"""Example configuration file This file aims to set parameters to realistic values """ import logging import itertools import numpy as np from DAS.shape import Shape dumpXML = 1 visualization = 1 logLevel = logging.INFO # number of parallel workers. -1: all cores; 1: sequential # for more details, see joblib.Parallel numJobs = -1 # distribute rows/columns evenly between validators (True) # or generate it using local randomness (False) evenLineDistribution = False # Number of simulation runs with the same parameters for statistical relevance runs = range(1) # Number of validators numberNodes = [8000] # Percentage of block not released by producer failureRates = [0] # Block size in one dimension in segments. Block is blockSizes * blockSizes segments. blockSizes = [512] # Per-topic mesh neighborhood size netDegrees = [6] # number of rows and columns a validator is interested in chis = [2] # ratio of class1 nodes (see below for parameters per class) class1ratios = [0.8] # number of validators per beacon node validatorsPerNode1 = [1] validatorsPerNode2 = [100] # Set uplink bandwidth. In segments (~560 bytes) per timestep (50ms?) # 1 Mbps ~= 1e6 / 20 / 8 / 560 ~= 11 bwUplinksProd = [11000] bwUplinks1 = [110] bwUplinks2 = [11000] deterministic = True # If your run is deterministic you can decide the random seed. This is ignore otherwise. randomSeed = "DAS" def nextShape(): for run, fr, class1ratio, chi, vpn1, vpn2, blockSize, nn, netDegree, bwUplinkProd, bwUplink1, bwUplink2 in itertools.product( runs, failureRates, class1ratios, chis, validatorsPerNode1, validatorsPerNode2, blockSizes, numberNodes, netDegrees, bwUplinksProd, bwUplinks1, bwUplinks2): # Network Degree has to be an even number if netDegree % 2 == 0: shape = Shape(blockSize, nn, fr, class1ratio, chi, vpn1, vpn2, netDegree, bwUplinkProd, bwUplink1, bwUplink2, run) yield shape