mirror of
https://github.com/logos-storage/constantine.git
synced 2026-01-03 13:43:10 +00:00
339 lines
11 KiB
Nim
339 lines
11 KiB
Nim
# Constantine
|
||
# Copyright (c) 2018-2019 Status Research & Development GmbH
|
||
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
|
||
# Licensed and distributed under either of
|
||
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
|
||
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
|
||
# at your option. This file may not be copied, modified, or distributed except according to those terms.
|
||
|
||
import
|
||
../config/[common, curves, type_ff],
|
||
../towers,
|
||
../elliptic/[
|
||
ec_shortweierstrass_affine,
|
||
ec_shortweierstrass_projective
|
||
],
|
||
../curves/zoo_pairings,
|
||
./lines_projective, ./mul_fp12_by_lines,
|
||
./miller_loops
|
||
|
||
# ############################################################
|
||
#
|
||
# Optimal ATE pairing for
|
||
# BLS12-381
|
||
#
|
||
# ############################################################
|
||
#
|
||
# - Software Implementation, Algorithm 11.2 & 11.3
|
||
# Aranha, Dominguez Perez, A. Mrabet, Schwabe,
|
||
# Guide to Pairing-Based Cryptography, 2015
|
||
#
|
||
# - Physical Attacks,
|
||
# N. El Mrabet, Goubin, Guilley, Fournier, Jauvart, Moreau, Rauzy, Rondepierre,
|
||
# Guide to Pairing-Based Cryptography, 2015
|
||
#
|
||
# - Pairing Implementation Revisited
|
||
# Mike Scott, 2019
|
||
# https://eprint.iacr.org/2019/077.pdf
|
||
#
|
||
# Fault attacks:
|
||
# To limite exposure to some fault attacks (flipping bits with a laser on embedded):
|
||
# - changing the number of Miller loop iterations
|
||
# - flipping the bits in the Miller loop
|
||
# we hardcode unrolled addition chains.
|
||
# This should also contribute to performance.
|
||
#
|
||
# Multi-pairing discussion:
|
||
# Aranha & Scott proposes 2 different approaches for multi-pairing.
|
||
#
|
||
# -----
|
||
# Scott
|
||
#
|
||
# Algorithm 2: Calculate and store line functions for BLS12 curve
|
||
# Input: Q ∈ G2, P ∈ G1 , curve parameter u
|
||
# Output: An array g of blog2(u)c line functions ∈ Fp12
|
||
# 1 T ← Q
|
||
# 2 for i ← ceil(log2(u)) − 1 to 0 do
|
||
# 3 g[i] ← lT,T(P), T ← 2T
|
||
# 4 if ui = 1 then
|
||
# 5 g[i] ← g[i].lT,Q(P), T ← T + Q
|
||
# 6 return g
|
||
#
|
||
# And to accumulate lines from a new (P, Q) tuple of points
|
||
#
|
||
# Algorithm 4: Accumulate another set of line functions into g
|
||
# Input: The array g, Qj ∈ G2 , Pj ∈ G1 , curve parameter u
|
||
# Output: Updated array g of ceil(log2(u)) line functions ∈ Fp12
|
||
# 1 T ← Qj
|
||
# 2 for i ← blog2 (u)c − 1 to 0 do
|
||
# 3 t ← lT,T (Pj), T ← 2T
|
||
# 4 if ui = 1 then
|
||
# 5 t ← t.lT,Qj (Pj), T ← T + Qj
|
||
# 6 g[i] ← g[i].t
|
||
# 7 return g
|
||
#
|
||
# ------
|
||
# Aranha
|
||
#
|
||
# Algorithm 11.2 Explicit multipairing version of Algorithm 11.1.
|
||
# (we extract the Miller Loop part only)
|
||
# Input : P1 , P2 , . . . Pn ∈ G1 ,
|
||
# Q1 , Q2, . . . Qn ∈ G2
|
||
# Output: (we focus on the Miller Loop)
|
||
#
|
||
# Write l in binary form, l = sum(0 ..< m-1)
|
||
# f ← 1, l ← abs(AteParam)
|
||
# for j ← 1 to n do
|
||
# Tj ← Qj
|
||
