Overview of Plonky2

Plonky2 is a proof system developed by Polygon Zero, based on “Plonkish”
arithmetization and FRI polynomial commitments.

The primary design goal of Plonky2 was to allow very efficient recursive proofs,
and it’s still interesting in that aspect (the next-generation Plonky3 toolkit does
not support recursion, or even Plonk circuits, at the time of writing this).

In this set of notes I try to describe the internal workings of Plonky?2 in detail
(as the original authors provided essentially no documentation at all. .. )

Links to the topical notes

e Layout.md - Layout of all the columns

o Gates.md - The different “custom gates” present in the Plonky2 code base
¢ Selectors.md - Gate selectors and constants

¢ GateConstraints.md - Gate constraint equations

e Wiring.md - The permutation argument

e Poseidon.md - Poseidon hash function

e FRIL.md - FRI commitment scheme

o Challenges.md - Fiat-Shamir challenges

e Protocol.md - Overview of the protocol

e Lookups.md - Lookup gates and the lookup argument
e Recursion.md - Recursive proofs

Some basic design choices

Plonky2 uses a Plonkish arithmetization with wide rows and FRI polynomial
commitment scheme, over a small (64-bit) field.

Features

o Plonkish arithmetization:
— the witness is organized in a 2" x M matrix (called “advice wires”);
— the circuit is described by “gates” and wiring constraints
— with optional lookup tables
o wide rows (by default M = 135)
« gates are single-row, and at most 1 gate in a row (no rotations a la Halo2)
 custom gates (any number of equations per gate)
o relatively high-degree gates (by default, up to 8)
¢ optimized for recursive proofs

Having such a large number of columns is not a problem in practice, because
using FRI whole rows can be committed (and opened) at together. With KZG
this would be rather expensive.
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Field choice

Plonky?2 uses the Goldilocks field [F,, with p = 264 _ 9232 1 1. and a degree two

extension 2 = F:= F,[X]/(X? —7). This is essentially the smallest irreducible
polynomial over F, to use.

In theory, the code supports higher degree field extensions too, though I don’t
think they are actually used; the crate implements the degree 4 and 5 extension
F,[X]/(X* —7) and F,[X]/(X® — 3).

Recently Telos announced the integration of other fields in their fork.

Hash choice

Plonky2 can use either Keccak or the Poseidon hash (with custom constants)
with t=12 (that is, the internal state is 12 field elements, approximately 750 bits
wide).

For recursive proofs obviously Poseidon is used. To make this fast, a 135 column
wide Poseidon gate is used; see Poseidon.md for more details.

The hash function is used for several purposes:

e the most important is the FRI commitment (both for computing linear
hashes of rows and then the Merkle tree on the top);

¢ but also used for Fiat-Shamir heuristic;

¢ and handling of public inputs.

Because the public inputs are always hashed into 4 field elements (approx. 256
bits), in practice all circuits contain a Poseidon gate, and thus are 135 columns
wide.

In theory it’s possible to add further hash function choices, eg. Monolith (faster
proofs) or Poseidon2-BN254 (more efficient EVM-compatible wrapper).

Custom Gates

Plonky?2 has about a dozen of custom gates included by default (but the user can
in theory add more). Most of these are intended for implementing the recursive
verifier circuit.

A custom gate is essentially several (low-degree) polynomial constraints over the
witness cells of a single row, plus recipes to calculate some of these (for example
in the Poseidon gate, all cells apart from the 12 inputs are calculated). The
latter is encoded in a so called “Generator” using the SimpleGenerator trait.

On the user side, it seems that custom gates are abstracted away behind “gadgets”.

Unfortunately the actual gate equations never appear explicitly in the code,
only routines to calculate them (several ones for different contexts...), which 1)
makes it hard to read and debug; and 2) makes the code very non-modular.
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However, there is also a good reason for this: The actual equations, if described
as (multivariate) polynomials, can be very big and thus inefficient to calculate,
especially in the case of the Poseidon gate. This is because of the lack of sharing
between intermediate variables. Instead, you need to described an efficient
algorithm to compute these polynomials.

Note that while in theory a row could contain several gates, the way Plonky2
organizes its gate equations would make this unsound (it would also complicate
the system even more). See the details at the protocol description.

List of gates
The default gates are:

- arithmetic_base

- arithmetic_extension
- base_sum

- constant

- coset_interpolation
- exponentiation

- lookup

- lookup_table

- multiplication_extension
- noop

- poseidon

- poseidon_mds

- public_input

- random_access

- reducing

- reducing_extension

Arithmetic gates

These evaluate the constraint w = coxy + c12, either in the base field or in the
quadratic extension field, possibly in many copies, but with shared cg,c; € F
(these seem to be always in the base field?)

Base sum gate

This evaluates the constraint z = Zf:() a; B (where B is the radix or base). It
can be used for example for simple range checks.

The the coefficient ranges 0 < a; < B are checked very naively as

B-1

vi. J[(ai-k) =0

k=0
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which is a degree B equation, so this is only useful for very small B-s (typically
B=2).

The corresponding witness row looks like [z, ag,a1,...a5-1,0,...,0].

Constant gate

A very simple gate enforcing the x; = ¢;. Here the ¢; are the same type of
constants as in the arithmetic circuit. The reason for the existence of this is
presumably that the constant columns are not routed columns, otherwise you
could use the permutation (wiring) argument to enforce such constants.

I’'m not convinced this is the right design choice, but probably depends on the
circumstances.

