107 lines
3.8 KiB
Plaintext

pragma circom 2.0.0;
include "poseidon2_compr.circom";
include "misc.circom";
//------------------------------------------------------------------------------
//
// reconstruct the Merkle root using a Merkle inclusion proof
//
// parameters:
// - depth: the depth of the Merkle tree = log2( numberOfLeaves )
//
// inputs and outputs:
// - leaf: the leaf hash
// - pathBits: the linear index of the leaf, in binary decomposition (least significant bit first)
// - lastBits: the index of the last leaf (= nLeaves-1), in binary decomposition
// - maskBits: the bits of the the mask `2^ceilingLog2(size) - 1`
// - merklePath: the Merkle inclusion proof (required hashes, starting from the leaf and ending near the root)
// - recRoot: the reconstructod Merkle root
//
// NOTE: we don't check whether the bits are really bits, that's the
// responsability of the caller!
//
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Merkle tree convention: Here we use a Codex-specific "safe" Merkle tree convention.
//
// This uses a "keyed compression function", where the key depends on:
//
// - whether we are in the bottommost layer or not
// - whether the node we are dealing with has 1 or 2 children (odd or even node)
//
// These are two bits, encoded as numbers in the set {0,1,2,3}
// (the lowest bit is 1 if it's the bottom layer, 0 otherwise; the next bit
// is 1 if it's an odd node, 0 if even node). Furthermore:
//
// - in case of an odd node with leaf x, we apply the compression to the pair (x,0)
// - in case of a singleton input (the whole Merkle tree is built on a single field element), we also apply one compression
// - the keyed compression is defined as applying the permutation to the triple (x,y,key), and extracting the first component of the resulting triple
//
//
template RootFromMerklePath( maxDepth ) {
signal input leaf;
signal input pathBits[ maxDepth ]; // bits of the linear index
signal input lastBits[ maxDepth ]; // bits of the last linear index `= size-1`
signal input maskBits[ maxDepth+1 ]; // bit mask for `2^ceilingLog(size) - 1`
signal input merklePath[ maxDepth ];
signal output recRoot;
// the sequence of reconstructed hashes along the path
signal aux[ maxDepth+1 ];
aux[0] <== leaf;
// Determine whether nodes from the path are last in their row and are odd,
// by computing which binary prefixes of the index are the same as the
// corresponding prefix of the last index.
// This is done in reverse bit order, because pathBits and lastBits have the
// least significant bit first.
component eq[ maxDepth ];
signal isLast[ maxDepth+1 ];
isLast[ maxDepth ] <== 1;
for(var i=maxDepth-1; i>=0; i--) {
eq[i] = IsEqual();
eq[i].A <== pathBits[i];
eq[i].B <== lastBits[i];
isLast[i] <== isLast[i+1] * eq[i].out;
}
// compute the sequence of hashes
signal switch[ maxDepth ];
component comp[ maxDepth ];
for(var i=0; i<maxDepth; i++) {
var bottom = (i==0) ? 1 : 0; // is it the bottom layer?
var odd = isLast[i] * (1-pathBits[i]); // is it an odd node?
comp[i] = KeyedCompression();
var L = aux[i];
var R = merklePath[i];
// based on pathBits[i], we switch or not
switch[i] <== (R-L) * pathBits[i];
comp[i].key <== bottom + 2*odd;
comp[i].inp[0] <== L + switch[i];
comp[i].inp[1] <== R - switch[i];
comp[i].out ==> aux[i+1];
}
// now we need to select the right layer from the sequence of hashes
var sum = 0;
signal prods[maxDepth];
for(var i=0; i<maxDepth; i++) {
prods[i] <== (maskBits[i] - maskBits[i+1]) * aux[i+1];
sum += prods[i];
}
recRoot <== sum;
}
//------------------------------------------------------------------------------