# end
|
||
#
|
||
# for i = m-2 down to 0 do
|
||
# f ← f²
|
||
# for j ← 1 to n do
|
||
# f ← f gTj,Tj(Pj), Tj ← [2]Tj
|
||
# if li = 1 then
|
||
# f ← f gTj,Qj(Pj), Tj ← Tj + Qj
|
||
# end
|
||
# end
|
||
# end
|
||
#
|
||
# -----
|
||
# Assuming we have N tuples (Pj, Qj) of points j in 0 ..< N
|
||
# and I operations to do in our Miller loop:
|
||
# - I = HammingWeight(AteParam) + Bitwidth(AteParam)
|
||
# - HammingWeight(AteParam) corresponds to line additions
|
||
# - Bitwidth(AteParam) corresponds to line doublings
|
||
#
|
||
# Scott approach is to have:
|
||
# - I Fp12 accumulators `g`
|
||
# - 1 G2 accumulator `T`
|
||
# and then accumulating each (Pj, Qj) into their corresponding `g` accumulator.
|
||
#
|
||
# Aranha approach is to have:
|
||
# - 1 Fp12 accumulator `f`
|
||
# - N G2 accumulators `T`
|
||
# and accumulate N points per I.
|
||
#
|
||
# Scott approach is fully "online"/"streaming",
|
||
# while Aranha's saves space.
|
||
# For BLS12_381,
|
||
# I = 68 hence we would need 68*12*48 = 39168 bytes (381-bit needs 48 bytes)
|
||
# G2 has size 3*2*48 = 288 bytes (3 proj coordinates on Fp2)
|
||
# and we choose N (which can be 1 for single pairing or reverting to Scott approach).
|
||
#
|
||
# In actual use, "streaming pairings" are not used, pairings to compute are receive
|
||
# by batch, for example for blockchain you receive a batch of N blocks to verify from one peer.
|
||
# Furthermore, 39kB would be over L1 cache size and incurs cache misses.
|
||
# Additionally Aranha approach would make it easier to batch inversions
|
||
# using Montgomery's simultaneous inversion technique.
|
||
# Lastly, while a higher level API will need to store N (Pj, Qj) pairs for multi-pairings
|
||
# for Aranha approach, it can decide how big N is depending on hardware and/or protocol.
|
||
#
|
||
# Regarding optimizations, as the Fp12 accumulator is dense
|
||
# and lines are sparse (xyz000 or xy000z) Scott mentions the following costs:
|
||
# - Dense-sparse is 13m
|
||
# - sparse-sparse is 6m
|
||
# - Dense-(somewhat sparse) is 17m
|
||
# Hence when accumulating lines from multiple points:
|
||
# - 2x Dense-sparse is 26m
|
||
# - sparse-sparse then Dense-(somewhat sparse) is 23m
|
||
# a 11.5% speedup
|
||
#
|
||
# We can use Aranha approach but process lines function 2-by-2 merging them
|
||
# before merging them to the dense Fp12 accumulator
|
||
|
||
# Miller Loop
|
||
# -------------------------------------------------------------------------------------------------------
|
||
|
||
{.push raises: [].}
|
||
|
||
import
|
||
strutils,
|
||
../io/io_towers
|
||
|
||
func miller_first_iter[N: static int](
|
||
f: var Fp12[BLS12_381],
|
||
Ts: var array[N, ECP_ShortW_Prj[Fp2[BLS12_381], OnTwist]],
|
||
Qs: array[N, ECP_ShortW_Aff[Fp2[BLS12_381], OnTwist]],
|
||
Ps: array[N, ECP_ShortW_Aff[Fp[BLS12_381], NotOnTwist]]
|
||
) =
|
||
## Start a Miller Loop
|
||
## This means
|
||
## - 1 doubling
|
||
## - 1 add
|
||
##
|
||
## f is overwritten
|
||
## Ts are overwritten by Qs
|
||
static:
|
||
doAssert N >= 1
|
||
doAssert f.c0 is Fp4
|
||
|
||
{.push checks: off.} # No OverflowError or IndexError allowed
|
||