Coset interpolation gate
TODO. This is presumably used for recursion.

I think what it does is to apply the barycentric formula to evaluate a polynomial,
defined by its values y; on a (small) coset nH at a given point (.

Exponentiation
This computes y = 2* using the standard fast exponentiation algorithm, where

k is number fitting into some number of bits (depending on the row width).

I believe it first decomposes k into digits, and then does the normal thing.
Though for some reason it claims to be a degree 4 gate, and I think it should be
degree 3. ..

Lookups

There are two kind of lookup gates, one containing (inp, out) pairs, and the other
containing (inp, out, mult) triples.

Neither imposes any constraint, as lookups are different from usual gates, and
the behaviour is hardcoded in the Plonk protocol.

The 2 gates (LookupGate for the one without multiplicities and LookupTableGate
for the one with) are because Plonky?2 uses a logarithmic derivative based lookup
argument.

See Lookups.md for more details.

Multiplication extension gate

I think this is the same as the arithmetic gate for the field extension, except
that it misses the addition. So the constraint is z = coxy € F.
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Noop gate

This doesn’t enforce any constraint. It’s used as a placeholder so each row
corresponds to exactly a single gate, and also lookup tables require an empty
row (7).

Poseidon gate

These compute Poseidon hash (with custom constants and MDS matrix). For
some reason there is a separate gate only for multiplying by the MDS matrix,
not exactly clear where is that used (possibly during recursion).

The poseidon gate packs all the (inputs of the) nonlinear sbox-es into a 135 wide
row, this results in the standard configuration being 135 advice columns.

Poseidon hash is used for several purposes: hashing the public inputs into 4
field elements; the recursion verification of FRI; and generating challenges in the
verifier.

Poseidon MDS gate

This appears to compute the multiplication by the 12x12 MDS matrix, but with
the input vector consisting of field extension elements. It is used in the recursive
proof circuit.

Public input gate

This simply packs the hash of the public inputs (4 field elements) into the first
four cells of a row.

The actual public inputs are presumably at arbitrary locations in the routed
advice wires; then Poseidon gates are automatically added and wired to compute
the hash of those. The final hash result is “wired” to be equal to these values.

Finally these four values are constrained (with 4 linear equations) to be the
actual hash values, which I guess is how the verifier checks these (that is, the
hash values are hardcoded in the equations).

Random access gate

This gate allows dynamically indexing (relatively short) vector of size 2™.

The idea is to decompose the index into bits idx = Y b;2¢; then if you can write
down “selectors” like for example

1, if idx =0b1011 =11
S11 1= Sobto11 = bo(1 — b1)babz = { 0’ ;f :di 411

Then Aidx = 212;(;1 Sz . Al



Or at least that’s how I would do it :)

The degree of the gate is n + 1, so they probably inline the above selector
definitions.

Reducing gates

These compute y = Zf:o o' - ¢; with the coefficients ¢; in either the base field or
the extension field, however with o € ' always in the extension field.

It assumes that everything fits into a single row.

Selectors and constants

The circuit descriptions consists not only of the permutation, but also the gate
selectors and gate constants.

(There are also “lookup selectors”, for those see Lookups)

Typically we have 2 or 3 selector columns (to switch between the different gates)
and 2 constant columns (for the constants of the arithmetic and other gates).

For example in the Fibonacci example circuit uses 5 gates, which are:

e NoopGate

e ConstantGate { num_consts: 2 }
e PublicInputGate

o ArithmeticGate { num_ops: 20 }
e PoseidonGate(...)<WIDTH=12>

(in fact the NoopGate is used only when changing from the 100th Fibonacci
number to say the 200th one, because apparently the 100 example just fills the
trace exactly. . .)

This can be seen for example by serializing the CommonCircuitData struct.

The Poseidon gate is present because Plonky2 handles public input by always
hashing it into 4 field element (encoded in the public input gate).

These gates are numbered 0..4. Looking at the selector polynomials in the
Fibonacci example, in the first one we see a lot of 3 (arithmetic gates, encoding
the Fibonacci computation); a UNUSEDGATE = 2°32-1, which is a placeholder for
gates not using the given selector polynomial, a 2 (public input), an 1 (constants),
and some 0-s (no-op). In the other selector columns, it’s all UNUSED except
one 4 (Poseidon hash gate), exactly where the other one is unused.

We can see that a full selector column is only used for Poseidon, while the first
column is used for everything else.

This makes sense, as the selector strategy of Plonky2 is the following: Enumarates
the gates 0. .#ngates-1; it then groups as many gates into a single selector as
many is possible with the equation degree limit. If you have K gates gate; in a
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single selector column, then the corresponding selector polynomials have degree
K:

B 1, if S(w') = gate,
Sp() = [] L8 g iy = {7 i S(w) =22 -1
i#k gate, — gate; 0, otherwise

where U(z) is the (degree N — 1) polynomial encoding the given selector column.
Observe that the normalization is actually not necessary (as the gate equations
are all normalized to zero) and Plonky2 doesn’t do it. The actual polynomials
used by Plonky2 are instead

Sp(z) = (22 - 1) = U(2)) - [ | (eate; - U(2))

itk

The factor cancelling unused gates is only added if there are more than 1 selector
columns, but because the Poseidon gate is always included (to handle the public
input), and has degree 7, this is always the case.

