use sparse matrices when doing fake trusted setup

This commit is contained in:
Balazs Komuves 2024-01-19 12:56:22 +01:00
parent 14ee5ab14f
commit 0ba5af4754
No known key found for this signature in database
GPG Key ID: F63B7AEF18435562
3 changed files with 103 additions and 19 deletions

View File

@ -178,11 +178,20 @@ proc cliMain(cfg: Config) =
if cfg.measure_time: echo("parsing the r1cs took ",seconds(elapsed))
if cfg.do_setup:
echo("\nerror:setup is not yet implemented")
quit()
if not (cfg.zkey_file == ""):
echo("\nwe are doing a fake trusted setup, don't specify the zkey file!")
quit()
if (cfg.r1cs_file == ""):
echo("\nerror: r1cs file is required for the fake setup!")
quit()
echo("\nperforming fake trusted setup...")
let start = cpuTime()
zkey = createFakeCircuitSetup( r1cs, flavour=Snarkjs )
let elapsed = cpuTime() - start
if cfg.measure_time: echo("fake setup took ",seconds(elapsed))
if cfg.do_prove:
if (cfg.wtns_file == "") or (cfg.zkey_file == ""):
if (cfg.wtns_file=="") or (cfg.zkey_file=="" and cfg.do_setup==false):
echo("cannot prove: missing witness and/or zkey file!")
quit()
else:
@ -199,7 +208,7 @@ proc cliMain(cfg: Config) =
exportPublicIO( cfg.io_file, proof )
if cfg.do_verify:
if (cfg.zkey_file == ""):
if (cfg.zkey_file == "" and cfg.do_setup==false):
echo("cannot verify: missing vkey (well, zkey)")
quit()
else:

