Fix erasure coding spec based on review feedback

This commit is contained in:
Chrysostomos Nanakos 2025-09-01 17:37:29 +03:00
parent ae8a7d9a20
commit 4b787a3a43
No known key found for this signature in database

View File

@ -8,15 +8,15 @@ The erasure coding module provides data redundancy and recovery capabilities. It
The Codex implementation uses the Leopard library, but alternative Reed-Solomon implementations may be used as well.
### Scope
- Encoding manifests into erasure-protected manifests using K data blocks + M parity blocks
- Decoding erasure-protected manifests back to original data
- Encoding datasets into erasure-protected formats using k data blocks + m parity blocks
- Decoding erasure-protected datasets back to original data
- Repairing incomplete or damaged datasets
- Merkle tree generation and verification for data integrity
### Boundaries and Limitations
- Requires at least K blocks to reconstruct original data
- Dataset must be padded to have blocks aligned for interleaving
- Maximum recovery capability limited to M missing blocks per column
- Requires at least k blocks to reconstruct original data
- Dataset must be padded to meet encoding requirements
- Maximum recovery capability limited to m missing blocks
- All blocks must be of uniform size within a manifest
## 2. Interfaces
@ -26,9 +26,6 @@ The Codex implementation uses the Leopard library, but alternative Reed-Solomon
| `encode()` | Encodes a manifest into erasure-protected format | `manifest: Manifest`<br>`blocks: Natural` (K)<br>`parity: Natural` (M)<br>`strategy: StrategyType` (default: SteppedStrategy) | `Future[?!Manifest]` - Protected manifest with erasure coding metadata |
| `decode()` | Decodes protected manifest to original | `encoded: Manifest` (must be protected) | `Future[?!Manifest]` - Original manifest reconstructed from available blocks |
| `repair()` | Repairs a damaged protected manifest by reconstructing full dataset | `encoded: Manifest` (protected) | `Future[?!void]` - Success/failure status |
| `new()` | Creates new Erasure instance | `store: BlockStore`<br>`encoderProvider: EncoderProvider`<br>`decoderProvider: DecoderProvider`<br>`taskPool: Taskpool` | `Erasure` instance |
| `start()` | Starts the erasure service | None | `Future[void]` |
| `stop()` | Stops the erasure service | None | `Future[void]` |
### Internal Helper Interfaces
@ -40,67 +37,19 @@ The Codex implementation uses the Leopard library, but alternative Reed-Solomon
## 3. Functional Requirements
### 3.1 Systematic Reed-Solomon Erasure Coding
- Generate M parity blocks from K data blocks using Reed-Solomon erasure coding
- Use interleaving to encode blocks at the same position across shards
- Support recovery with any K blocks from K+M total blocks
### 3.1 Systematic Erasure Coding
- Generate m parity blocks from k data blocks
- Support recovery with any k blocks from k+m total blocks
- Maintain systematic property where original data is readable without decoding
- Ensure deterministic encoding
### 3.2 Block Organization
Erasure coding uses interleaving (SteppedStrategy) to encode data blocks. This works by taking blocks from the same position across multiple data shards and encoding them together:
```
Interleaving Process
--------------------
Data shards (K=4 in this example):
------------- ------------- ------------- -------------
|x| | | | | | |x| | | | | | |x| | | | | | |x| | | | | |
------------- ------------- ------------- -------------
| / / |
\___________ | _____________/ |
\ | / ____________________________/
| | | /
v v v v
--------- ---------
data |x|x|x|x| --> |p|p|p|p| parity
--------- ---------
| | | |
_____________________________/ / | \_________
/ _____________/ | \
| / / |
v v v v
------------- ------------- ------------- -------------
|p| | | | | | |p| | | | | | |p| | | | | | |p| | | | | |
------------- ------------- ------------- -------------
Parity shards (M parity shards generated)
```
**Key concepts**:
- **K**: Number of original data shards
- **M**: Number of parity shards
- **N**: Total shards (K + M)
- **Steps**: Number of encoding iterations, one for each data block position
The dataset is organized as:
- **Rows**: K + M total
- **Columns**: B blocks per row, where B = Steps
- **Total blocks**: (K + M) x B blocks in the encoded dataset
### 3.3 Data Recovery
- Reconstruct missing data blocks from any K available blocks
- Support partial column recovery - up to M blocks missing per column
### 3.2 Data Recovery
- Reconstruct missing data blocks from any k available blocks
- Verify recovered data against original tree root (originalTreeCid)
- Complete partial block downloads when recovery succeeds
- Store recovered blocks back to BlockStore for future access
### 3.4 Manifest Management
### 3.3 Manifest Management
- Transform unprotected manifests to protected manifests with erasure coding metadata
- Preserve original metadata (filename, mimetype, dimensions)