The Poseidon gate has degree 7, while the degree limit is 8, so we can only use
a degree 1 or 2 selector there (note that the degree limit is for the quotient
polynomial, which is always “one less”. Though it seems to me that the code
has £1 error here, and as a result is overly cautious. .. ).

The arithmetic gate has degree 3 (because deg(cozy) = 3: the constant coef-
ficients also count!); the noop has degree 0 and both the constant and public
input gates have degree 1. As 4 + max(3,0,1,1) =7 <9 this still fits.

The constant columns contain the ¢, ¢; constants for the arithmetic gates (they
are all 1 here); also the values for the constant gates. For the remaining gates
(Poseidon, public input and noop) they are simply set to zero.

Gate constraints

Each type of gate (see Gates.md for the different gates supported by Plonky2)
is defined by a set of polynomial equations (up to degree 8, though via a usual
+1 error Plonky2 may restrict this to degree 7) whose variables are cells in a
single row in the witness.

TODO: continue

Wiring (or permutation argument)

The wiring constraints enfore equalities between concrete cells in the (routed)
witness columns (by default the first 80 columns out of the 135 in total).

This is done essentially the same way as in the original Plonk paper, except
generalized for more columns (80 instead of 3), and reducing the number of
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required running product columns because Plonky2 needs high-degree constraints
anyway.
Sub-protocol

The verifier samples 3;,; € F, challenges for the permutations. There are
r = num_ challenges number of these, which is set so that (deg /|F|)" is small
enough. Typically r € {2,3}, in this case r = 2.

If “lookup gates” are present, the corresponding A; challenges (4r in total, but
2r reuses [3;,7;) are also sampled at this point.

The permutation ¢ polynomials are encoded on as many disjoint cosets k; H
as many routed columns are. The k; € F is chosen simply as g* with g be-
ing a multiplicative generator of F* (however, these k;-s are listed in the
CircuitCommonData, with the very helpful name "k_is"...) They use the
following generators:

g = 0xc65c18b67785d900 = 14293326489335486720
h = 0x64£dd1a46201e246 = 7277203076849721926 = ¢(»—1)/2*
w = h2?/2") where  H = (w)

(remark: the smallest generator would be g = 7).

So the Plonk permutation ¢ is a permutation of [N] x [M] where there are
N = 2" rows and M routed columns (in the default configuration we have
M = 80. The cells indices are then mapped into F by

¢ [N] x [M] — F*

(i, §) ko

where w is the generator of the subgroup H C F* of size n.

We can then form the 2M polynomials encoding the permutation (these are part
of the fixed circuit description - though in practice we don’t store Sjq as that’s
easy to compute):

Next, we would normally compute the partial products



T W+ B 0((i4) 9
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for K < 0 < M, exactly as in the Plonk protocol. However, a problem with this
is that corresponding equations would have degree M, which is too big (recall
that in our case M = 80).

The actual layout

So what Plonky2 does, is to just enumerate all the N x M terms

Ti j = A
! Wi+ B-d(o(i,5)) +

into chunks determined by the maximal degree we allow (max_quotient_degree_factor
= 8). Note: This can be confusing when looking at the Fibonacci example, as
there we also have N = 22 = 8, but this is just a coincidence!

So we should get N M /maxdeg partial products. In our case M/maxdeg = 80/8 =
10, so we can organize this into an N x 10 matrix (in row-major order), resulting
10 “partial product columns”.

Essentially the 80 routed columns’ permutation argument is compressed into
10 partial product columns, and we will have equations ensuring that these are
constructed correctly, and that the full product is 1 (which in turn proves the
wire constraints).

Note: the Plonky2 source code uses some absolute horrible names here, and
then does shiftings, reorderings, basically moving the last column to the first
one, and calls this “z” while the rest “partial products”, and then reorders even
these between the challenge rounds; but I think this is just a +1 error and
programmers not understanding what they are doing... Note that the first
column needs to also opened “on the next row”, while the rest only on “this
row”, but really, that’s not a valid reason to do all this shit.

Here is an ASCII graphics explaning what happens in the source code (indices
denote the corresponding partial product):

zs | partial_products
Fomm e + oo + e +
I 1 2 ... 910 | Il 1 2 ... 9 0| [ ol 1 2 9 |
| 11 12 ... 19 20 | | 11 12 ... 19 10 | [ 10 | 11 12 ... 19 |
| 2122 ... 2930 | -> | 2122 ...2920 | -> | 20 | 21 22 . 29 |
| 31 32 ... 39 40 | | 3132 ... 39 30 | | 30 | 3132 ... 39 |
| | | 40 | | 40 | |



First, the partial products are generated as in the first table. The final one (in
the bottom-right corner) should be equal to 1. Then, the last column is shifted
down, with constant 1 coming (denoted by 0 index) appearing in the top-right
corner. Then, the last column is moved in the front. Finally (no picture for
the lack of space), the first columns are separated from the rest and bundled
together, so for r challeges you will get r first columns (called "zs"), and then
97 of the remaning columns (called "partial products"). Seriously, WTF.

In any case, then we commit to these (reordered!) 10 x r columns (together,
as before). If there are lookup gates, the corresponding polynomials are also
included here. The commitments are added to the Fiat-Shamir transcript too.