View File

@ -7,6 +7,7 @@
#
import sugar
import std/tables
import constantine/math/arithmetic except Fp, Fr
@ -64,18 +65,21 @@ func r1csToCoeffs*(r1cs: R1CS): seq[Coeff] =
return coeffs
#-------------------------------------------------------------------------------
# Note: dense matrices can be very big, this is only feasible for small circuits
type Column*[T] = seq[T]
type DenseColumn*[T] = seq[T]
type Matrix*[T] = seq[Column[T]]
type DenseMatrix*[T] = seq[DenseColumn[T]]
type
Matrices* = object
A* : Matrix[Fr]
B* : Matrix[Fr]
C* : Matrix[Fr]
DenseMatrices* = object
A* : DenseMatrix[Fr]
B* : DenseMatrix[Fr]
C* : DenseMatrix[Fr]
func r1csToMatrices*(r1cs: R1CS): Matrices =
#[
func r1csToDenseMatrices*(r1cs: R1CS): DenseMatrices =
let n = r1cs.constraints.len
let m = r1cs.cfg.nWires
let p = r1cs.cfg.nPubIn + r1cs.cfg.nPubOut
@ -83,7 +87,7 @@ func r1csToMatrices*(r1cs: R1CS): Matrices =
let logDomSize = ceilingLog2(n+p+1)
let domSize = 1 shl logDomSize
var matA, matB, matC: Matrix[Fr]
var matA, matB, matC: DenseMatrix[Fr]
for i in 0..<m:
var colA = newSeq[Fr](domSize)
var colB = newSeq[Fr](domSize)
@ -103,11 +107,11 @@ func r1csToMatrices*(r1cs: R1CS): Matrices =
for i in n..n+p:
matA[i-n][i] += oneFr
return Matrices(A:matA, B:matB, C:matC)
return DenseMatrices(A:matA, B:matB, C:matC)
#-------------------------------------------------------------------------------
func matricesToCoeffs*(matrices: Matrices): seq[Coeff] =
func denseMatricesToCoeffs*(matrices: DenseMatrices): seq[Coeff] =
let n = matrices.A[0].len
let m = matrices.A.len
@ -127,6 +131,61 @@ func matricesToCoeffs*(matrices: Matrices): seq[Coeff] =
return coeffs
]#
#-------------------------------------------------------------------------------
type SparseColumn*[T] = Table[int,T]
proc columnInsertWithAddFr( col: var SparseColumn[Fr] , i: int, y: Fr ) =
var x = getOrDefault( col, i, zeroFr )
x += y
col[i] = x
proc sparseDenseDotProdFr( U: SparseColumn[Fr], V: DenseColumn[Fr] ): Fr =
var acc : Fr = zeroFr
for i,x in U.pairs:
acc += x * V[i]
return acc
type SparseMatrix*[T] = seq[SparseColumn[T]]
type
SparseMatrices* = object
A* : SparseMatrix[Fr]
B* : SparseMatrix[Fr]
C* : SparseMatrix[Fr]
func r1csToSparseMatrices*(r1cs: R1CS): SparseMatrices =
let n = r1cs.constraints.len
let m = r1cs.cfg.nWires
let p = r1cs.cfg.nPubIn + r1cs.cfg.nPubOut
let logDomSize = ceilingLog2(n+p+1)
let domSize = 1 shl logDomSize
var matA, matB, matC: SparseMatrix[Fr]
for i in 0..<m:
var colA : SparseColumn[Fr] = initTable[int,Fr]()
var colB : SparseColumn[Fr] = initTable[int,Fr]()
var colC : SparseColumn[Fr] = initTable[int,Fr]()
matA.add( colA )
matB.add( colB )
matC.add( colC )
for i in 0..<n:
let ct = r1cs.constraints[i]
for term in ct.A: columnInsertWithAddFr( matA[term.wireIdx] , i , term.value )
for term in ct.B: columnInsertWithAddFr( matB[term.wireIdx] , i , term.value )
for term in ct.C: columnInsertWithAddFr( matC[term.wireIdx] , i , term.value )
# Snarkjs adds some dummy coefficients to the matrix "A", for the public I/O
# Let's emulate that here
for i in n..n+p:
columnInsertWithAddFr( matA[i-n] , i , oneFr )
return SparseMatrices(A:matA, B:matB, C:matC)
#-------------------------------------------------------------------------------
func dotProdFr(xs, ys: seq[Fr]): Fr =
@ -175,14 +234,11 @@ func fakeCircuitSetup*(r1cs: R1CS, toxic: ToxicWaste, flavour=Snarkjs): ZKey =
, alphaBeta : pairing( toxic.alpha ** gen1 , toxic.beta ** gen2 )
)
let matrices = r1csToMatrices(r1cs)
let coeffs = r1csToCoeffs( r1cs )
# let coeffs = matricesToCoeffs(matrices)
let matrices = r1csToSparseMatrices(r1cs)
let D : Domain = createDomain(domSize)
#[
# this approach is very inefficient
# this approach is extremely inefficient
let polyAs : seq[Poly] = collect( newSeq , (for col in matrices.A: polyInverseNTT(col, D) ))
let polyBs : seq[Poly] = collect( newSeq , (for col in matrices.B: polyInverseNTT(col, D) ))
@ -198,9 +254,16 @@ func fakeCircuitSetup*(r1cs: R1CS, toxic: ToxicWaste, flavour=Snarkjs): ZKey =
# we can then simply take the dot product of these with the column vectors to compute the points A,B1,B2,C
let lagrangeTaus : seq[Fr] = collect( newSeq, (for k in 0..<domSize: evalLagrangePolyAt(D, k, toxic.tau) ))
#[
# dense matrices use way too much memory
let columnTausA : seq[Fr] = collect( newSeq, (for col in matrices.A: dotProdFr(col,lagrangeTaus) ))
let columnTausB : seq[Fr] = collect( newSeq, (for col in matrices.B: dotProdFr(col,lagrangeTaus) ))
let columnTausC : seq[Fr] = collect( newSeq, (for col in matrices.C: dotProdFr(col,lagrangeTaus) ))
]#
let columnTausA : seq[Fr] = collect( newSeq, (for col in matrices.A: sparseDenseDotProdFr(col,lagrangeTaus) ))
let columnTausB : seq[Fr] = collect( newSeq, (for col in matrices.B: sparseDenseDotProdFr(col,lagrangeTaus) ))
let columnTausC : seq[Fr] = collect( newSeq, (for col in matrices.C: sparseDenseDotProdFr(col,lagrangeTaus) ))
let pointsA : seq[G1] = collect( newSeq , (for y in columnTausA: (y ** gen1) ))
let pointsB1 : seq[G1] = collect( newSeq , (for y in columnTausB: (y ** gen1) ))
@ -252,6 +315,8 @@ func fakeCircuitSetup*(r1cs: R1CS, toxic: ToxicWaste, flavour=Snarkjs): ZKey =
, pointsH1: pointsH
)
let coeffs = r1csToCoeffs( r1cs )
return
ZKey( header: header
, specPoints: spec

View File

@ -108,6 +108,9 @@ func shiftEvalDomain( values: seq[Fr], D: Domain, eta: Fr ): seq[Fr] =
# remark: Q has degree `n-2`, so it's enough to use a domain of size n
func computeQuotientPointwise( abc: ABC ): Poly =
let n = abc.valuesA.len
assert( abc.valuesB.len == n )
assert( abc.valuesC.len == n )
let D = createDomain(n)
# (eta*omega^j)^n - 1 = eta^n - 1
@ -136,6 +139,8 @@ func computeQuotientPointwise( abc: ABC ): Poly =
#
func computeSnarkjsScalarCoeffs( abc: ABC ): seq[Fr] =
let n = abc.valuesA.len
assert( abc.valuesB.len == n )
assert( abc.valuesC.len == n )
let D = createDomain(n)
let eta = createDomain(2*n).domainGen
let A1 = shiftEvalDomain( abc.valuesA, D, eta )
@ -155,6 +160,11 @@ type
s*: Fr # for zero knowledge
proc generateProofWithMask*( zkey: ZKey, wtns: Witness, mask: Mask ): Proof =
# if (zkey.header.curve != wtns.curve):
# echo( "zkey.header.curve = " & ($zkey.header.curve) )
# echo( "wtns.curve = " & ($wtns.curve ) )
assert( zkey.header.curve == wtns.curve )
let witness = wtns.values