nim-goldilocks-hash/cbits/goldilocks.c

660 lines
20 KiB
C

#include <stdint.h>
#include <stdio.h> // for testing only
#include <assert.h>
#include "goldilocks.h"
//==============================================================================
// *** Goldilocks field ***
uint64_t goldilocks_neg(uint64_t x) {
return (x==0) ? 0 : (GOLDILOCKS_PRIME - x);
}
uint64_t goldilocks_add(uint64_t x, uint64_t y) {
uint64_t z = x + y;
return ( (z >= GOLDILOCKS_PRIME) || (z<x) ) ? (z - GOLDILOCKS_PRIME) : z;
}
uint64_t goldilocks_add_to_uint64(uint64_t x, uint64_t y) {
uint64_t z = x + y;
return (z<x) ? (z - GOLDILOCKS_PRIME) : z;
}
uint64_t goldilocks_sub(uint64_t x, uint64_t y) {
uint64_t z = x - y;
return (z > x) ? (z + GOLDILOCKS_PRIME) : z;
}
uint64_t goldilocks_sub_safe(uint64_t x, uint64_t y) {
return goldilocks_add( x , goldilocks_neg(y) );
}
//--------------------------------------
uint64_t goldilocks_rdc(__uint128_t x) {
// x = n0 + 2^64 * n1 + 2^96 * n2
uint64_t n0 = (uint64_t)x;
uint64_t n1 = (x >> 64) & 0xffffffff;
uint64_t n2 = (x >> 96);
uint64_t mid = (n1 << 32) - n1; // (2^32 - 1) * n1
uint64_t tmp = n0 + mid;
if (tmp < n0) { tmp -= GOLDILOCKS_PRIME; }
uint64_t res = tmp - n2;
if (res > tmp) { res += GOLDILOCKS_PRIME; }
return (res >= GOLDILOCKS_PRIME) ? (res - GOLDILOCKS_PRIME) : res;
}
// reduce to 64-bit, but it can be still bigger than `p`
uint64_t goldilocks_rdc_to_uint64(__uint128_t x) {
// x = n0 + 2^64 * n1 + 2^96 * n2
uint64_t n0 = (uint64_t)x;
uint64_t n1 = (x >> 64) & 0xffffffff;
uint64_t n2 = (x >> 96);
uint64_t mid = (n1 << 32) - n1; // (2^32 - 1) * n1
uint64_t tmp = n0 + mid;
if (tmp < n0) { tmp -= GOLDILOCKS_PRIME; }
uint64_t res = tmp - n2;
if (res > tmp) { res += GOLDILOCKS_PRIME; }
return res;
}
// we assume x < 2^96
uint64_t goldilocks_rdc_small(__uint128_t x) {
// x = n0 + 2^64 * n1
uint64_t n0 = (uint64_t)x;
uint64_t n1 = (x >> 64);
uint64_t mid = (n1 << 32) - n1; // (2^32 - 1) * n1
uint64_t tmp = n0 + mid;
if (tmp < n0) { tmp -= GOLDILOCKS_PRIME; }
uint64_t res = tmp;
return (res >= GOLDILOCKS_PRIME) ? (res - GOLDILOCKS_PRIME) : res;
}
//--------------------------------------
uint64_t goldilocks_mul(uint64_t x, uint64_t y) {
__uint128_t z = (__uint128_t)x * (__uint128_t)y;
return goldilocks_rdc(z);
}
uint64_t goldilocks_mul_to_uint64(uint64_t x, uint64_t y) {
__uint128_t z = (__uint128_t)x * (__uint128_t)y;
return goldilocks_rdc_to_uint64(z);
}
uint64_t goldilocks_mul_add128(uint64_t x, uint64_t y, __uint128_t z) {
__uint128_t w = (__uint128_t)x * (__uint128_t)y + z;
return goldilocks_rdc(w);
}
uint64_t goldilocks_sqr(uint64_t x) {
__uint128_t z = (__uint128_t)x * (__uint128_t)x;
return goldilocks_rdc(z);
}
uint64_t goldilocks_sqr_add(uint64_t x, uint64_t y) {
__uint128_t z = (__uint128_t)x * x + y;
return goldilocks_rdc(z);
}
// only reduce to uint64, not to [0..p-1]
uint64_t goldilocks_sqr_add_to_uint64(uint64_t x, uint64_t y) {
__uint128_t z = (__uint128_t)x * x + y;
return goldilocks_rdc_to_uint64(z);
}
uint64_t goldilocks_mul_small(uint64_t x, uint32_t y) {
__uint128_t z = (__uint128_t)x * (__uint128_t)y;
return goldilocks_rdc_small(z);
}
//==============================================================================
// *** debugging ***
