two:

1. Conditional Recursion The outer (recursion) circuit can be built to
conditionally verify one of two input inner proofs based on a Boolean flag.
Helper function conditionally_verify_proof and select_proof_with_pis
use a Boolean target to select between two sets of proof targets and verifier
data. This allows a circuit, for example, to choose between verifying a “real”
inner proof or a dummy proof (useful in cyclic recursion base cases). Selecting
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the proof and verifier data is done by basicly going through all the targets and
selecting either one based on the condition, in the code you will see all the (basic)
“select” functions.

It is also possible to verify a “real” proof or a dummy based on the condition.
To do this, one can use the function conditionally_verify_proof_or_dummy
which takes:

pub fn conditionally_verify_proof_or_dummy<C: GenericConfig<D, F = F> + 'static>(
&mut self,
condition: BoolTarget,
proof_with_pis: &ProofWithPublicInputsTarget<D>,
inner_verifier_data: &VerifierCircuitTarget,
inner_common_data: &CommonCircuitData<F, D>,

) -> anyhow::Result<()>{
...

}

This function automates the generation of the dummy proof. A dummy proof in
this context is a proof that matches the same structure as the “real” proof. To
generate such dummy proof, the function calls dummy_circuit which is a circuit
with mainly “noop” gates and the same size and set of gates used in the “real”
inner circuit.

pub fn dummy_circuit<F: RichField + Extendable<D>, C: GenericConfig<D, F = F>, const D: usize>(
common_data: &CommonCircuitData<F, D>,

) -> CircuitData<F, C, D> {
...

}

Then once a dummy circuit is built, a proof for this circuit is generated, and
since the dummy circuit matches the “real” inner circuit, then the dummy proof
would also match the “real” inner proof.

pub fn dummy_proof<F: RichField + Extendable<D>, C: GenericConfig<D, F = F>, const D: usize>(
circuit: &CircuitData<F, C, D>,
nonzero_public_inputs: HashMap<usize, F>,

) -> anyhow::Result<ProofWithPublicInputs<F, C, D>>{
...

}

One thing to note is that if the “real” inner proof public input must be set to
certain values, these must also be set in the dummy proof.

Lastly, the verifier data are set to the verifier data from the dummy circuit.
Plonky2 automates setting the values for the dummy proof and verifier data tar-
gets using DummyProofGenerator so there is no need to keep track of the dummy
proof targets. DummyProofGenerator simply implements a SimpleGenerator
and calls set_proof_with_pis_target and set_verifier_data_target. This
means that all the fields required by the recursive verifier (such as the Merkle
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cap commitments, openings, and the FRI proof components) are populated with
dummy values.

2. Cyclic Recursion Cyclic recursion is used mainly for what is called IVC
(incrementally verifiable computation). Meaning (in simple terms) that you
create a circuit C that checks correct computation of function f(s) on the state
s and returns an updated state s' and a proof π. Then you feed the s' and π
into another circuit that checks π and runs the same circuit C but with input s'
so this is basicly f(f(s)). Note that the second circuit also ensures that the
output of the first circuit s' equals to the input to the second circuits. This
process can be repeated many times as needed.

In cyclic recursion, the outer circuit needs to verify either an actual inner proof
or a dummy proof, based on a Boolean condition. When the condition indicates
that no “real” inner proof is available (in the base case of a cyclic recursion),
a dummy proof is generated. The dummy proof is created in the same way as
described before for the conditional verification. The DummyProofGenerator
produces a proof populated with “dummy” values for all fields except for those
carrying the cyclic verifier data.

The inner verifier data (which includes the constants_sigmas_cap and the
circuit_digest) are registered as public inputs via the add_virtual_verifier_data.
The outer circuit then “connects” (i.e. ensures equal values are set) this verifier
data with its own using the function conditionally_verify_cyclic_proof.
This ensures that every proof in the cycle uses the same verification key. At
the verification step, to guarantee this consistency, the outer circuit verifier
can invoke the function check_cyclic_proof_verifier_data. This function
compares the verifier data obtained from the inner proof’s public inputs with
the expected verifier data.

Recursion Examples

Example: Simple Recursion Now to actually do the recursion, we must
first have a base circuit. So let’s run an example of how this would work:

Let’s say we have a circuit with just dummy gates NoopGate that do nothing.
So we first create such a circuit, fill in the witness values (no witnesses are here
in our example), and then build and generate the proof. See below:

// define params:
// the degree of the extension
const D: usize = 2;
//the configuration with hash function used (internally)
type C = PoseidonGoldilocksConfig;
// the field which is the Goldilocks field
type F = <C as GenericConfig<D>>::F;
// the circuit config
let config = CircuitConfig::standard_recursion_config();
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// create new builder
let mut builder = CircuitBuilder::<F, D>::new(config.clone());
for _ in 0..num_dummy_gates {

//fill the circuit with dummy gates
builder.add_gate(NoopGate, vec![]);

