updates encryption docs

This commit is contained in:
Marcin Czenko 2025-07-02 19:55:28 +02:00
parent 788d75621a
commit 31e26020ba
No known key found for this signature in database
GPG Key ID: 33DEA0C8E30937C0
5 changed files with 215 additions and 5 deletions

View File

@ -18,11 +18,121 @@ where both `MASTER_KEY` and `MASTER_IV` are 256 bit random numbers, and `||` den
If storing 512 bits (as opposed to a 256 bit minimum) of key material is a problem, we could derive both by the same key, for example as
key' = SHA256( MASTER_KEY || 0x01 || block_index ), truncated to 192 bits
IV' = SHA256( MASTER_KEY || 0x02 || block_index ), truncated to 128 bits
blockKEY = SHA256( MASTER_KEY || 0x01 || block_index ), truncated to 192 bits
blockIV = SHA256( MASTER_KEY || 0x02 || block_index ), truncated to 128 bits
In our implementation, we will be using the second scheme - starting with a random master key, and then for each block deriving a block level key (`blockKEY`) and block level initialization vector (`blockIV`).
Some context info:
For some introduction and examples on BearSSL, please consult:
- [[How to generate a random number using BearSSL]]
- [[How to create a hash using BearSSL]]
- [[How to encrypt and decrypt content using symmetric encryption in BearSSL]]
Before document design considerations for the content encryption in the Codex client, let's first see how to use BearSSL primitives to encrypt and decrypt some content:
```nim
import std/sequtils
import bearssl/blockx
import stew/byteutils
import ./rng
var plaintext = "0123456789abcdef".toBytes
echo "plaintext: ", plaintext.toHex
let key = newSeqWith(16, Rng.instance.rand(uint8.high).byte)
let ive = newSeqWith(16, Rng.instance.rand(uint8.high).byte)
let ivd = ive
echo "ive: ", ive.toHex
var encCtx: AesBigCbcencKeys
aesBigCbcencInit(encCtx, addr key[0], 16.uint)
aesBigCbcencRun(encCtx, addr ive[0], addr plaintext[0], 16.uint)
echo "Encrypted: ", plaintext.toHex
echo "ivd: ", ivd.toHex
var decCtx: AesBigCbcdecKeys
aesBigCbcdecInit(decCtx, addr key[0], 16.uint)
aesBigCbcdecRun(decCtx, addr ivd[0], addr plaintext[0], 16.uint)
echo "Decrypted: ", plaintext.toHex
```
Important to notice here is that `aesBigCbcencRun` will mutate the provided initialization vector `IV` so that it is ready to use for the subsequent chunk of data - a classical CBC mode for AES. Yet, for Codex, we use slightly modified scheme as already shown above.
For codex:
1. we first generate a `MASTER_KEY` - which will be returned to the user
2. from the `MASTER_KEY`, for each block, we derive the corresponding block level encryption key `blockKEY` and block level initialization vector `blockIV` as shown in the proposal above
3. using the derived `blockKEY` and `blockIV`, we then encrypt the block using the BearSSL encryption primitives as demonstrated above.
As we see above, the block index is used in the process of the key and initialization vector derivation. For this reason we also need to remember to convert the block index to a byte representation - we use big-endian ordering. For this conversion a very simple function can be used:
```nim
func toBytes[T: SomeInteger](value: T): seq[byte] =
let v =
if system.cpuEndian == bigEndian: value
else: swapBytes(value)
result = newSeq[byte](sizeof(T))
copyMem(addr result[0], unsafeAddr v, sizeof(T))
```
or, we can just use the `endians2.toBytes` function from `nim-stew`: `toBytes(blockIndex.uint32, bigEndian)`
Below we show the code for the derivation of the block level key and initialization vector, followed by the encryption and decryption of a block:
```nim
import std/sequtils
import bearssl/[blockx, hash]
import stew/[byteutils, endians2]
import ./rng
import ./hash
let masterKey = newSeqWith(32, Rng.instance.rand(uint8.high).byte)
let blockIndex = 1.uint32
let blockIndexArray = toBytes(blockIndex, bigEndian)
const KEY_SIZE = 24 # 192 bits for AES-192
const IV_SIZE = 16 # 128 bits
let keyForBlock = hash(addr sha256Vtable, masterKey & @[byte(0x01)] & blockIndexArray.toSeq)[0 ..< KEY_SIZE]
let ivForBlock = hash(addr sha256Vtable, masterKey & @[byte(0x02)] & blockIndexArray.toSeq)[0 ..< IV_SIZE]
var plaintext = newSeqWith(IV_SIZE, Rng.instance.rand(uint8.high).byte)
let key = keyForBlock
let ive = ivForBlock
let encBuffer = plaintext
# encryption
var encCtx: AesBigCbcencKeys
aesBigCbcencInit(encCtx, addr key[0], key.len.uint)
aesBigCbcencRun(encCtx, addr ive[0], addr encBuffer[0], ive.len.uint)
assert encBuffer != plaintext, "Encryption failed, output should differ from input!"
# decryption
let ivd = ivForBlock
var decCtx: AesBigCbcdecKeys
aesBigCbcdecInit(decCtx, addr key[0], key.len.uint)
aesBigCbcdecRun(decCtx, addr ivd[0], addr encBuffer[0], ivd.len.uint)
assert encBuffer == plaintext, "Decryption failed, output should match input!"
```
where `rng` and `hash` are defined as shown in [[How to generate a random number using BearSSL]] and [[How to create a hash using BearSSL]].
In a similar way we will proceed with other block.
More data to come.
### Links
- [bearssl](https://bearssl.org/)
- [bearssl Nim bindings](https://github.com/status-im/nim-bearssl)