void debug_print_state(const char *msg, int n, uint64_t *state) {
printf("-----------------\n");
printf("%s\n",msg);
for(int i=0;i<n;i++) {
printf(" - 0x%016llx = %llu\n",state[i],state[i]);
}
}
//==============================================================================
// *** Poseidon2 ***
//
// compatible with <https://github.com/HorizenLabs/poseidon2>
// NOT compatible with <https://extgit.iaik.tugraz.at/krypto/zkfriendlyhashzoo>
// (presumably they use different constants or whatever)
//
#include "poseidon2_constants.inc"
/*
poseidon2 test vector (permutation of [0..11])
----------------------------------------------
from <https://github.com/HorizenLabs/poseidon2/blob/main/plain_implementations/src/poseidon2/poseidon2.rs#L284>
0x01eaef96bdf1c0c1
0x1f0d2cc525b2540c
0x6282c1dfe1e0358d
0xe780d721f698e1e6
0x280c0b6f753d833b
0x1b942dd5023156ab
0x43f0df3fcccb8398
0xe8e8190585489025
0x56bdbf72f77ada22
0x7911c32bf9dcd705
0xec467926508fbe67
0x6a50450ddf85a6ed
*/
uint64_t goldilocks_poseidon2_sbox(uint64_t x0, uint64_t rc) {
uint64_t x = goldilocks_add_to_uint64( x0 , rc );
uint64_t x2 = goldilocks_mul_to_uint64( x , x );
uint64_t x4 = goldilocks_mul_to_uint64( x2 , x2 );
uint64_t x6 = goldilocks_mul_to_uint64( x4 , x2 );
uint64_t x7 = goldilocks_mul ( x6 , x );
return x7;
}
// remark: (p-1)^2 + 12*(p-1) does not overflow in 2^128
void goldilocks_poseidon2_internal_diffusion(uint64_t *inp, uint64_t *out) {
__uint128_t s0 = inp[0];
__uint128_t s1 = inp[6];
s0 += inp[1]; s1 += inp[7];
s0 += inp[2]; s1 += inp[8];
s0 += inp[3]; s1 += inp[9];
s0 += inp[4]; s1 += inp[10];
s0 += inp[5]; s1 += inp[11];
__uint128_t s = s0 + s1;
for(int i=0; i<12; i++) {
out[i] = goldilocks_mul_add128( inp[i] , internal_diag[i] , s );
}
}
//--------------------------------------
// multiplies a vector of size 4 by the 4x4 MDS matrix on the left:
//
// [ 5 7 1 3 ]
// M4 = [ 4 6 1 1 ]
// [ 1 3 5 7 ]
// [ 1 1 4 6 ]
//
void uint64_mul_by_M4(uint64_t *inp, uint64_t *out) {
uint64_t a = inp[0];
uint64_t b = inp[1];
uint64_t c = inp[2];
uint64_t d = inp[3];
uint64_t a4 = a << 2;
uint64_t a5 = a4 + a;
uint64_t b2 = b + b ;
uint64_t b3 = b2 + b ;
uint64_t b6 = b3 + b3 ;
uint64_t b7 = b6 + b ;
uint64_t c4 = c << 2 ;
uint64_t c5 = c4 + c ;
uint64_t d2 = d + d ;
uint64_t d3 = d2 + d ;
uint64_t d6 = d3 + d3 ;
uint64_t d7 = d6 + d ;
out[0] = a5 + b7 + c + d3 ;
out[1] = a4 + b6 + c + d ;
out[2] = a + b3 + c5 + d7 ;
out[3] = a + b + c4 + d6 ;
}
// multiplies by 12x12 block-circulant matrix [2*M4, M4, M4]
void uint64_mul_by_poseidon2_circulant12(uint64_t *inp, uint64_t *out) {
uint64_t us[4];
uint64_t vs[4];
uint64_t ws[4];
uint64_mul_by_M4( inp + 0 , us );
uint64_mul_by_M4( inp + 4 , vs );
uint64_mul_by_M4( inp + 8 , ws );
out[0] = 2*us[0] + vs[0] + ws[0];
out[1] = 2*us[1] + vs[1] + ws[1];
out[2] = 2*us[2] + vs[2] + ws[2];
out[3] = 2*us[3] + vs[3] + ws[3];
out[4] = us[0] + 2*vs[0] + ws[0];
out[5] = us[1] + 2*vs[1] + ws[1];
out[6] = us[2] + 2*vs[2] + ws[2];
out[7] = us[3] + 2*vs[3] + ws[3];
out[ 8] = us[0] + vs[0] + 2*ws[0];
out[ 9] = us[1] + vs[1] + 2*ws[1];
out[10] = us[2] + vs[2] + 2*ws[2];
out[11] = us[3] + vs[3] + 2*ws[3];
}
void goldilocks_poseidon2_external_diffusion_split(uint64_t *inp, uint64_t *out) {
uint64_t inp_lo[12];