Constraints

There are two types constraints (repeated for all challenge rounds): that the
starting (and also ending, because of the cyclic nature of the multiplicative
subgroup) value should equal to 1:

Lo(z) - [Ao(z) - 1]

where £ denotes the Lagrange polynomials and Ag(z) denotes the first column;
and 10 transition constraints (one for each column), ensuring that the partial
products are formed correctly:

7
Wsiyj + 8- kgiyjo+

Ao (2) = Ai(z) -
+1(z) (z) L Wiy + B Sirs (@) +7

where A; denotes the i-th partial product column — with the convention Aqq(z) =
Ap(wz) to simplify the notation —, and X, denotes the “sigma” columns encoding
the permutation.

Multiplying with the denominator we get a degree 9 constraint, but that’s fine
because the quotient polynomial will have only degree 8.

Poseidon hash

Plonky2 primarily uses the Poseidon hash function (while Keccak is also sup-
ported in the code, as we are interested in recursive proofs, that’s not really
relevant here).

Poseidon itself is based on the sponge construction: it’s defined by a concrete,
fixed permutation 7 : F* — F* (in our case t = 12).

10
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Using the permutation

For linear hashing, Plonky2 uses the permutation in standard sponge fashion
(with rate=8 and capacity=4), except in “overwrite mode”. Plonky2 does not
use any padding, but normally all the inputs should have constant length. The
only exception seems to be the Fiat-Shamir domain separator, which is unused
by default.

Here overwrite mode means that instead of adding in the new input to the
existing state, it overwrites it. It’s claimed that this is still secure (see this paper
from the Keccak authors).

Hashing in linear mode is used when committing the matrices (constants, wit-
ness, permutation argument, quotient polynomial): First the rows of the (LDE
extensions of the) matrices are hashed, and then a Merkle tree of the size corre-
sponding to the number of rows is built on the top of these hashes. This means
you have to open full rows, but normally you want to do that anyway.

For Merkle tree compression function, the standard f(z,y) := 7(z,y,0)o con-
struction is used.

)

To generate challenges, Plonky2 uses the permutation in an “overwrite duplex’
mode. Duplex means that input and output is interleaved (this makes a lot of
sense for IOPs). This is implemented in iop/challenger.rs.

Poseidon gate

A Poseidon permutation is implemented as a “custom gate”, in a single row
of size 135 (each of the 135 cells containing a field element). These essentially
contain the inputs of the sboxes, and you have a separate equation for each such
cell (except the inputs, so 135 - 12 = 123 equations). The cells are:

e 12 cells for the permutation input

e 12 cells for the permutation output

o 5 cells for “swapping” the inputs of the Merkle compression function (1
indicating a swap bit, and 4 deltas). This is to make Merkle proofs easier
and/or more efficient.

e 3 x 12 cells for the inputs of the initial full layer sbox-es (the very first
ones are linear in the input so don’t require separate cells)

o 22 cells for the inputs of the inner, partial layer sbox-es

e 4 x 12 cells for the inputs of the final full layer sbox-es

Adding these together you get 135, which is also the number of columns in the
standard recursion configuration. An advantage of this “wide” setting, is that a
whole row is a leaf of the Merkle tree, so the Merkle tree is shallower.

Some remarks:

¢ When using “standard Plonk gates” or other less wide custom gates, you
can pack many of those (in a SIMD-like fashion) in a single row. This

11


https://en.wikipedia.org/wiki/Sponge_function#Overwrite_mode
https://keccak.team/files/SpongeDuplex.pdf

allows the large number of columns not being (too) wasteful

e The newer Plonky3 system in fact packs several permutations in a single
row (in the examples, 8 permutations). Plonky3 is significantly faster, this
may be one of the reasons (77)

¢ Deriving the equations for each cell (each sbox) can be done by relatively
simple computer algebra. However, this is not done anywhere in the
Plonky2 codebase. Instead, an algorithm evaluating these constraints is
written manually as native code. Indeed, if we would naively write down
the equations as polynomials, the size of the resulting polynomials would
blow up - you actually need sharing of intermediate results to be able to
evaluate them effectively.

o Plonky2 uses their own, non-standard round constants (generated by
chacha20), and their own MDS matrix too.

See gates/poseidon.rs for the details.

Poseidon MDS gate

There is also a second Poseidon-related gate. Apparently this is used in recursive
proof circuits. It appears to do simply a multiplication by the MDS matrix (but
in the extension field?)

TODO: figure out why and how is this used

FRI commitment

Plonky2 uses a “wide” FRI commitment (committing to whole rows), and then
a batched opening proofs for all the 4 commitments (namely: constants, witness,
running product and quotient polynomial).

Commitment

To commit to a matrix of size 2 x M, the columns, interpreted as values of
polynomials on a multiplicative subgroup, are “low-degree extended”, that is,
evaluated (via an IFFT-FFT pair) on a (coset of a) larger multiplicative subgroup
of size 271t In the standard configuration we have rate = 1/8, so we get 8x
larger columns, that is, size 273, The coset Plonky?2 uses is the one shifted by

the multiplicative generator of the field

g := 0xc65c18b67785d900 = 14293326489335486720 € IF

Note: There may be some reordering of the LDE values (bit reversal etc) which
I’'m unsure about at this point.

When configured for zero-knowledge, each row is “blinded” by the addition of
SALT_SIZE = 4 extra random columns (huh?).
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Finally, each row is hashed (well, if the number of columns is at most 4, they
are leaved as they are, but this should never happen in practice), and a Merkle
tree is built on the top of these leaf hashes.

So we get a Merkle tree whose leaves correspond to full rows (23 leaves).

