2023-11-28 12:32:36 +01:00

79 lines
1.7 KiB
Plaintext

pragma circom 2.0.0;
include "misc.circom";
//------------------------------------------------------------------------------
//
// given an input `inp`, this template checks that inp == 2^out
// with 0 < out <= n
//
// we also output a mask vector which is 1 for i=0..out-1, and 0 elsewhere
//
template Log2(n) {
signal input inp;
signal output out;
signal output mask[n+1];
// mask will be a vector [1,1,1,...1,0,...,0,0]
// which can change only where inp == 2^out
var log2 = -1;
for(var i=0; i<=n; i++) {
mask[i] <-- ((2**i) < inp) ? 1 : 0;
if (2**i == inp) { log2 = i; }
}
out <-- log2;
mask[0] === 1;
mask[n] === 0;
var sum = 0;
for(var i=0; i<n; i++) {
sum += (2**(i+1)) * (mask[i] - mask[i+1]);
0 === (mask[i] - mask[i+1]) * (i + 1 - out);
}
inp === sum;
}
//------------------------------------------------------------------------------
//
// given an input `inp`, this template computes `out := k` such that 2^k <= inp < 2^{k+1}
// it also returns the binary decomposition of `inp-1`, and the binary deocmpositiom
// of the mask `(2^k-1)`
//
// we also output a mask vector which is 1 for i=0..k-1, and 0 elsewhere
//
// we require `k <= n`, otherwise this will fail.
//
template CeilingLog2(n) {
signal input inp;
signal output out;
signal output bits[n];
signal output mask[n+1];
component tb = ToBits(n);
tb.inp <== inp - 1;
tb.out ==> bits;
signal aux[n+1];
aux[n] <== 1;
var sum = 0;
for(var i=n-1; i>=0; i--) {
aux[i] <== aux[i+1] * (1 - bits[i]);
mask[i] <== 1 - aux[i];
sum = sum + (aux[i+1] - aux[i]) * (i+1);
}
mask[n] <== 0;
out <== sum;
}
//------------------------------------------------------------------------------