uint64_t inp_hi[12];
uint64_t out_lo[12];
uint64_t out_hi[12];
for(int i=0; i<12; i++) {
uint64_t x = inp[i];
inp_lo[i] = x & 0xffffffff;
inp_hi[i] = x >> 32;
}
uint64_mul_by_poseidon2_circulant12(inp_lo, out_lo);
uint64_mul_by_poseidon2_circulant12(inp_hi, out_hi);
for(int i=0; i<12; i++) {
__uint128_t x = (((__uint128_t)out_hi[i]) << 32) + out_lo[i];
out[i] = goldilocks_rdc_small(x);
}
}
//--------------------------------------
// 0 <= round_idx < 22
void goldilocks_poseidon2_internal_round(int round_idx, uint64_t *state) {
state[0] = goldilocks_poseidon2_sbox( state[0] , internal_round_consts[round_idx] );
goldilocks_poseidon2_internal_diffusion( state, state );
}
void goldilocks_poseidon2_external_round(const uint64_t *rcs, uint64_t *state) {
for (int i=0; i<12; i++) {
state[i] = goldilocks_poseidon2_sbox( state[i] , rcs[i] );
}
goldilocks_poseidon2_external_diffusion_split( state, state );
}
void goldilocks_poseidon2_permutation(uint64_t *state) {
goldilocks_poseidon2_external_diffusion_split( state, state );
goldilocks_poseidon2_external_round( intial_round_consts + 0 , state );
goldilocks_poseidon2_external_round( intial_round_consts + 12 , state );
goldilocks_poseidon2_external_round( intial_round_consts + 24 , state );
goldilocks_poseidon2_external_round( intial_round_consts + 36 , state );
for(int idx=0; idx<22; idx++) {
goldilocks_poseidon2_internal_round( idx, state );
}
goldilocks_poseidon2_external_round( final_round_consts + 0 , state );
goldilocks_poseidon2_external_round( final_round_consts + 12 , state );
goldilocks_poseidon2_external_round( final_round_consts + 24 , state );
goldilocks_poseidon2_external_round( final_round_consts + 36 , state );
}
//------------------------------------------------------------------------------
// compression function: input is two 4-element vector of field elements,
// and the output is a vector of 4 field elements
void goldilocks_poseidon2_keyed_compress(const uint64_t *x, const uint64_t *y, uint64_t key, uint64_t *out) {
uint64_t state[12];
for(int i=0; i<4; i++) {
state[i ] = x[i];
state[i+4] = y[i];
state[i+8] = 0;
}
state[8] = key;
goldilocks_poseidon2_permutation(state);
for(int i=0; i<4; i++) {
out[i] = state[i];
}
}
void goldilocks_poseidon2_compress(const uint64_t *x, const uint64_t *y, uint64_t *out) {
goldilocks_poseidon2_keyed_compress(x, y, 0, out);
}
//------------------------------------------------------------------------------
// hash a sequence of field elements into a digest of 4 field elements
void goldilocks_poseidon2_felts_digest(int rate, int N, const uint64_t *input, uint64_t *hash) {
// printf("rate = %d\n",rate);
// printf("N = %d\n",N );
assert( (rate >= 1) && (rate <= 8) );
uint64_t domsep = rate + 256*12 + 65536*63;
uint64_t state[12];
for(int i=0; i<12; i++) state[i] = 0;
state[8] = domsep;
int nchunks = (N + rate) / rate; // 10* padding
const uint64_t *ptr = input;
for(int k=0; k<nchunks-1; k++) {
for(int j=0; j<rate; j++) { state[j] = goldilocks_add( state[j] , ptr[j] ); }
goldilocks_poseidon2_permutation( state );
ptr += rate;
}
int rem = nchunks*rate - N; // 0 < rem <= rate
int ofs = rate - rem;
// the last block, with padding
uint64_t last[8];
for(int i=0 ; i<ofs ; i++) last[i] = ptr[i];