Merkle caps Instead of using a single Merkle root to commit, we can use
any fixed layer (so the commitment will be 2* hashes instead of just 1). As the
paths become shorter, this is a tradeoff between commitment size and proof size
/ verification cost. In case we have a lot of Merkle openings for a given tree (like
in FRI low-degree proofs here), clearly this makes sense.

FRI configuration
An FRI proof is configured by the following parameters:

struct FriConfig {
rate_bits: usize, // rate = 2°{-rate_bits}.
cap_height: usize, // Height of Merkle tree caps.
proof_of _work_bits: u32, // Number of bits used for grinding.
num_query_rounds: usize, // Number of query rounds to perform.
reduction_strategy: FriReductionStrategy,

3

Here the “reduction strategy” defines how to select the layers. For example it
can always do 8->1 reduction (instead of the naive 2->1), or optimize and have
different layers; also where to stop.

The “default” standard_recursion_config uses rate = 1/8 (rate_ bits = 3),
markle cap height = 4, proof of work (grinding) = 16 bits, query rounds = 28,
and reduction startegy of arity 2* and final polynomial having degree 2°.

For recursion you don’t want fancy reduction strategies, it’s better to have
something uniform.

Grinding is used to improve security. This means that the verifier sends a
challenge = € F, and a prover needs to answer with a witness w € F such that
H(z||w) starts with as many zero bits as specified.

The conjectured security level is apparently rate_bits * num_query_rounds
+ proof_of_work_bits, in the above case 3 x 28 + 16 = 100. Plonky2 targets
100 bits of security in general. Remark: this is measured in number of hash
invocations.

FRI proof
An FRI proof consists of:

struct FriProof<F: RichField + Extendable<D>, H: Hasher<F>, const D: usize> {
commit_phase_merkle_caps: Vec<MerkleCap<F, H>>, // A Merkle cap for each reduced polynom:
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query_round_proofs: Vec<FriQueryRound<F, H, D>>, // Query rounds proofs

final _poly: PolynomialCoeffs<F::Extension>, // The final polynomial in coefficient f

pow_witness: F, // Witness showing that the prover did P«
¥

The type parameters are: F is the base field, D is the extension degree (usually
D=2), and H is the hash function.

During both the proof and verification process, the verifier challenges are calcu-
lated. These are:

struct FriChallenges<F: RichField + Extendable<D>, const D: usize> {

fri_alpha: F::Extension, // Scaling factor to combine polynomials.
fri_betas: Vec<F::Extension>, // Betas used in the FRI commit phase reductions.
fri_pow_response: F, // proof-of-work challenge

fri_query_indices: Vec<usize>, // Indices at which the oracle is queried in FRI.

}

Here powers of o € F is used to combine several polynomials into a single one,
and 3; € F are the coefficients used in the FRI “folding steps”. Query indices
(size is num_query_rounds) is presumably the indices in the first layer LDE
where the Merkle oracle is queried.

See Challenges.md for how these Fiat-Shamir challenges are generated.
Remark: batch_fri: There is also batch_fri subdirectory in the repo, which is
not clear to me what actually does, as it doesn’t seems to be used anywhere. ..
Low-degree test

TODO: describe the FRI low-degree test

Opening proofs
TODO: describe the opening proofs

Soundness

Soundness is bit tricky because of the small field. Plonky2 uses a mixture of
sampling from a field extension and repeated challenges to achieve a claimed
~100 bit security:

Sub-protocol Soundness boost
Permutation argument parallel repeatition
Combining constraints parallel repeatition
Lookup argument parallel repeatition
Polynomial equality test extension field

FRI protocol extension field + grinding

14
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See this 2023 paper for more precise soundness arguments along these lines.

Fiat-Shamir Challenges
The verifier challenges are genered via Fiat-Shamir heuristics.

This uses the hash permutation in a duplex construction, alternatively absorb-
ing the transcript and squeezing challenge elements. This is implemented in
iop/challenger.rs.

All the challenges in the proof are summarized in the following data structure

struct ProofChallenges<F: RichField + Extendable<D>, const D: usize> {

plonk_betas: Vec<F>, // Random values used in Plonk's permutation argument.
plonk_gammas:  Vec<F>, // Random values used in Plonk's permutation argument.
plonk_alphas: Vec<F>, // Random values used to combine PLONK constraints.
plonk_deltas:  Vec<F>, // Lookup challenges (4 x num_challenges many).
plonk_zeta: F::Extension, // Point at which the PLONK polynomials are opened.
fri_challenges: FriChallenges<F, D>,

X

And the FRI-specific challenges are:

struct FriChallenges<F: RichField + Extendable<D>, const D: usize> {

fri_alpha: F::Extension, // Scaling factor to combine polynomials.

fri_betas: Vec<F::Extension>, // Betas used in the FRI commit phase reductions.

fri_pow_response: F, // proof-of-work challenge response

fri_query_indices: Vec<usize>, // Indices at which the oracle is queried in FRI.
¥

Duplex construction

TODO

Transcript

Usually the communication (in an IOP) between the prover and the verifier
is called “the transcript”, and the Fiat-Shamir challenger should absorb all
messages of the prover.

The duplex state is initialized by absorbing the “circuit digest”.
This is the hash of the following data:

o the Merkle cap of the constant columns (including the selectors and per-
mutation sigmas)

o the hash of the optional domain separator data (which is by default an
empty vector)

o the size (number of rows) of the circuit

Thus the challenge generation starts by absorbing:
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e the circuit digest
¢ the hash of the public inputs
e the Merkle cap of the witness matrix commitment

Then the § € F" and v € F" challenges are generated, where r =
num_challenges.

