mirror of
https://github.com/logos-storage/logos-storage-nim.git
synced 2026-01-07 07:53:07 +00:00
The DST tag should be unique to achieve domain separation of hash functions as defined in: https://tools.ietf.org/id/draft-irtf-cfrg-hash-to-curve-06.html#domain-separation Changed DST tag to one that indicates the PoC status of this code. Signed-off-by: Csaba Kiraly <csaba.kiraly@gmail.com>
299 lines
8.6 KiB
Nim
299 lines
8.6 KiB
Nim
## Nim-POS
|
||
## Copyright (c) 2021 Status Research & Development GmbH
|
||
## Licensed under either of
|
||
## * Apache License, version 2.0, ([LICENSE-APACHE](LICENSE-APACHE))
|
||
## * MIT license ([LICENSE-MIT](LICENSE-MIT))
|
||
## at your option.
|
||
## This file may not be copied, modified, or distributed except according to
|
||
## those terms.
|
||
|
||
# Implementation of the BLS-based public PoS scheme from
|
||
# Shacham H., Waters B., "Compact Proofs of Retrievability"
|
||
# using pairing over BLS12-381 ECC
|
||
#
|
||
# Notation from the paper
|
||
# In Z:
|
||
# - n: number of blocks
|
||
# - s: number of sectors per block
|
||
#
|
||
# In Z_p: modulo curve order
|
||
# - m_{ij}: sectors of the file i:0..n-1 j:0..s-1
|
||
# - α: PoS secret key
|
||
# - name: random string
|
||
# - μ_j: part of proof, j:0..s-1
|
||
#
|
||
# In G_1: multiplicative cyclic group
|
||
# - H: {0,1}∗ →G_1 : hash function
|
||
# - u_1,…,u_s ←R G_1 : random coefficients
|
||
# - σ_i: authenticators
|
||
# - σ: part of proof
|
||
#
|
||
# In G_2: multiplicative cyclic group
|
||
# - g: generator of G_2
|
||
# - v ← g^α: PoS public key
|
||
#
|
||
# In G_T:
|
||
# - used only to calculate the two pairings during validation
|
||
#
|
||
# Implementation:
|
||
# Our implementation uses additive cyclic groups instead of the multiplicative
|
||
# cyclic group in the paper, thus changing operations as in blscurve and blst.
|
||
#
|
||
# Number of operations:
|
||
# The following table summarizes the number of operations in different phases
|
||
# using the following notation:
|
||
# - f: file size expressed in units of 31 bytes
|
||
# - n: number of blocks
|
||
# - s: number of sectors per block
|
||
# - q: number of query items
|
||
#
|
||
# Since f = n * s and s is a parameter of the scheme, it is better to express
|
||
# the cost as a function of f and s. This only matters for Setup, all other
|
||
# phases are independent of the file size assuming a given q.
|
||
#
|
||
# | | Setup | Challenge | Proof | Verify |
|
||
# |----------------|-----------|---------------|-----------|-----------|-----------|
|
||
# | G1 random | s = s | q | | |
|
||
# | G1 scalar mult | n * (s+1) = f * (1 + 1/s) | | q | q + s |
|
||
# | G1 add | n * s = f | | q-1 | q-1 + s-1 |
|
||
# | Hash to G1 | n = f / s | | | q |
|
||
# | Z_p mult | = | | s * q | |
|
||
# | Z_p add | = | | s * (q-1) | |
|
||
# | pairing | = | | | 2 |
|
||
#
|
||
#
|
||
# Storage and communication cost:
|
||
# The storage overhead for a file of f_b bytes is given by the n authenticators
|
||
# calculated in the setup phase.
|
||
# f_b = f * 31 = n * s * 31
|
||
# Each authenticator is a point on G_1, which occupies 48 bytes in compressed form.
|
||
# Thus, the overall sorage size in bytes is:
|
||
# f_pos = fb + n * 48 = fb * (1 + (48/31) * (1/s))
|
||
#
|
||