for(int i=ofs+1; i<rate; i++) last[i] = 0;
last[ofs] = 0x01;
for(int j=0; j<rate; j++) { state[j] = goldilocks_add( state[j] , last[j] ); }
goldilocks_poseidon2_permutation( state );
for(int j=0; j<4; j++) { hash[j] = state[j]; }
}
//--------------------------------------
#define MASK 0x3fffffffffffffffULL
// NOTE: we assume a little-endian architecture
void goldilocks_convert_31_bytes_to_4_field_elements(const uint8_t *ptr, uint64_t *felts) {
const uint64_t *q0 = (const uint64_t*)(ptr );
const uint64_t *q7 = (const uint64_t*)(ptr+ 7);
const uint64_t *q15 = (const uint64_t*)(ptr+15);
const uint64_t *q23 = (const uint64_t*)(ptr+23);
felts[0] = (q0 [0]) & MASK;
felts[1] = ((q7 [0]) >> 6) | ((uint64_t)(ptr[15] & 0x0f) << 58);
felts[2] = ((q15[0]) >> 4) | ((uint64_t)(ptr[23] & 0x03) << 60);
felts[3] = ((q23[0]) >> 2);
}
void goldilocks_convert_bytes_to_field_elements(int rate, const uint8_t *ptr, uint64_t *felts) {
switch(rate) {
case 4:
goldilocks_convert_31_bytes_to_4_field_elements(ptr, felts);
break;
case 8:
goldilocks_convert_31_bytes_to_4_field_elements(ptr , felts );
goldilocks_convert_31_bytes_to_4_field_elements(ptr+31, felts+4);
break;
default:
assert( 0 );
break;
}
}
void goldilocks_poseidon2_bytes_digest(int rate, int N, const uint8_t *input, uint64_t *hash) {
// printf("rate = %d\n",rate);
// printf("N = %d\n",N );
assert( (rate == 4) || (rate == 8) );
uint64_t domsep = rate + 256*12 + 65536*8;
uint64_t state[12];
for(int i=0; i<12; i++) state[i] = 0;
state[8] = domsep;
uint64_t felts[8];
int rate_in_bytes = 31 * (rate>>2); // 31 or 62
int nchunks = (N + rate_in_bytes) / rate_in_bytes; // 10* padding
const uint8_t *ptr = input;
for(int k=0; k<nchunks-1; k++) {
goldilocks_convert_bytes_to_field_elements(rate, ptr, felts);
for(int j=0; j<rate; j++) { state[j] = goldilocks_add( state[j] , felts[j] ); }
goldilocks_poseidon2_permutation( state );
ptr += rate_in_bytes;
}
int rem = nchunks*rate_in_bytes - N; // 0 < rem <= rate_in_bytes
int ofs = rate_in_bytes - rem;
uint8_t last[62];
// last block, with padding
for(int i=0 ; i<ofs ; i++) last[i] = ptr[i];
for(int i=ofs+1; i<rate_in_bytes; i++) last[i] = 0;
last[ofs] = 0x01;
goldilocks_convert_bytes_to_field_elements(rate, last, felts);
for(int j=0; j<rate; j++) { state[j] = goldilocks_add( state[j] ,felts[j] ); }
goldilocks_poseidon2_permutation( state );
for(int j=0; j<4; j++) { hash[j] = state[j]; }
}
//==============================================================================
// *** Monolith hash ***
//
// compatible with <https://extgit.iaik.tugraz.at/krypto/zkfriendlyhashzoo>
//
/*
monolith test vector (permutation of [0..11])
---------------------------------------------
from <https://extgit.iaik.tugraz.at/krypto/zkfriendlyhashzoo/-/blob/master/plain_impls/src/monolith_64/monolith_64.rs?ref_type=heads#L653>
0x516dd661e959f541 = 5867581605548782913
0x082c137169707901 = 588867029099903233
0x53dff3fd9f0a5beb = 6043817495575026667
0x0b2ebaa261590650 = 805786589926590032
0x89aadb57e2969cb6 = 9919982299747097782
0x5d3d6905970259bd = 6718641691835914685
0x6e5ac1a4c0cfa0fe = 7951881005429661950
0xd674b7736abfc5ce = 15453177927755089358
0x0d8697e1cd9a235f = 974633365445157727
0x85fc4017c247136e = 9654662171963364206