If lookups are present, next the lookup challenges are generated. This is a bit
ugly. We need 4 x r such challenges, but as an optimization, the 5,y are reused.
So 2 x r more § challenges are generated, then these are concatenated into
(BI17|6) € F4", and finally this vector is chunked into 7 pieces of 4-vectors. ..

Next, the Merkle cap of the partial product columns is absorbed; and after that,
the o € F" combining challenges are generated.

Then, the Merkle cap of the quotient polynomials is absorbed, and the € F
evaluation point is generated.

Finally, the FRI challenges are generated.

FRI challenges

First, we absorb all the opening (a full row, involving all the 4 committed matrix;
and some parts of the “next row”).

Then the a € F combining challenge is generated (NOTE: this is different from
the above a-s!)

Next, the commit_phase_merkle_caps are absorbed, and after each one, a
B: € F is generated (again, different $-s from above!).

Then we absorb the coefficients of the final (low-degree) folded FRI polynomial.
This is at most 2° = 32 coefficients in the default configuration.

Next, the proof-of-work “grinding” is handled. This is done a bit strange way:
first we absorb the candidate prover witness, then we generate the response, and
check the leading zeros of that. I guess you can get away with 1 less hashing in
the verifier this way. ..

Finally, we generate the FRI query indices. These are indices of rows in the
LDE matrix, that is, 0 < g; < 2ntrate_bits

For this, we generate num_query_rounds field elements, and take them modulo
this size.

The Plonky2 protocol (IOP)

I try to collect together here the phases of the Plonky2 protocol. Some of this is
very briefly described in the only existing piece of official documentation, the
“whitepaper”.
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Circuit building
First the static parameters of the circuit are determined:

e global parameters

o set of custom gates

o number of rows (always a power of two)
o gate selectors & gate constants

e wiring permutation

o optional lookup selectors

The constant columns are committed (see also Layout.md for the details of
these), and the circuit digest (hash) is computed. The latter seems to be used
primarily to seed the Fiat-Shamir challenge generator.

Witness generation
The 2™ x M witness matrix is generated based on the circuit.
This then again committed via FRI (see FRI.md for the details).

Notes: - in practice, we want to pre-commit to the constant columns, as these
describe the circuit itself. - full rows of the (LDE extended) matrices are hashed
using the sponge construction, and an Merkle tree is built on these rows, resulting
in Merkle root commitment. - in practice however instead a single root, a wider
“Merkle cap” is used (this is an optimization)

At this point, the circuit digest, the hash of the public inputs, and these Merkle
caps are added to the Fiat-Shamir transcript (which was probably empty before,
though Plonky2 has support for initializing with a “proof domain separator”).

Gate constraints

For each gate type, a set of gate equations (“filtered” using the gate selector
polynomials) are evaluated at ¢ € ﬁ, and these are combined “vertically” by
simple addition; so we get as many values as the maximum number of equations
in a single gate.

This unusual combination (simple summation) is safe to do because the selector
polynomials ensure that on each element of the multiplicative subgroup, at most
1 gate constraint do not vanish. And what we prove at the end is that (with
very high probability) the resulting (vertically combined) constraints vanish on
the whole multiplicative subgroup (but we do this by evaluating outside this
subgroup).

See GateConstraints.md for the details.
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Permutation argument

The verifier samples f3;,v; € F, challenges for the permutations. There are
r = num_ challenges number of these, which is set so that (deg /|F|)" is small
enough. See (see Challenges.md for the details).

If there are lookups, the lookup challenges are also sampled here, 4 X r ones.
However, as an inelegant optimization, Plonky?2 reuses the already computed 2r
challenges (3;,; for this, so there are only (4r — 2r) = 2r new ones generated.
These are called d;.

As many “sigma columns” as there are routed advice columns (by default 80)
were computed (when buildig the circuit), encoded as though the different routed
columns correspond to different cosets.

The running product vectors are computed; these are compressed by adding as
many terms in a single step as the degree limit allows (by default 8), so from 8k
routed columns we get k& running product columns. But this is again repeated r
times.

See Wiring.md for the details how it’s done

These are also committed to. So we will have (at the end) the following 4
commitments:

 constants and sigmas (only depends on the circuit)
o witness (or wires)

o running products and lookups

e quotient polynomial chunks (see below)

Lookups

When lookups are present, this is done next to the permutation argument. See
Lookups.md for the details.

Combined constraints

Verifier samples «; € (F,)" challenges to combine the constraints.

All constraints are combined via powers of «, namely (in this order):

e the grand products starts/ends with 1

¢ partial products are built correctly - see Wiring.md
e lookups - see Lookups.md

o all the gate constraints - see GateConstraints.md

Quotient polynomials

Prover computes the combined quotient polynomial(s), by which we mean 1
quotient polynomial per challenge rounds, so in total » many. These are then
partitioned into degree N chunks:
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maxdeg—1

Q@)= > V. QW(a)

k=0

and these are committed to in the usual way (so this should be at most r x maxdeg
columns).

Evaluation
Verifier samples ¢ € F evaluation challenge (in the 128 bit extension field!).
We open all commitments, that is (see Layout.md for more details):

« selectors & circuit constants & sigmas (in a typical case, 2+2+ 80 columns)
o witness wires (135 columns)

o partial products (r x 10 columns)

o optionally, lookup RE and partial sums (r x (1 + 6) columns, if presents)
e quotient chunks (r x maxdeg columns)

at this challenge ¢, and the case of the first column “zs” of the partial products
(and also the lookup ones), also at w - C.

