Add configuration file, split configuration from simulation shape, fix bug about network degree and unbalanced row/column verification

This commit is contained in:
Leonardo Bautista-Gomez 2023-01-23 18:04:54 +01:00
parent bf1a5a60e4
commit fc7339dc91
8 changed files with 168 additions and 110 deletions

View File

@ -1,2 +1,3 @@
from DAS.simulator import *
from DAS.configuration import *
from DAS.shape import *

View File

@ -1,50 +1,48 @@
#!/bin/python3
import configparser
class Configuration:
deterministic = 0
blockSize = 0
numberValidators = 0
failureRate = 0
failureRateStart = 0
failureRateStop = 0
failureRateStep = 0
chio = 0
chiStart = 0
chiStop = 0
chiStep = 0
run =0
runStart = 0
runStop = 0
runStep = 0
def __init__(self, deterministic, blockSize, numberValidators,\
failureRateStart, failureRateStop, failureRateStep,\
chiStart, chiStop, chiStep,\
runStart, runStop, runStep):
def __init__(self, fileName):
if numberValidators < (blockSize*4):
config = configparser.RawConfigParser()
config.read(fileName)
self.nvStart = int(config.get("Simulation Space", "numberValidatorStart"))
self.nvStop = int(config.get("Simulation Space", "numberValidatorStop"))
self.nvStep = int(config.get("Simulation Space", "numberValidatorStep"))
self.blockSizeStart = int(config.get("Simulation Space", "blockSizeStart"))
self.blockSizeStop = int(config.get("Simulation Space", "blockSizeStop"))
self.blockSizeStep = int(config.get("Simulation Space", "blockSizeStep"))
self.netDegreeStart = int(config.get("Simulation Space", "netDegreeStart"))
self.netDegreeStop = int(config.get("Simulation Space", "netDegreeStop"))
self.netDegreeStep = int(config.get("Simulation Space", "netDegreeStep"))
self.failureRateStart = int(config.get("Simulation Space", "failureRateStart"))
self.failureRateStop = int(config.get("Simulation Space", "failureRateStop"))
self.failureRateStep = int(config.get("Simulation Space", "failureRateStep"))
self.chiStart = int(config.get("Simulation Space", "chiStart"))
self.chiStop = int(config.get("Simulation Space", "chiStop"))
self.chiStep = int(config.get("Simulation Space", "chiStep"))
self.numberRuns = int(config.get("Advanced", "numberRuns"))
self.deterministic = config.get("Advanced", "deterministic")
if self.nvStop < (self.blockSizeStart*4):
print("ERROR: The number of validators cannot be lower than the block size * 4")
exit(1)
if chiStart < 1:
if self.chiStart < 1:
print("Chi has to be greater than 0")
exit(1)
if chiStop > blockSize:
print("Chi has to be smaller than %d" % blockSize)
if self.chiStop > self.blockSizeStart:
print("Chi (%d) has to be smaller or equal to block the size (%d)" % (self.chiStop, self.blockSizeStart))
exit(1)
self.deterministic = deterministic
self.blockSize = blockSize
self.numberValidators = numberValidators
self.failureRateStart = failureRateStart
self.failureRateStop = failureRateStop
self.failureRateStep = failureRateStep
self.failureRate = failureRateStart
self.chiStart = chiStart
self.chiStop = chiStop
self.chiStep = chiStep
self.chi = chiStart
self.runStart = runStart
self.runStop = runStop
self.runStep = runStep
self.run = runStart

19
DAS/shape.py Normal file
View File

@ -0,0 +1,19 @@
#!/bin/python3
class Shape:
numberValidators = 0
failureRate = 0
blockSize = 0
netDegree = 0
chi = 0
def __init__(self, blockSize, numberValidators, failureRate, chi, netDegree):
self.numberValidators = numberValidators
self.failureRate = failureRate
self.blockSize = blockSize
self.netDegree = netDegree
self.chi = chi