0x572bafd76e511424 = 6281307445101925412
0xbec1638e28eae57f = 13745376999934453119
*/
//--------------------------------------
// ** sbox layer
// based on the reference implementation from
// <https://extgit.iaik.tugraz.at/krypto/zkfriendlyhashzoo>
uint64_t goldilocks_monolith_single_bar(uint64_t x) {
// uint64_t y1 = ((x & 0x8080808080808080) >> 7) | ((x & 0x7F7F7F7F7F7F7F7F) << 1);
// uint64_t y2 = ((x & 0xC0C0C0C0C0C0C0C0) >> 6) | ((x & 0x3F3F3F3F3F3F3F3F) << 2);
// uint64_t y3 = ((x & 0xE0E0E0E0E0E0E0E0) >> 5) | ((x & 0x1F1F1F1F1F1F1F1F) << 3);
// uint64_t z = x ^ ((~y1) & y2 & y3);
// uint64_t r = ((z & 0x8080808080808080) >> 7) | ((z & 0x7F7F7F7F7F7F7F7F) << 1);
const uint64_t mask80 = 0x8080808080808080;
const uint64_t mask7F = ~mask80;
uint64_t y1 = ((x & mask80) >> 7) | ((x & mask7F) << 1);
uint64_t y2 = ((y1 & mask80) >> 7) | ((y1 & mask7F) << 1);
uint64_t y3 = ((y2 & mask80) >> 7) | ((y2 & mask7F) << 1);
uint64_t z = x ^ ((~y1) & y2 & y3);
uint64_t r = ((z & mask80) >> 7) | ((z & mask7F) << 1);
return r;
}
// the sbox-layer (note: it's only applied to the first 4 field elements!)
void goldilocks_monolith_bars(uint64_t *state) {
for(int j=0; j<4; j++) { state[j] = goldilocks_monolith_single_bar(state[j]); }
}
//--------------------------------------
// ** nonlinear layer
// the nonlinear layer
//
// remark: since the next layer is always the linear diffusion, it's enough
// to reduce to 64 bit, don't have to reduce to [0..p-1].
// As in the linear layer we split into two 32 bit words anyway.
void goldilocks_monolith_bricks(uint64_t *state) {
for(int i=11; i>0; i--) state[i] = goldilocks_sqr_add_to_uint64( state[i-1] , state[i] );
}
//--------------------------------------
// ** fast diffusion layer
#include "monolith_conv_uint64.inc"
// we split the input to low and high 32 bit words
// do circular convolution on them, which safe because there is no overflow in 64 bit words
// but should be much faster as there are no modulo operations just 64-bit machine word ops
// then reconstruct and reduce at the end
void goldilocks_monolith_concrete(uint64_t *state) {
uint64_t lo[12];
uint64_t hi[12];
for(int i=0; i<12; i++) {
uint64_t x = state[i];
lo[i] = x & 0xffffffff;
hi[i] = x >> 32;
}
uint64_circular_conv_12_with( lo , lo );
uint64_circular_conv_12_with( hi , hi );
for(int i=0; i<12; i++) {
__uint128_t x = (((__uint128_t)hi[i]) << 32) + lo[i];
state[i] = goldilocks_rdc_small(x);
}
}
void goldilocks_monolith_concrete_rc(uint64_t *state, const uint64_t *rc) {
uint64_t lo[12];
uint64_t hi[12];
for(int i=0; i<12; i++) {
uint64_t x = state[i];
lo[i] = x & 0xffffffff;
hi[i] = x >> 32;
}
uint64_circular_conv_12_with( lo , lo );
uint64_circular_conv_12_with( hi , hi );
for(int i=0; i<12; i++) {
__uint128_t x = (((__uint128_t)hi[i]) << 32) + lo[i] + rc[i];
state[i] = goldilocks_rdc_small(x);
}
}
//--------------------------------------
// ** rounds
#include "monolith_constants.inc"
void goldilocks_monolith_round(int round_idx, uint64_t *state) {
goldilocks_monolith_bars (state);
goldilocks_monolith_bricks (state);
goldilocks_monolith_concrete_rc(state , &(monolith_t12_round_constants[round_idx][0]) );
}
void goldilocks_monolith_permutation(uint64_t *state) {
// initial layer
