mirror of
https://github.com/logos-storage/gnark-plonky2-verifier.git
synced 2026-01-07 15:43:06 +00:00
permutation check for plonk works
This commit is contained in:
parent
ab164af7fc
commit
1d7f151cc1
@ -2,10 +2,13 @@ package plonky2_verifier
|
||||
|
||||
import (
|
||||
. "gnark-ed25519/field"
|
||||
|
||||
"github.com/consensys/gnark/frontend"
|
||||
)
|
||||
|
||||
type PlonkChip struct {
|
||||
qe *QuadraticExtensionAPI
|
||||
api frontend.API
|
||||
qe *QuadraticExtensionAPI
|
||||
|
||||
commonData CommonCircuitData
|
||||
proofChallenges ProofChallenges
|
||||
@ -16,11 +19,12 @@ type PlonkChip struct {
|
||||
DEGREE_QE QuadraticExtension
|
||||
}
|
||||
|
||||
func NewPlonkChip(qe *QuadraticExtensionAPI, commonData CommonCircuitData) *PlonkChip {
|
||||
func NewPlonkChip(api frontend.API, qe *QuadraticExtensionAPI, commonData CommonCircuitData) *PlonkChip {
|
||||
// TODO: Should degreeBits be verified that it fits within the field and that degree is within uint64?
|
||||
|
||||
return &PlonkChip{
|
||||
qe: qe,
|
||||
api: api,
|
||||
qe: qe,
|
||||
|
||||
commonData: commonData,
|
||||
|
||||
@ -88,7 +92,7 @@ func (p *PlonkChip) checkPartialProducts(
|
||||
return partialProductChecks
|
||||
}
|
||||
|
||||
func (p *PlonkChip) evalVanishingPoly() []QuadraticExtension {
|
||||
func (p *PlonkChip) evalVanishingPoly(zetaPowN QuadraticExtension) []QuadraticExtension {
|
||||
// Calculate the k[i] * x
|
||||
sIDs := make([]QuadraticExtension, p.commonData.Config.NumRoutedWires)
|
||||
|
||||
@ -96,9 +100,6 @@ func (p *PlonkChip) evalVanishingPoly() []QuadraticExtension {
|
||||
sIDs[i] = p.qe.ScalarMulExtension(p.proofChallenges.PlonkZeta, p.commonData.KIs[i])
|
||||
}
|
||||
|
||||
// Calculate zeta^n
|
||||
zetaPowN := p.expPowerOf2Extension(p.proofChallenges.PlonkZeta)
|
||||
|
||||
// Calculate L_0(zeta)
|
||||
l0Zeta := p.evalL0(p.proofChallenges.PlonkZeta, zetaPowN)
|
||||
|
||||
@ -179,33 +180,46 @@ func (p *PlonkChip) evalVanishingPoly() []QuadraticExtension {
|
||||
return reducedValues
|
||||
}
|
||||
|
||||
func (p *PlonkChip) Verify() {
|
||||
vanishingPolysZeta := p.evalVanishingPoly()
|
||||
func (p *PlonkChip) reduceWithPowers(terms []QuadraticExtension, scalar QuadraticExtension) QuadraticExtension {
|
||||
sum := p.qe.ZERO_QE
|
||||
|
||||
for _, vp := range vanishingPolysZeta {
|
||||
p.qe.Println(vp)
|
||||
for i := len(terms) - 1; i >= 0; i-- {
|
||||
sum = p.qe.AddExtension(
|
||||
p.qe.MulExtension(
|
||||
sum,
|
||||
scalar,
|
||||
),
|
||||
terms[i],
|
||||
)
|
||||
}
|
||||
|
||||
/*
|
||||
let alphas = &alphas.iter().map(|&a| a.into()).collect::<Vec<_>>();
|
||||
plonk_common::reduce_with_powers_multi(&vanishing_terms, alphas)
|
||||
|
||||
// Check each polynomial identity, of the form `vanishing(x) = Z_H(x) quotient(x)`, at zeta.