View File

@ -1,7 +1,7 @@
#!/bin/python
import networkx as nx
import logging
import logging, random
from datetime import datetime
from DAS.tools import *
from DAS.results import *
@ -15,23 +15,25 @@ class Simulator:
validators = []
glob = []
result = []
config = []
shape = []
logger = []
format = {}
def __init__(self, config):
self.config = config
def __init__(self, shape):
self.shape = shape
self.format = {"entity": "Simulator"}
self.result = Result(self.config)
self.result = Result(self.shape)
def initValidators(self):
if not self.config.deterministic:
random.seed(datetime.now())
self.glob = Observer(self.logger, self.config)
self.glob = Observer(self.logger, self.shape)
self.glob.reset()
self.validators = []
for i in range(self.config.numberValidators):
val = Validator(i, int(not i!=0), self.logger, self.config)
rows = list(range(self.shape.blockSize)) * int(self.shape.chi*self.shape.numberValidators/self.shape.blockSize)
columns = list(range(self.shape.blockSize)) * int(self.shape.chi*self.shape.numberValidators/self.shape.blockSize)
random.shuffle(rows)
random.shuffle(columns)
for i in range(self.shape.numberValidators):
val = Validator(i, int(not i!=0), self.logger, self.shape, rows, columns)
if i == self.proposerID:
val.initBlock()
self.glob.setGoldenData(val.block)
@ -39,17 +41,21 @@ class Simulator:
val.logIDs()
self.validators.append(val)
def initNetwork(self, d=6):
rowChannels = [[] for i in range(self.config.blockSize)]
columnChannels = [[] for i in range(self.config.blockSize)]
def initNetwork(self):
self.shape.netDegree = 6
rowChannels = [[] for i in range(self.shape.blockSize)]
columnChannels = [[] for i in range(self.shape.blockSize)]
for v in self.validators:
for id in v.rowIDs:
rowChannels[id].append(v)
for id in v.columnIDs:
columnChannels[id].append(v)
for id in range(self.config.blockSize):
G = nx.random_regular_graph(d, len(rowChannels[id]))
for id in range(self.shape.blockSize):
if (len(rowChannels[id]) < self.shape.netDegree):
self.logger.error("Graph degree higher than %d" % len(rowChannels[id]), extra=self.format)
G = nx.random_regular_graph(self.shape.netDegree, len(rowChannels[id]))
if not nx.is_connected(G):
self.logger.error("Graph not connected for row %d !" % id, extra=self.format)
for u, v in G.edges:
@ -57,7 +63,10 @@ class Simulator:
val2=rowChannels[id][v]
val1.rowNeighbors[id].append(val2)
val2.rowNeighbors[id].append(val1)
G = nx.random_regular_graph(d, len(columnChannels[id]))
if (len(columnChannels[id]) < self.shape.netDegree):
self.logger.error("Graph degree higher than %d" % len(columnChannels[id]), extra=self.format)
G = nx.random_regular_graph(self.shape.netDegree, len(columnChannels[id]))
if not nx.is_connected(G):
self.logger.error("Graph not connected for column %d !" % id, extra=self.format)
for u, v in G.edges:
@ -75,15 +84,12 @@ class Simulator:
logger.addHandler(ch)
self.logger = logger
def resetFailureRate(self, failureRate):
self.config.failureRate = failureRate
for val in self.validators:
val.config.failureRate = failureRate
def resetChi(self, chi):
self.config.chi = chi
def resetShape(self, shape):
self.shape = shape
for val in self.validators:
val.config.chi = chi
val.shape.failureRate = shape.failureRate
val.shape.chi = shape.chi
def run(self):
@ -96,9 +102,9 @@ class Simulator:
while(missingSamples > 0):
missingVector.append(missingSamples)
oldMissingSamples = missingSamples
for i in range(1,self.config.numberValidators):
for i in range(1,self.shape.numberValidators):
self.validators[i].receiveRowsColumns()
for i in range(1,self.config.numberValidators):
for i in range(1,self.shape.numberValidators):
self.validators[i].restoreRows()
self.validators[i].restoreColumns()
self.validators[i].sendRows()
@ -120,10 +126,10 @@ class Simulator:
self.result.addMissing(missingVector)
if missingSamples == 0:
self.result.blockAvailable = 1
self.logger.debug("The entire block is available at step %d, with failure rate %d !" % (steps, self.config.failureRate), extra=self.format)
self.logger.debug("The entire block is available at step %d, with failure rate %d !" % (steps, self.shape.failureRate), extra=self.format)
return self.result
else:
self.result.blockAvailable = 0
self.logger.debug("The block cannot be recovered, failure rate %d!" % self.config.failureRate, extra=self.format)
self.logger.debug("The block cannot be recovered, failure rate %d!" % self.shape.failureRate, extra=self.format)
return self.result