# Communicaiton cost in the Setup phase is simply related to the storage cost.
|
||
# The size of the challenge is
|
||
# q * (8 + 48) bytes
|
||
# The size of the proof is instead
|
||
# s * 32 + 48 bytes
|
||
|
||
import blscurve
|
||
import blscurve/blst/blst_abi
|
||
import random
|
||
|
||
const sectorsperblock = 1024.int64
|
||
const bytespersector = 31 # r is 255 bits long
|
||
const querylen = 22
|
||
|
||
type ZChar = array[bytespersector, byte]
|
||
|
||
type SecretKey = object
|
||
signkey: blscurve.SecretKey
|
||
key: blst_scalar
|
||
|
||
type PublicKey = object
|
||
signkey: blscurve.PublicKey
|
||
key: blst_p2
|
||
|
||
type TauZero = object
|
||
name: array[512,byte]
|
||
n: int64
|
||
u: seq[blst_p1]
|
||
|
||
type Tau = object
|
||
t: TauZero
|
||
signature: array[512, byte]
|
||
|
||
proc fromBytesBE(a: array[32, byte]): blst_scalar =
|
||
blst_scalar_from_bendian(result, a)
|
||
doAssert(blst_scalar_fr_check(result).bool)
|
||
|
||
proc fromBytesBE(a: openArray[byte]): blst_scalar =
|
||
var b: array[32, byte]
|
||
doAssert(a.len <= b.len)
|
||
let d = b.len - a.len
|
||
for i in 0 ..< a.len:
|
||
b[i+d] = a[i]
|
||
blst_scalar_from_bendian(result, b)
|
||
doAssert(blst_scalar_fr_check(result).bool)
|
||
|
||
proc getSector(f: File, blockid: int64, sectorid: int64, spb: int64): ZChar =
|
||
f.setFilePos((blockid * spb + sectorid) * sizeof(result))
|
||
let r = f.readBytes(result, 0, sizeof(result))
|
||
|
||
proc rndScalar(): blst_scalar =
|
||
var scal{.noInit.}: array[32, byte]
|
||
var scalar{.noInit.}: blst_scalar
|
||
|
||
while true:
|
||
for val in scal.mitems:
|
||
val = byte rand(0xFF)
|
||
scalar.blst_scalar_from_bendian(scal)
|
||
if blst_scalar_fr_check(scalar).bool:
|
||
break
|
||
|
||
return scalar
|
||
|
||
proc rndP2(): (blst_p2, blst_scalar) =
|
||
var x{.noInit.}: blst_p2
|
||
x.blst_p2_from_affine(BLS12_381_G2) # init from generator
|
||
let scalar = rndScalar()
|
||
x.blst_p2_mult(x, scalar, 255)
|
||
return (x, scalar)
|
||
|
||
proc rndP1(): (blst_p1, blst_scalar) =
|
||
var x{.noInit.}: blst_p1
|
||
x.blst_p1_from_affine(BLS12_381_G1) # init from generator
|
||
let scalar = rndScalar()
|
||
x.blst_p1_mult(x, scalar, 255)
|
||
return (x, scalar)
|
||
|
||
proc posKeygen(): (blst_p2, blst_scalar) =
|
||
rndP2()
|
||
|
||
proc keygen*(): (PublicKey, SecretKey) =
|
||
var pk: PublicKey
|
||
var sk: SecretKey
|
||
var ikm: array[32, byte]
|
||
var RNG = initRand(0xFACADE)
|
||
|
||
for b in ikm.mitems:
|
||
b = byte RNG.rand(0xFF)
|
||
doAssert ikm.keyGen(pk.signkey, sk.signkey)
|
||
|
||
(pk.key, sk.key) = posKeygen()
|
||
return (pk, sk)
|
||
|
||
proc split(f: File): (int64, int64) =
|
||
let size = f.getFileSize()
|
||
let n = ((size - 1) div (sectorsperblock * sizeof(ZChar))) + 1
|
||
echo "File size=", size, " bytes",
|
||
", blocks=", n,
|
||
", sectors/block=", $sectorsperblock,
|
||
", sectorsize=", $sizeof(ZChar), " bytes"
|
||
|
||
return (sectorsperblock, n)
|
||
|
||
proc hashToG1(msg: string): blst_p1 =
|
||
const dst = "DAGGER-PROOF-OF-CONCEPT"
|
||
result.blst_hash_to_g1(msg, dst, aug = "")
|
||
|
||
proc hashNameI(name: openArray[byte], i: int64): blst_p1 =
|
||
return hashToG1($name & $i)
|
||
|
||
proc generateAuthenticator(i: int64, s: int64, t: TauZero, f: File, ssk: SecretKey): blst_p1 =