}
// build the circuit
let inner_data = builder.build::<C>();
// fill in the witness values (none here)
let inputs = PartialWitness::new();
// generate the proof
let inner_proof = inner_data.prove(inputs)?;
// the verifier data (to send to the verifier)
let inner_vd = data.verifier_only;
inner_data.verify(proof.clone())?;

Note: the above doesn’t use the ZK configuration meaning zk is disabled. To
enable zk (Zero-Knowledge) use:

let config = CircuitConfig::standard_recursion_zk_config()

Now once we have the proof (or multiple proofs), we can verify that proof
in-circuit and generate yet another proof, the recursive proof. To do so, we need
to (again): - Define circuit params and builder - Create the recursive circuit,
- Add the witness values (inner-proof and verifier data) - Build the circuit -
Generate the proof (recursive proof) - Verify

See example below:

// circuit builder
let mut builder = CircuitBuilder::<F, D>::new(config.clone());
// witness allocator
let mut pw = PartialWitness::new();
// a virtual target for the inner proof, here the target is a witness in the recursive circuit
let inner_proof_target = builder.add_virtual_proof_with_pis(&inner_cd);
// assign the inner_proof as witness
pw.set_proof_with_pis_target(&pt, &inner_proof)?;
// a virtual verifier data, so that the recursive circuit can use it to verify the proof
// it takes a cap_height which here is the same as the cap_height as the inner_proof
let inner_data = builder.add_virtual_verifier_data(inner_data.config.fri_config.cap_height);

// set the verifier data
pw.set_verifier_data_target(&inner_data, &inner_vd)?;

// verify the proof in-circuit, ini here InnerC is the configration `C` of the inner circuit
// this config could be different than the outer circuit (the recursive circuit)
builder.verify_proof::<InnerC>(&pt, &inner_data, &inner_cd);
// build circuit
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let data = builder.build::<C>();
// verify
data.verify(proof.clone())?;

Example: Conditional Verification In some cases you may want the
recursive circuit to choose between verifying a real inner proof or a dummy one.
This is useful in conditional and cyclic recursion. The dummy proof is generated
(using the DummyProofGenerator) to fill in when no “real” proof is present.

// Assume `inner_cd` is the CommonCircuitData for the inner circuit,
// and that we have already generated a real inner proof (`inner_proof`) and its verifier data (`inner_vd`).

// Create a Boolean condition target.
let condition = builder.add_virtual_bool_target_safe();

// Create virtual targets for the "real" inner proof
let real_inner_proof_target = builder.add_virtual_proof_with_pis(&inner_cd);

// Create virtual verifier data target.
let real_verifier_target = builder.add_virtual_verifier_data(inner_cd.config.fri_config.cap_height);

// Set the witness values for the real inner proof.
pw.set_proof_with_pis_target(&real_inner_proof_target, &inner_proof)?;
pw.set_verifier_data_target(&real_verifier_target, &inner_vd)?;

// the dummy proof is generated automatically by the DummyProofGenerator when calling the following function.

// Conditionally verify: if `condition` is true, verify the real inner proof;
// otherwise, verify the dummy proof.
builder.conditionally_verify_proof_or_dummy::<C>(

condition,
&real_inner_proof_target,
&real_verifier_target,
&inner_cd,

);

Example: Cyclic Recursion with Public Verifier Data In cyclic recursion
every inner proof must use the same verification key. For this purpose the
verifier data is made public and then checked for consistency. The function
check_cyclic_proof_verifier_data is used to enforce that the verifier data from
the inner proof (from its public inputs) matches the expected verifier data. See
the following example of this:

// Builder for the recursive circuit.
let mut builder = CircuitBuilder::<F, D>::new(config.clone());
let mut pw = PartialWitness::new();
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// Add virtual targets for the inner proof and its verifier data.
let inner_proof_target = builder.add_virtual_proof_with_pis(&inner_cd);
// verifier data is register as public here
// (This ensures that the inner proof’s verifier data is visible to the verifier.)
let inner_verifier_target = builder.add_verifier_data_public_inputs(inner_cd.config.fri_config.cap_height);

// Set the witness for the inner proof and verifier data.
pw.set_proof_with_pis_target(&inner_proof_target, &inner_proof)?;
pw.set_verifier_data_target(&inner_verifier_target, &inner_vd)?;

// Create a Boolean condition target.
let condition = builder.add_virtual_bool_target_safe();

// Perform cyclic conditional verification:
// 1. Either verify a "real" inner proof or dummy (if base case)
// 2. connect the inner proof’s verifier data (extracted from its public inputs)
// with the outer circuit’s verifier data. This forces every proof in the cycle to use the same verifier key.
builder.conditionally_verify_cyclic_proof_or_dummy::<C>(

condition,
&inner_proof_target,
&inner_cd,

);

// After generating the recursive proof, the verifier can check consistency (off-circuit) using:
check_cyclic_proof_verifier_data(&proof, &inner_vd, &inner_cd)?;
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