Corresponding (batched) FRI evaluation proofs are also produced for all these.

That’s basically all the prover does.

Verifier
The verifier essentially does three things (7):

o checks the FRI opening proofs
e compute combined constraints (one for each challenge round 1...7) at ¢
o finally check the quotient equation Q(¢)Zy(¢) = P(¢)

Note: the quotient polynomial is “chunked”, so the verifier needs to reconstruct
it as

maxdeg—1
20 = > "
k=0

TODO: details

Lookup tables

Plonky2 has added support lookup tables only relatively recently, and thus it is
not documented at all (not even mentioned in the “whitepaper”, and no example
code either).
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Logarithmic derivatives

Plonky2 doesn’t use the classical plookup protocol, but the more recent approach
based on the paper Multivariate lookups based on logarithmic derivatives, with
the implementation following the Tip5 paper.

In logarithmic derivative based lookups, the core equation is

K— N—

LHS(X) == > X_lw_ = > o = RHS(X)

j= J i=0 ¢

Ju
Ju

where w; is the witness, ¢; is the table, and we want to prove that {w;} C {t;},
by providing the multiplicities m; of w; appearing in {¢;}. This then becomes a
scalar equation, after the subtitution X — «, where o € F is a random number
(chosen by the verifier).

Note that the above equation is simply the logarithmic derivative (wrt. X) of
the more familiar permutation argument:

TTCx = wp) = [Tex 2™

7 %

The reason for the logarithmic derivative is to move the multipliers from the
exponent to a simple multiplication.

Binary lookups

Plonky2 only allows lookups of the form input->output, encoding equations
like y = f(z) where the function f is given by the table. In this case we have
t; :=x; + a-y; (for some verifier-chosen a € F) and similarly for the witness.

Gates
Plonky2 uses two types of gates for lookups:

o LookupGate instances encode the actual lookups
o while LookupTableGate instances encode the tables themselves

Each LookupGate can contain up to |80/2]| = 40 lookups, encoded as (inp, out)
pairs; and each LookupTableGate can contain up to |80/3| = 26 table entries,
encoded as (inp,out, mult) triples.

This (questionable) design decision has both advantages and disadvantages:

o tables can be encoded in less rows than their size, allowing them to be
used in small circuits

e up to 40 lookups can be done in a single row; though they are repeated at
their actual usage locations, and need to be connected by “wiring”
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e on the other hand, encoding the tables in the witness means that the verifier
has to do a relatively expensive (linear in the table size!) verification of
the tables

e and the whole things is rather over-complicated

The idea behind the protocol

Four challenges (repeated num_challenges times) are used in the lookup argu-
ment: a,b € F are used to combine the input and output, in the above argument
and the “table consistency argument”, respectively; o € F is the above random
element; and ¢ € F is the point to evaluate the lookup polynomial on. NOTE:
in the actual implementation, two out of the four are reused from the from
permutation argument (called 3, there).

A sum like the above can be computed using a running sum, similar to the
running product used in the permutation argument:

k—1
mult;
U :=
F Zo a — (inp, + a - out;)

7=

Then the correctness can be ensured by a simple equation:

(Ukg1 — Uk) - (o — (inp; + a - out;)) = mult;
with the boundary constraints Uy = Uy x = 0, if we merge the LHS and the
RHS of the original into a single sum of size N + K.

Similarly to the permutation argument, Plonky2 batches several such “running
updates” together, since it’s already have high-degree constraints:

_ k+d— .
U U _d ! multy B Zzik lmulti~H#i(a—|npi—a-outi)
k+d— %k _Za_”‘]p ,_a.0utk . k4+d—1 o _ '
=0 k+i +i II.Z, (a—inp; —a-out;)

Also similarly to the permutation argument, they don’t start from “zero”, and
reorder the columns so the final sum is at the beginning.
Consistency check

Since the lookup table itself is part of the witness, instead of being some pre-
committed polynomials, the verifier needs to check the authenticity of that
too. For this purpose, what Plonky2 does is to create new combinations (called
“combos” in the codebase):

combo), := inp; + b - out;
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then out of these, build a running sum of partial Horner evaluations of the
polynomial whose coefficients are combo/;:

26n—1
RE, := Z §26n=1=% (inp, + b - out;)
i=0

(recall that in the standard configuration, there are 26 = |80/3] entries per row).
This running sum is encoded in a single column (the first column of the lookup
columns).

Then the verifier recomputes all this (which have cost linear in the size of the
table!), and checks the initial constraint (REg = 0), the final constrint REy is the
expected sum, and the transition constraints:

25
RE,i1 =RE, + Z §25-7. combo’%nﬂ-
=0

(note that this could be also written in Horner form).

Naming conventions

As the code is based (very literally) on the Tip5 paper, it also inherits some of
the really badly chosen names for there.

e RE, short for “running evaluation”, refers to the table consistency check;
basically the evaluation of a polynomial whose coefficients are the lookup
table “combos” (in reverse order. .. )

e LDC, short for “logarithmic derivative 7777, refers to the sum of fractions
(with coefficients 1) on the left hand side of the fundamental equation,
encoding the usage

e Sum, short for “summation” (really?!), refers the sum of fractions (with
coefficients mult;) on the right hand side of the fundamental equation

o SLDC means Sum - LDC (we only compute a single running sum)

o combo means the linear combination inp, + a - outy.