View File

@ -24,7 +24,7 @@ BearSSL also simulates an [OOP interface](https://bearssl.org/oop.html), which c
```nim
import bearssl/hash
proc hash(hashClass: ptr HashClass, data: openArray[byte]): seq[byte] =
proc hash*(hashClass: ptr HashClass, data: openArray[byte]): seq[byte] =
var compatCtx = HashCompatContext()
let buffSize = (hashClass[].desc shr HASHDESC_OUT_OFF) and HASHDESC_OUT_MASK
result = newSeq[byte](buffSize)
@ -39,8 +39,11 @@ proc hash(hashClass: ptr HashClass, data: openArray[byte]): seq[byte] =
Then such a hash function can be conveniently reused for various hashing functions:
```nim
import bearssl/hash
import stew/byteutils
import ./hash
let data = "0123456789abcdef".toBytes
var sha256HashCtx = Sha256Context()
@ -56,3 +59,24 @@ md5Init(md5Ctx)
echo "Hash out[md5]: ", hash(md5Ctx.vtable, data).toHex
```
This last snippet can be further simplified by using a globally defined *vtable* variables from `nim-bearssl`:
```nim
import bearssl/hash
import stew/byteutils
import ./hash
let data = "0123456789abcdef".toBytes
var sha256HashCtx = Sha256Context()
let buff = newSeq[byte](sha256SIZE) # 32 bytes for SHA-256
sha256Init(sha256HashCtx)
sha224Update(sha256HashCtx, addr data[0], data.len.uint)
sha256Out(sha256HashCtx, addr buff[0])
echo "Hash out[sha256]: ", buff.toHex
echo "Hash out[sha256]: ", hash(addr sha256Vtable, data).toHex
echo "Hash out[sha1]: ", hash(addr sha1Vtable, data).toHex
echo "Hash out[md5]: ", hash(addr md5Vtable, data).toHex
```

View File

@ -0,0 +1,31 @@
We show how to use symmetric encryption in BearSSL to encrypt and decrypt the content.
This is a very basic code demonstrating the use of the BearSSL symmetric encryption API. In [[Codex Encryption Design]] we show a more complete example. In the code below we also use [[BearSSL]] to generate a random number. See [[How to generate a random number using BearSSL]] for more details:
```nim
import std/sequtils
import bearssl/blockx
import stew/byteutils
import ./rng
var plaintext = "0123456789abcdef".toBytes
echo "plaintext: ", plaintext.toHex
let key = newSeqWith(16, Rng.instance.rand(uint8.high).byte)
let ive = newSeqWith(16, Rng.instance.rand(uint8.high).byte)
let ivd = ive
echo "ive: ", ive.toHex
var encCtx: AesBigCbcencKeys
aesBigCbcencInit(encCtx, addr key[0], 16.uint)
aesBigCbcencRun(encCtx, addr ive[0], addr plaintext[0], 16.uint)
echo "Encrypted: ", plaintext.toHex
echo "ivd: ", ivd.toHex
var decCtx: AesBigCbcdecKeys
aesBigCbcdecInit(decCtx, addr key[0], 16.uint)
aesBigCbcdecRun(decCtx, addr ivd[0], addr plaintext[0], 16.uint)
echo "Decrypted: ", plaintext.toHex
```

View File

@ -0,0 +1,45 @@
Extracted from [nim-libp2p](https://github.com/vacp2p/nim-libp2p/blob/cfd631457ae865852d17ed77a9d4d3ea37710082/libp2p/crypto/crypto.nim#L161) (`libp2p/crypto/crypto.nim`) and `codex/rng.nim` in [nim-codex](https://github.com/codex-storage/nim-codex) so that it does not depend on libp2p anymore:
```nim
{.push raises: [].}
import bearssl/[rand, hash]
proc newRng*(): ref HmacDrbgContext =
# You should only create one instance of the RNG per application / library
# Ref is used so that it can be shared between components
# TODO consider moving to bearssl
var seeder = prngSeederSystem(nil)
if seeder == nil:
return nil
var rng = (ref HmacDrbgContext)()
hmacDrbgInit(rng[], addr sha256Vtable, nil, 0)
if seeder(addr rng.vtable) == 0:
return nil
rng
type
RngSampleError = object of CatchableError
Rng* = ref HmacDrbgContext
var rng {.threadvar.}: Rng
proc instance*(t: type Rng): Rng =
if rng.isNil:
rng = newRng()
rng
# Random helpers: similar as in stdlib, but with HmacDrbgContext rng
# TODO: Move these somewhere else?
const randMax = 18_446_744_073_709_551_615'u64
proc rand*(rng: Rng, max: Natural): int =
if max == 0:
return 0
while true:
let x = rng[].generate(uint64)
if x < randMax - (randMax mod (uint64(max) + 1'u64)): # against modulo bias
return int(x mod (uint64(max) + 1'u64))
```

View File

@ -17,5 +17,5 @@ let str = "abcdefghijklmnopqrstuvwxyz"
sha256Update(ctx, str.cstring, input[i].len.uint)
```
Here we use `sha256Update` from [[BearSSL]] library. See [[BearSSL hashing]] for more complete examples.
Here we use `sha256Update` from [[BearSSL]] library. See [[How to create a hash using BearSSL]] for more complete examples.
See also [Accessing seq pointer](https://forum.nim-lang.org/t/1489), [Use cstring for C binding](https://forum.nim-lang.org/t/8179), and [Arrays and Sequences in nim](https://forum.nim-lang.org/t/5703) on Nim forum.