mirror of
https://github.com/logos-storage/das-research.git
synced 2026-01-21 06:23:12 +00:00
Separate Config file for subnetDAS
This commit is contained in:
parent
36d098cea3
commit
08645431b0
115
subnetDASConf.py
Normal file
115
subnetDASConf.py
Normal file
@ -0,0 +1,115 @@
|
||||
"""Example configuration file
|
||||
|
||||
This file illustrates how to define options and simulation parameter ranges.
|
||||
It also defines the traversal order of the simulation space. As the file
|
||||
extension suggests, configuration is pure python code, allowing complex
|
||||
setups. Use at your own risk.
|
||||
|
||||
To use this example, run
|
||||
python3 study.py config_example
|
||||
|
||||
Otherwise copy it and modify as needed. The default traversal order defined
|
||||
in the nested loop of nextShape() is good for most cases, but customizable
|
||||
if needed.
|
||||
"""
|
||||
|
||||
import logging
|
||||
import itertools
|
||||
import numpy as np
|
||||
from DAS.shape import Shape
|
||||
|
||||
# Dump results into XML files
|
||||
dumpXML = 1
|
||||
|
||||
# save progress and row/column distribution vectors to XML
|
||||
saveProgress = 1
|
||||
|
||||
# plot progress for each run to PNG
|
||||
plotProgress = 1
|
||||
|
||||
# Save row and column distributions
|
||||
saveRCdist = 1
|
||||
|
||||
# Plot all figures
|
||||
visualization = 1
|
||||
|
||||
# Verbosity level
|
||||
logLevel = logging.INFO
|
||||
|
||||
# number of parallel workers. -1: all cores; 1: sequential
|
||||
# for more details, see joblib.Parallel
|
||||
numJobs = -1
|
||||
|
||||
# distribute rows/columns evenly between validators (True)
|
||||
# or generate it using local randomness (False)
|
||||
evenLineDistribution = False
|
||||
|
||||
# Number of simulation runs with the same parameters for statistical relevance
|
||||
runs = [0]
|
||||
|
||||
# Number of validators
|
||||
numberNodes = [50000]
|
||||
|
||||
# select failure model between: "random, sequential, MEP, MEP+1, DEP, DEP+1, MREP, MREP-1"
|
||||
failureModels = ["random"]
|
||||
|
||||
# Percentage of block not released by producer
|
||||
failureRates = range(40, 81, 20)
|
||||
failureRates = [0]
|
||||
|
||||
# Block size in one dimension in segments. Block is blockSizes * blockSizes segments.
|
||||
blockSizes = range(64, 113, 128)
|
||||
|
||||
# Per-topic mesh neighborhood size
|
||||
netDegrees = range(8, 9, 2)
|
||||
|
||||
# number of rows and columns a validator is interested in
|
||||
chis = range(2, 3, 2)
|
||||
|
||||
# ratio of class1 nodes (see below for parameters per class)
|
||||
class1ratios = [0.8]
|
||||
|
||||
# Number of validators per beacon node
|
||||
validatorsPerNode1 = [1]
|
||||
validatorsPerNode2 = [8]
|
||||
|
||||
# Set uplink bandwidth in megabits/second
|
||||
bwUplinksProd = [150]
|
||||
bwUplinks1 = [15]
|
||||
bwUplinks2 = [150]
|
||||
|
||||
# Step duration in miliseconds (Classic RTT is about 100ms)
|
||||
stepDuration = 50
|
||||
|
||||
# Segment size in bytes (with proof)
|
||||
segmentSize = 560
|
||||
|
||||
# Set to True if you want your run to be deterministic, False if not
|
||||
deterministic = True
|
||||
|
||||
# If your run is deterministic you can decide the random seed. This is ignore otherwise.
|
||||
randomSeed = "DAS"
|
||||
|
||||
# Number of steps without progress to stop simulation
|
||||
steps4StopCondition = 7
|
||||
|
||||
# Number of validators ready to asume block is available
|
||||
successCondition = 0.9
|
||||
|
||||
# If True, print diagnostics when the block is not available
|
||||
diagnostics = False
|
||||
|
||||
# True to save git diff and git commit
|
||||
saveGit = False
|
||||
|
||||
def nextShape():
|
||||
for run, fm, fr, class1ratio, vpn1, vpn2, nn, netDegree, bwUplinkProd, bwUplink1, bwUplink2 in itertools.product(
|
||||
runs, failureModels, failureRates, class1ratios, validatorsPerNode1, validatorsPerNode2, numberNodes, netDegrees, bwUplinksProd, bwUplinks1, bwUplinks2):
|
||||
# Network Degree has to be an even number
|
||||
if netDegree % 2 == 0:
|
||||
blockSizeR = 128
|
||||
blockSizeC = blockSizeRK = blockSizeCK = 64
|
||||
chiR = 0
|
||||
chiC = 4
|
||||
shape = Shape(blockSizeR, blockSizeRK, blockSizeC, blockSizeCK, nn, fm, fr, class1ratio, chiR, chiC, vpn1, vpn2, netDegree, bwUplinkProd, bwUplink1, bwUplink2, run)
|
||||
yield shape
|
||||
Loading…
x
Reference in New Issue
Block a user