In formulas (it’s a bit more complicated if there are more than 1 lookup tables,
but this is the idea):
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K-1

REfnal = Z 651 [inpy, + b - outy]
k=0

1
LDC =
final Z o — (|npj +a- OUtj)

K-1

Sumfina = Z

k=0
SLDCy, = Sumy, — LDCy,

multy,
o — (inp, + a - outy,)

Layout

Lookup tables are encoded in several LookupTable gates, which are just below
each other, ordered from the left to right and from bottom to top. At the
very bottom (so “before” the lookup table) there is an empty NoopGate. At the
top of the lookup table gates are the actual lookup gates, but these are ordered
from top to bottom. So the witness will look like this:

- Fommm e +
v | |
v | LU #1 | <- lookups in the first 1lookup table
v | |
-—- Fommm e +
- | |
- | |
- | LUT #1 | <- table entries (with multiplicities)
- | | of the first lookup table
-—- Fommm e +
| NOOP | <- empty row (all zeros)
- Fomm e +
v I I
4 | LU #2 | <- lookups in the second lookup table
- R +
- | |
- | LUT #2 | <- table entries in the second table
- | |
- Fom +
| NOOP | <- empty row
Fommm e +

Both type of gates are padded if necessary to get full rows. The Lookup gates are
padded with the first entry in the corresponding table, while the LookupTable
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gates are padded with zeros (which is actually a soundness bug, as now you can
prove that (0,0) is an element of any table whose length is not divisible by 26).

Lookup selectors

Lookups come with their own selectors. There are always 4 + #luts of them,
nested between the gate selector columns and the constant columns.

These encode:

0: indicator function for the LookupTable gates rows

1: indicator function for the Lookup gate rows

2: indicator for the empty rows, or {last_lut_row + 1} (a singleton set
for each LUT)

3: indicator for {first_lu_row}

4.5...: indicators for {first_lut_row} (each a singleton set)

Note: the lookup table gates are in bottom-to-top order, so the meaning of
“first” and “last” in the code are sometimes not switched up... I tried to use
the logical meaning above.

In the code these are called, respectively:

0: TransSre is for Sum and RE transition constraints.
1: TransLdc is for LDC transition constraints.
2: InitSre is for the initial constraint of Sum and Re.
3: LastLdc is for the final (S)LDC constraint.

e 4: StartEnd indicates where lookup end selectors begin.

These are used in the lookup equations.

This ASCII art graphics should be useful:

witness 012345
o I R et et S
| | | 1#] [#] |
| LU #1 | | l#] | | |
| | | 1#] | | |
o I e s s St
I | [ #| [#] |
I | [#] [
| LUT #1 | | #] [ 1
| | | #] [
o I e A s st
| NOOP | | [#] I
o I R s et
| | | 1#] [#] |
| LU #2 | | l#] | | |
e et + = +—t—t—t—+—+—+
I | | #] | #]
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| LUT #2 | | #] [
I | [ #] [
I I [#] [
e R s . ol s s
| NOOP | | [#| |
e L o s o F S

witness 012345

If there are several lookup tables, the last column is repeated for each of them;
hence we have 4+#1luts lookup selector columns in total.

The constraints

The number of constraints is 4 + #luts + 2 * #sldc, where #luts denotes
the number of different lookup tables, and #sldc denotes the number of SLDC
columns (these contain the running sums). The latter is determined as

Lslde = #1lu_slots :[ [80/2]

maxdeg — 1

=[40/7] =6
lookup_deg I [40/7]

Let’s denote the SLDC columns with A; (for 0 < i < 6), the RE column with R,
the witness columns with W;, and the selectors columns with Sj. Similarly to
the permutation argument, the running sum is encoded in row-major order with
degree 7 “chunks”, but here it’s read from the bottom to the top order. ..

Then these constraints are:

o the final SLDC sum is zero: Siastipc(x) - As(x) = 0 (this corresponds to
actual core equation above)

o the initial Sum is zero: Siitsre(z) - Ao(z) =0

o the inital RE is zero: Sinisre(2) - R(z) =0

« final RE is the expected value, separately for each LUT: Syy;(z) - R(x) =
expected, where 4 runs over the set of lookup tables, and the expected
value is calculated simply as a polynomial evaluation as described above

e RE row transition constraint:

Srianssre(@) | R(x) — 60 R(war) = 3 627 (W () + Wy 11(2)) | =0

Jj=0

e row transition constraints for LDC and SUM, separately:

7k+6 (2) — aWairs (2
0= STransLDC(x) {Ak(l') - Ak—l(x) - Zi:’?k i j?’éi(a B WQZ( ) W. + ( )) }

17542 (0 = Wag(@) — aWaiga ()

where for convience, let’s have A_;(x) := As(wx)
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and similarly for the SUM constraint (but with mulitplicities included there). This
is very similar to the how the partial products work, just way over-complicated. . .

In the source code, all this can be found in the check_lookup_constraints()
function in vanishing poly.rs.

Remark: we have lookup_deg = 7 instead of 8 because the selector adds an
extra plus 1 to the degree. Since 40 is not divisible by 7, the last column will
have a smaller product. Similarly, in the SUM case they use a smaller degree
instead, namely: lutqegree = [26/7] = 4; also with a truncated last column.

Recursive proofs
TODO
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