|
||
|
||
var sum: blst_p1
|
||
for j in 0 ..< s:
|
||
var prod: blst_p1
|
||
prod.blst_p1_mult(t.u[j], fromBytesBE(getSector(f, i, j, s)), 255)
|
||
sum.blst_p1_add(sum, prod)
|
||
|
||
blst_p1_add(result, hashNameI(t.name, i), sum)
|
||
result.blst_p1_mult(result, ssk.key, 255)
|
||
|
||
proc st*(ssk: SecretKey, filename: string): (Tau, seq[blst_p1]) =
|
||
let file = open(filename)
|
||
let (s, n) = split(file)
|
||
var t = TauZero(n: n)
|
||
|
||
# generate a random name
|
||
for i in 0 ..< 512 :
|
||
t.name[i] = rand(byte)
|
||
|
||
# generate the coefficient vector for combining sectors of a block: U
|
||
for i in 0 ..< s :
|
||
let (u, _) = rndP1()
|
||
t.u.add(u)
|
||
|
||
#TODO: sign for tau
|
||
let tau = Tau(t: t)
|
||
|
||
#generate sigmas
|
||
var sigmas: seq[blst_p1]
|
||
for i in 0 ..< n :
|
||
sigmas.add(generateAuthenticator(i, s, t, file, ssk))
|
||
|
||
file.close()
|
||
result = (tau, sigmas)
|
||
|
||
type QElement = object
|
||
I: int64
|
||
V: blst_scalar
|
||
|
||
proc generateQuery*(
|
||
tau: Tau,
|
||
spk: PublicKey,
|
||
l: int = querylen # query elements
|
||
): seq[QElement] =
|
||
# verify signature on Tau
|
||
|
||
let n = tau.t.n # number of blocks
|
||
|
||
for i in 0 ..< l :
|
||
var q: QElement
|
||
q.I = rand((int)n-1) #TODO: dedup
|
||
q.V = rndScalar() #TODO: fix range
|
||
result.add(q)
|
||
|
||
proc generateProof*(q: openArray[QElement], authenticators: openArray[blst_p1], spk: PublicKey, filename: string): (seq[blst_scalar], blst_p1) =
|
||
let file = open(filename)
|
||
let s = sectorsperblock
|
||
|
||
var mu: seq[blst_scalar]
|
||
for j in 0 ..< s :
|
||
var muj: blst_fr
|
||
for qelem in q :
|
||
var x, v, sector: blst_fr
|
||
let sect = fromBytesBE(getSector(file, qelem.I, j, s))
|
||
sector.blst_fr_from_scalar(sect)
|
||
v.blst_fr_from_scalar(qelem.V)
|
||
x.blst_fr_mul(v, sector)
|
||
muj.blst_fr_add(muj, x)
|
||
var mujs: blst_scalar
|
||
mujs.blst_scalar_from_fr(muj)
|
||
mu.add(mujs)
|
||
|
||
var sigma: blst_p1
|
||
for qelem in q:
|
||
var prod: blst_p1
|
||
prod.blst_p1_mult(authenticators[qelem.I], qelem.V, 255)
|
||
sigma.blst_p1_add(sigma, prod)
|
||
|
||
file.close()
|
||
return (mu, sigma)
|
||
|
||
proc pairing(q: blst_p2, p: blst_p1): blst_fp12 =
|
||
var qa: blst_p2_affine
|
||
var pa: blst_p1_affine
|
||
blst_p2_to_affine(qa, q)
|
||
blst_p1_to_affine(pa, p)
|
||
var l: blst_fp12
|
||
blst_miller_loop(l, qa, pa)
|
||
blst_final_exp(result, l)
|
||
|
||
proc verifyProof*(tau: Tau, q: openArray[QElement], mus: openArray[blst_scalar], sigma: blst_p1, spk: PublicKey): bool =
|
||
var first: blst_p1
|
||
for qelem in q :
|
||
var prod: blst_p1
|
||
prod.blst_p1_mult(hashNameI(tau.t.name, qelem.I), qelem.V, 255)
|
||
first.blst_p1_add(first, prod)
|
||
doAssert(blst_p1_on_curve(first).bool)
|
||
|
||
let us = tau.t.u
|
||
var second: blst_p1
|
||
for j in 0 ..< len(us) :
|
||
var prod: blst_p1
|
||
prod.blst_p1_mult(us[j], mus[j], 255)
|
||
second.blst_p1_add(second, prod)
|
||
doAssert(blst_p1_on_curve(second).bool)
|
||
|
||
var sum: blst_p1
|
||
sum.blst_p1_add(first, second)
|
||
|
||
let e1 = pairing(spk.key, sum)
|
||
|
||
var g{.noInit.}: blst_p2
|
||
g.blst_p2_from_affine(BLS12_381_G2)
|
||
let e2 = pairing(g, sigma)
|
||
return e1 == e2
|