106 lines
2.6 KiB
Haskell
Raw Permalink Normal View History

-- | Reference (slow) implementation of the Goldilocks prime field
{-# LANGUAGE BangPatterns, NumericUnderscores #-}
module Goldilocks where
--------------------------------------------------------------------------------
import Prelude hiding ( div )
import qualified Prelude
import Data.Bits
import Data.Word
import Data.Ratio
import Text.Printf
--------------------------------------------------------------------------------
type F = Goldilocks
fromF :: F -> Word64
fromF (Goldilocks x) = fromInteger x
toF :: Word64 -> F
toF = mkGoldilocks . fromIntegral
--------------------------------------------------------------------------------
newtype Goldilocks
= Goldilocks Integer
deriving Eq
instance Show Goldilocks where
show (Goldilocks k) = printf "0x%016x" k
--------------------------------------------------------------------------------
instance Num Goldilocks where
fromInteger = mkGoldilocks
negate = neg
(+) = add
(-) = sub
(*) = mul
abs = id
signum _ = Goldilocks 1
square :: F -> F
square x = x*x
instance Fractional Goldilocks where
fromRational y = fromInteger (numerator y) `div` fromInteger (denominator y)
recip = inv
(/) = div
--------------------------------------------------------------------------------
-- | @p = 2^64 - 2^32 + 1@
goldilocksPrime :: Integer
goldilocksPrime = 0x_ffff_ffff_0000_0001
modp :: Integer -> Integer
modp a = mod a goldilocksPrime
mkGoldilocks :: Integer -> Goldilocks
mkGoldilocks = Goldilocks . modp
--------------------------------------------------------------------------------
neg :: Goldilocks -> Goldilocks
neg (Goldilocks k) = mkGoldilocks (negate k)
add :: Goldilocks -> Goldilocks -> Goldilocks
add (Goldilocks a) (Goldilocks b) = mkGoldilocks (a+b)
sub :: Goldilocks -> Goldilocks -> Goldilocks
sub (Goldilocks a) (Goldilocks b) = mkGoldilocks (a-b)
sqr :: Goldilocks -> Goldilocks
sqr x = mul x x
mul :: Goldilocks -> Goldilocks -> Goldilocks
mul (Goldilocks a) (Goldilocks b) = mkGoldilocks (a*b)
inv :: Goldilocks -> Goldilocks
inv x = pow x (goldilocksPrime - 2)
div :: Goldilocks -> Goldilocks -> Goldilocks
div a b = mul a (inv b)
--------------------------------------------------------------------------------
pow :: Goldilocks -> Integer -> Goldilocks
pow x e
| e == 0 = 1
| e < 0 = pow (inv x) (negate e)
| otherwise = go 1 x e
where
go !acc _ 0 = acc
go !acc !s !expo = case expo .&. 1 of
0 -> go acc (sqr s) (shiftR expo 1)
_ -> go (acc*s) (sqr s) (shiftR expo 1)
--------------------------------------------------------------------------------