View File

@ -11,34 +11,34 @@ class Validator:
ID = 0
amIproposer = 0
config = []
shape = []
format = {}
logger = []
def __init__(self, ID, amIproposer, logger, config):
self.config = config
def __init__(self, ID, amIproposer, logger, shape, rows, columns):
self.shape = shape
FORMAT = "%(levelname)s : %(entity)s : %(message)s"
self.ID = ID
self.format = {"entity": "Val "+str(self.ID)}
self.block = Block(self.config.blockSize)
self.receivedBlock = Block(self.config.blockSize)
self.block = Block(self.shape.blockSize)
self.receivedBlock = Block(self.shape.blockSize)
self.amIproposer = amIproposer
self.logger = logger
if self.config.chi < 1:
if self.shape.chi < 1:
self.logger.error("Chi has to be greater than 0", extra=self.format)
elif self.config.chi > self.config.blockSize:
elif self.shape.chi > self.shape.blockSize:
self.logger.error("Chi has to be smaller than %d" % blockSize, extra=self.format)
else:
if amIproposer:
self.rowIDs = range(config.blockSize)
self.columnIDs = range(config.blockSize)
self.rowIDs = range(shape.blockSize)
self.columnIDs = range(shape.blockSize)
else:
self.rowIDs = []
self.columnIDs = []
if config.deterministic:
random.seed(self.ID)
self.rowIDs = random.sample(range(self.config.blockSize), self.config.chi)
self.columnIDs = random.sample(range(self.config.blockSize), self.config.chi)
self.rowIDs = rows[(self.ID*self.shape.chi):(self.ID*self.shape.chi + self.shape.chi)]
self.columnIDs = rows[(self.ID*self.shape.chi):(self.ID*self.shape.chi + self.shape.chi)]
#if shape.deterministic:
# random.seed(self.ID)
#self.rowIDs = random.sample(range(self.shape.blockSize), self.shape.chi)
#self.columnIDs = random.sample(range(self.shape.blockSize), self.shape.chi)
self.rowNeighbors = collections.defaultdict(list)
self.columnNeighbors = collections.defaultdict(list)
@ -51,7 +51,7 @@ class Validator:
def initBlock(self):
self.logger.debug("I am a block proposer.", extra=self.format)
self.block = Block(self.config.blockSize)
self.block = Block(self.shape.blockSize)
self.block.fill()
#self.block.print()
@ -60,21 +60,21 @@ class Validator:
self.logger.error("I am NOT a block proposer", extra=self.format)
else:
self.logger.debug("Broadcasting my block...", extra=self.format)
order = [i for i in range(self.config.blockSize * self.config.blockSize)]
order = [i for i in range(self.shape.blockSize * self.shape.blockSize)]
random.shuffle(order)
while(order):
i = order.pop()
if (random.randint(0,99) >= self.config.failureRate):
if (random.randint(0,99) >= self.shape.failureRate):
self.block.data[i] = 1
else:
self.block.data[i] = 0
nbFailures = self.block.data.count(0)
measuredFailureRate = nbFailures * 100 / (self.config.blockSize * self.config.blockSize)
measuredFailureRate = nbFailures * 100 / (self.shape.blockSize * self.shape.blockSize)
self.logger.debug("Number of failures: %d (%0.02f %%)", nbFailures, measuredFailureRate, extra=self.format)
#broadcasted.print()
for id in range(self.config.blockSize):
for id in range(self.shape.blockSize):
self.sendColumn(id)
for id in range(self.config.blockSize):
for id in range(self.shape.blockSize):
self.sendRow(id)
def getColumn(self, index):