goldilocks_monolith_concrete(state);
// five rounds with RC
for(int r=0; r<5; r++) {
goldilocks_monolith_round(r, state);
}
// last round, no RC
goldilocks_monolith_bars (state);
goldilocks_monolith_bricks (state);
goldilocks_monolith_concrete(state);
}
//------------------------------------------------------------------------------
// compression function: input is two 4-element vector of field elements,
// and the output is a vector of 4 field elements
void goldilocks_monolith_keyed_compress(const uint64_t *x, const uint64_t *y, uint64_t key, uint64_t *out) {
uint64_t state[12];
for(int i=0; i<4; i++) {
state[i ] = x[i];
state[i+4] = y[i];
state[i+8] = 0;
}
state[8] = key;
goldilocks_monolith_permutation(state);
for(int i=0; i<4; i++) {
out[i] = state[i];
}
}
void goldilocks_monolith_compress(const uint64_t *x, const uint64_t *y, uint64_t *out) {
goldilocks_monolith_keyed_compress(x, y, 0, out);
}
//------------------------------------------------------------------------------
// hash a sequence of field elements into a digest of 4 field elements
void goldilocks_monolith_felts_digest(int rate, int N, const uint64_t *input, uint64_t *hash) {
assert( (rate >= 1) && (rate <= 8) );
uint64_t domsep = rate + 256*12 + 65536*63;
uint64_t state[12];
for(int i=0; i<12; i++) state[i] = 0;
state[8] = domsep;
int nchunks = (N + rate) / rate; // 10* padding
const uint64_t *ptr = input;
for(int k=0; k<nchunks-1; k++) {
for(int j=0; j<rate; j++) { state[j] = goldilocks_add( state[j] , ptr[j] ); }
goldilocks_monolith_permutation( state );
ptr += rate;
}
int rem = nchunks*rate - N; // 0 < rem <= rate
int ofs = rate - rem;
// the last block, with padding
uint64_t last[8];
for(int i=0 ; i<ofs ; i++) last[i] = ptr[i];
for(int i=ofs+1; i<rate; i++) last[i] = 0;
last[ofs] = 0x01;
for(int j=0; j<rate; j++) { state[j] = goldilocks_add( state[j] , last[j] ); }
goldilocks_monolith_permutation( state );
for(int j=0; j<4; j++) { hash[j] = state[j]; }
}
//--------------------------------------
void goldilocks_monolith_bytes_digest(int rate, int N, const uint8_t *input, uint64_t *hash) {
assert( (rate == 4) || (rate == 8) );
uint64_t domsep = rate + 256*12 + 65536*8;
uint64_t state[12];
for(int i=0; i<12; i++) state[i] = 0;
state[8] = domsep;
uint64_t felts[8];
int rate_in_bytes = 31 * (rate>>2); // 31 or 62
int nchunks = (N + rate_in_bytes) / rate_in_bytes; // 10* padding
const uint8_t *ptr = input;
for(int k=0; k<nchunks-1; k++) {
goldilocks_convert_bytes_to_field_elements(rate, ptr, felts);
for(int j=0; j<rate; j++) { state[j] = goldilocks_add( state[j] , felts[j] ); }
goldilocks_monolith_permutation( state );
ptr += rate_in_bytes;
}
int rem = nchunks*rate_in_bytes - N; // 0 < rem <= rate_in_bytes
int ofs = rate_in_bytes - rem;
uint8_t last[62];
// last block, with padding
for(int i=0 ; i<ofs ; i++) last[i] = ptr[i];
for(int i=ofs+1; i<rate_in_bytes; i++) last[i] = 0;
last[ofs] = 0x01;
goldilocks_convert_bytes_to_field_elements(rate, last, felts);
for(int j=0; j<rate; j++) { state[j] = goldilocks_add( state[j] ,felts[j] ); }
goldilocks_monolith_permutation( state );
for(int j=0; j<4; j++) { hash[j] = state[j]; }
}
//------------------------------------------------------------------------------