diff --git a/DAS/visualizer.py b/DAS/visualizer.py index cf095c1..ec22cb7 100644 --- a/DAS/visualizer.py +++ b/DAS/visualizer.py @@ -4,6 +4,7 @@ import time import xml.etree.ElementTree as ET import matplotlib.pyplot as plt import numpy as np +import pandas as pd import seaborn as sns from itertools import combinations from mplfinance.original_flavor import candlestick_ohlc @@ -197,10 +198,9 @@ class Visualizer: ylabels = np.sort(np.unique(data[key][labels[1]])) if len(xlabels) < self.minimumDataPoints or len(ylabels) < self.minimumDataPoints: continue - hist, xedges, yedges = np.histogram2d(data[key][labels[0]], data[key][labels[1]], bins=(len(xlabels), len(ylabels)), weights=data[key]['ttas']) - hist = hist.T + df = pd.DataFrame.from_dict(data[key]).pivot(labels[0], labels[1], 'ttas') fig, ax = plt.subplots(figsize=(10, 6)) - sns.heatmap(hist, xticklabels=xlabels, yticklabels=ylabels, cmap='hot_r', cbar_kws={'label': 'Time to block availability (ms)'}, linecolor='black', linewidths=0.3, annot=True, fmt=".2f", ax=ax, vmin=vmin, vmax=vmax) + sns.heatmap(df, cmap='hot_r', cbar_kws={'label': 'Time to block availability (ms)'}, linecolor='black', linewidths=0.3, annot=True, fmt=".2f", ax=ax) #vmin=vmin, vmax=vmax plt.xlabel(self.formatLabel(labels[0])) plt.ylabel(self.formatLabel(labels[1])) filename = ""