View File

@ -16,11 +16,11 @@ $ cd das-research
```
$ python3 -m venv myenv
$ source myenv/bin/activate
$ pip3 install -r DAS/requeriments.txt
$ pip3 install -r DAS/requirements.txt
```
## Run the simulator
```
$ python3 study.py
$ python3 study.py config.das
```

27
config.das Normal file
View File

@ -0,0 +1,27 @@
[Simulation Space]
numberValidatorStart = 256
numberValidatorStop = 512
numberValidatorStep = 128
failureRateStart = 10
failureRateStop = 90
failureRateStep = 40
blockSizeStart = 32
blockSizeStop = 64
blockSizeStep = 16
netDegreeStart = 6
netDegreeStop = 8
netDegreeStep = 1
chiStart = 4
chiStop = 8
chiStep = 2
[Advanced]
deterministic = 0
numberRuns = 2

View File

@ -1,38 +1,45 @@
#! /bin/python3
import time
import time, sys
from DAS import *
def study():
config = Configuration(0, 64, 256, 0, 100, 20, 8, 16, 4, 0, 10, 1)
if len(sys.argv) < 2:
print("You need to pass a configuration file in parameter")
exit(1)
config = Configuration(sys.argv[1])
sim = Simulator(config)
sim.initLogger()
frRange = []
results = []
resultRange = []
simCnt = 0
sim.logger.info("Starting simulations:", extra=sim.format)
start = time.time()
for run in range(config.numberRuns):
for fr in range(config.failureRateStart, config.failureRateStop+1, config.failureRateStep):
sim.resetFailureRate(fr)
for chi in range(config.chiStart, config.chiStop+1, config.chiStep):
sim.resetChi(chi)
blockAvailable = 0
for run in range(config.runStart, config.runStop, config.runStep):
sim.logger.info("FR: %d %%, Chi: %d %%, Run: %d ..." % (fr, chi, run), extra=sim.format)
for blockSize in range(config.blockSizeStart, config.blockSizeStop+1, config.blockSizeStep):
for nv in range(config.nvStart, config.nvStop+1, config.nvStep):
for netDegree in range(config.netDegreeStart, config.netDegreeStop, config.netDegreeStep):
if not config.deterministic:
random.seed(datetime.now())
shape = Shape(blockSize, nv, fr, chi, netDegree)
sim.resetShape(shape)
sim.initValidators()
sim.initNetwork()
result = sim.run()
blockAvailable += result.blockAvailable
sim.logger.info("Run %d, FR: %d %%, Chi: %d, BlockSize: %d, Nb.Val: %d, netDegree: %d ... Block Available: %d" % (run, fr, chi, blockSize, nv, netDegree, result.blockAvailable), extra=sim.format)
results.append(result)
simCnt += 1
frRange.append(fr)
resultRange.append((blockAvailable)*100/config.runStop)
end = time.time()
sim.logger.info("A total of %d simulations ran in %d seconds" % (simCnt, end-start), extra=sim.format)
#for i in range(len(frRange)):
# sim.logger.info("For failure rate of %d we got %d %% success rate in DAS!" % (frRange[i], resultRange[i]), extra=sim.format)
study()