|
||||
let quotient_polys_zeta = &proof.openings.quotient_polys;
|
||||
let zeta_pow_deg = challenges
|
||||
.plonk_zeta
|
||||
.exp_power_of_2(common_data.degree_bits());
|
||||
let z_h_zeta = zeta_pow_deg - F::Extension::ONE;
|
||||
// `quotient_polys_zeta` holds `num_challenges * quotient_degree_factor` evaluations.
|
||||
// Each chunk of `quotient_degree_factor` holds the evaluations of `t_0(zeta),...,t_{quotient_degree_factor-1}(zeta)`
|
||||
// where the "real" quotient polynomial is `t(X) = t_0(X) + t_1(X)*X^n + t_2(X)*X^{2n} + ...`.
|
||||
// So to reconstruct `t(zeta)` we can compute `reduce_with_powers(chunk, zeta^n)` for each
|
||||
// `quotient_degree_factor`-sized chunk of the original evaluations.
|
||||
for (i, chunk) in quotient_polys_zeta
|
||||
.chunks(common_data.quotient_degree_factor)
|
||||
.enumerate()
|
||||
{
|
||||
ensure!(vanishing_polys_zeta[i] == z_h_zeta * reduce_with_powers(chunk, zeta_pow_deg));
|
||||
}
|
||||
*/
|
||||
return sum
|
||||
}
|
||||
|
||||
func (p *PlonkChip) Verify() {
|
||||
// Calculate zeta^n
|
||||
zetaPowN := p.expPowerOf2Extension(p.proofChallenges.PlonkZeta)
|
||||
|
||||
vanishingPolysZeta := p.evalVanishingPoly(zetaPowN)
|
||||
|
||||
// Calculate Z(H)
|
||||
zHZeta := p.qe.SubExtension(zetaPowN, p.qe.ONE)
|
||||
|
||||
// `quotient_polys_zeta` holds `num_challenges * quotient_degree_factor` evaluations.
|
||||
// Each chunk of `quotient_degree_factor` holds the evaluations of `t_0(zeta),...,t_{quotient_degree_factor-1}(zeta)`
|
||||
// where the "real" quotient polynomial is `t(X) = t_0(X) + t_1(X)*X^n + t_2(X)*X^{2n} + ...`.
|
||||
// So to reconstruct `t(zeta)` we can compute `reduce_with_powers(chunk, zeta^n)` for each
|
||||
// `quotient_degree_factor`-sized chunk of the original evaluations.
|
||||
for i := 0; i < len(p.openings.QuotientPolys); i += int(p.commonData.QuotientDegreeFactor) {
|
||||
prod := p.qe.MulExtension(
|
||||
zHZeta,
|
||||
p.reduceWithPowers(
|
||||
p.openings.QuotientPolys[i:i+int(p.commonData.QuotientDegreeFactor)],
|
||||
zetaPowN,
|
||||
),
|
||||
)
|
||||
|
||||
// TODO: Uncomment this after adding in the custom gates evaluations
|
||||
//p.api.AssertIsEqual(vanishingPolysZeta[i], prod)
|
||||
}
|
||||
}
|
||||
|
||||
@ -37,7 +37,7 @@ func (circuit *TestPlonkCircuit) Define(api frontend.API) error {
|
||||
},
|
||||
}
|
||||
|
||||
plonkChip := NewPlonkChip(qe, commonCircuitData)
|
||||
plonkChip := NewPlonkChip(api, qe, commonCircuitData)
|
||||
plonkChip.proofChallenges = proofChallenges
|
||||
plonkChip.openings = proofWithPis.Proof.Openings
|
||||
|
||||
|
||||
@ -55,6 +55,8 @@ func (c *VerifierChip) GetChallenges(proofWithPis ProofWithPublicInputs, publicI
|
||||
}
|
||||
|
||||
func (c *VerifierChip) Verify(proofWithPis ProofWithPublicInputs, verifierData VerifierOnlyCircuitData, commonData CommonCircuitData) {
|
||||
// TODO: Verify shape of the proof?
|
||||
|
||||
publicInputsHash := c.GetPublicInputsHash(proofWithPis.PublicInputs)
|
||||
proofChallenges := c.GetChallenges(proofWithPis, publicInputsHash, commonData)
|
||||
fmt.Printf("%+v\n", proofChallenges)
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user