- Generate and store merkle tree proofs for all blocks
@ -111,7 +60,6 @@ The dataset is organized as:
### Performance
- **Latency**: Yield control periodically (10ms sleep) to prevent blocking
- **Scalability**: Linear complexity with dataset size O(n)
### Reliability
- **Error Handling**:
@ -124,7 +72,7 @@ The dataset is organized as:
### Scalability
- Handle datasets of arbitrary size - limited only by storage
- Support configurable erasure coding parameters (K, M)
- Support configurable erasure coding parameters (k, m)
- Thread pool size configurable based on system resources
- Streaming block retrieval to avoid memory exhaustion
@ -199,44 +147,81 @@ flowchart TD
K -->|Match| M[Return Success]
```
### 5.4 Data organization with interleaving
The encoded dataset uses interleaving, where data blocks at the same position acrosss shards are processed together:
### 5.4 Implementation Details
#### Block Organization with Interleaving
The encoded dataset uses interleaving, where data blocks at the same position acrosss groups are processed together:
```
Interleaving Process
--------------------
Data blocks (k=4 in this example):
------------- ------------- ------------- -------------
|x| | | | | | |x| | | | | | |x| | | | | | |x| | | | | |
------------- ------------- ------------- -------------
| / / |
\___________ | _____________/ |
\ | / ____________________________/
| | | /
v v v v
--------- ---------
data |x|x|x|x| --> |p|p|p|p| parity
--------- ---------
| | | |
_____________________________/ / | \_________
/ _____________/ | \
| / / |
v v v v
------------- ------------- ------------- -------------
|p| | | | | | |p| | | | | | |p| | | | | | |p| | | | | |
------------- ------------- ------------- -------------
Parity blocks (m parity blocks generated)
```
**Key concepts**:
- **k**: Number of original data block groups
- **m**: Number of parity block groups
- **n**: Total block groups (k + m)
- **Steps**: Number of encoding iterations, one for each data block position
The dataset is organized as:
- **Rows**: k + m total
- **Columns**: B blocks per row, where B = Steps
- **Total blocks**: (k + m) x B blocks in the encoded dataset
```
Logical Organization with interleaving:
Position 0 Position 1 ... Position B-1
----------------------------------------
Shard 0 | Block 0 | Block 1 | ... | Block B-1 | Data
Shard 1 | Block B | Block B+1 | ... | Block 2B-1 | Data
Group 0 | Block 0 | Block 1 | ... | Block B-1 | Data
Group 1 | Block B | Block B+1 | ... | Block 2B-1 | Data
... | ... | ... | ... | ... | Data
Shard K-1| Block (K-1)×B | ... | ... | Block K×B-1 | Data
Group k-1| Block (k-1)×B | ... | ... | Block k×B-1 | Data
|----------|-----------|-----|----------------|
Shard K | Parity 0 | Parity 1 | ... | Parity B-1 | Parity
Shard K+1| Parity B | Parity B+1| ... | Parity 2B-1 | Parity
Group k | Parity 0 | Parity 1 | ... | Parity B-1 | Parity
Group k+1| Parity B | Parity B+1| ... | Parity 2B-1 | Parity
... | ... | ... | ... | ... | Parity
Shard K+M-1| Parity (M-1)×B |...| ... | Parity M×B-1 | Parity
Group k+m-1| Parity (m-1)×B |...| ... | Parity m×B-1 | Parity
where:
- K = number of data shards
- M = number of parity shards
- B = number of positions (steps) per shard
- k = number of data block groups
- m = number of parity block groups
- B = number of positions (steps) per block group
- Each column represents one encoding step
- Elements at the same position form an encoding group
```
## 6. Dependencies
### 6.1 External Libraries
| Dependency | Purpose | Version/Module |
|------------|---------|----------------|
| `pkg/chronos` | Async/await runtime, Future types | Threading, async operations |
| `pkg/libp2p` | CID, multicodec, multihash operations | Content addressing |
| `pkg/taskpools` | Thread pool management | Parallel processing |
| `pkg/stew` | Utility functions (byteutils) | Helper operations |
| `pkg/leopard` | Reed-Solomon erasure coding | Erasure coding module |
### 6.2 Internal Components
### 6.1 Internal Components
| Component | Purpose | Interface |
|-----------|---------|-----------|
| `BlockStore` | Block storage and retrieval | `getBlock(cid/treeCid,index/address)`, `putBlock(blk,ttl)`, `completeBlock(address,blk)`, `putCidAndProof()`, `getCidAndProof()`, `hasBlock()`, `delBlock()` |
@ -249,7 +234,7 @@ where:
### 6.3 Helper Functions
### 6.2 Helper Functions
| Function | Purpose | Input | Output |
|----------|---------|-------|---------|
| `putSomeProofs()` | Store merkle proofs for specific indices | `store: BlockStore`<br>`tree: CodexTree`<br>`iter: Iter[int/Natural]` | `Future[?!void]` |
@ -399,12 +384,6 @@ type
### 7.7 System Constants
- **DefaultBlockSize**: 65536 bytes
- **DefaultCellSize**: 2048 bytes
- **DefaultMaxSlotDepth**: 32
- **DefaultMaxDatasetDepth**: 8
- **DefaultBlockDepth**: 5
- **DefaultCellElms**: 67
- **DefaultSamplesNum**: 5
### 7.8 Supported Hash Codecs
- **Sha256HashCodec**: SHA2-256 hash function