var line {.noInit.}: Line[Fp2[BLS12_381]]
|
||
|
||
# First step: T <- Q, f = 1 (mod p¹²), f *= line
|
||
# ----------------------------------------------
|
||
for i in 0 ..< N:
|
||
Ts[i].projectiveFromAffine(Qs[i])
|
||
|
||
line.line_double(Ts[0], Ps[0])
|
||
|
||
# f *= line <=> f = line for the first iteration
|
||
# With Fp2 -> Fp4 -> Fp12 towering and a M-Twist
|
||
# The line corresponds to a sparse xy000z Fp12
|
||
f.c0.c0 = line.x
|
||
f.c0.c1 = line.y
|
||
f.c1.c0.setZero()
|
||
f.c1.c1.setZero()
|
||
f.c2.c0.setZero()
|
||
f.c2.c1 = line.z
|
||
|
||
when N >= 2:
|
||
line.line_double(Ts[1], Ps[1])
|
||
f.mul_sparse_by_line_xy000z(line) # TODO: sparse-sparse mul
|
||
|
||
# Sparse merge 2 by 2, starting from 2
|
||
for i in countup(2, N-1, 2):
|
||
# var f2 {.noInit.}: Fp12[BLS12_381] # TODO: sparse-sparse mul
|
||
var line2 {.noInit.}: Line[Fp2[BLS12_381]]
|
||
|
||
line.line_double(Ts[i], Ps[i])
|
||
line2.line_double(Ts[i+1], Ps[i+1])
|
||
|
||
# f2.mul_sparse_sparse(line, line2)
|
||
# f.mul_somewhat_sparse(f2)
|
||
f.mul_sparse_by_line_xy000z(line)
|
||
f.mul_sparse_by_line_xy000z(line2)
|
||
|
||
when N and 1 == 1: # N >= 2 and N is odd, there is a leftover
|
||
line.line_double(Ts[N-1], Ps[N-1])
|
||
f.mul_sparse_by_line_xy000z(line)
|
||
|
||
# 2nd step: Line addition as MSB is always 1
|
||
# ----------------------------------------------
|
||
when N >= 2: # f is dense, there are already many lines accumulated
|
||
# Sparse merge 2 by 2, starting from 0
|
||
for i in countup(0, N-1, 2):
|
||
# var f2 {.noInit.}: Fp12[BLS12_381] # TODO: sparse-sparse mul
|
||
var line2 {.noInit.}: Line[Fp2[BLS12_381]]
|
||
|
||
line.line_add(Ts[i], Qs[i], Ps[i])
|
||
line2.line_add(Ts[i+1], Qs[i+1], Ps[i+1])
|
||
|
||
# f2.mul_sparse_sparse(line, line2)
|
||
# f.mul_somewhat_sparse(f2)
|
||
f.mul_sparse_by_line_xy000z(line)
|
||
f.mul_sparse_by_line_xy000z(line2)
|
||
|
||
when N and 1 == 1: # N >= 2 and N is odd, there is a leftover
|
||
line.line_add(Ts[N-1], Qs[N-1], Ps[N-1])
|
||
f.mul_sparse_by_line_xy000z(line)
|
||
|
||
else: # N = 1, f is sparse
|
||
line.line_add(Ts[0], Qs[0], Ps[0])
|
||
# f.mul_sparse_sparse(line)
|
||
f.mul_sparse_by_line_xy000z(line)
|
||
|
||
{.pop.} # No OverflowError or IndexError allowed
|
||
|
||
func miller_accum_doublings[N: static int](
|
||
f: var Fp12[BLS12_381],
|
||
Ts: var array[N, ECP_ShortW_Prj[Fp2[BLS12_381], OnTwist]],
|
||
Ps: array[N, ECP_ShortW_Aff[Fp[BLS12_381], NotOnTwist]],
|
||
numDoublings: int
|
||
) =
|
||
## Accumulate `numDoublings` Miller loop doubling steps into `f`
|
||
static: doAssert N >= 1
|
||
{.push checks: off.} # No OverflowError or IndexError allowed
|
||
|
||
var line {.noInit.}: Line[Fp2[BLS12_381]]
|
||
|
||
for _ in 0 ..< numDoublings:
|
||
f.square()
|
||
when N >= 2:
|
||
for i in countup(0, N-1, 2):
|
||
# var f2 {.noInit.}: Fp12[BLS12_381] # TODO: sparse-sparse mul
|
||
var line2 {.noInit.}: Line[Fp2[BLS12_381]]
|
||
|
||
line.line_double(Ts[i], Ps[i])
|
||
line2.line_double(Ts[i+1], Ps[i+1])
|
||
|
||
# f2.mul_sparse_sparse(line, line2)
|
||
# f.mul_somewhat_sparse(f2)
|
||
f.mul_sparse_by_line_xy000z(line)
|
||
f.mul_sparse_by_line_xy000z(line2)
|
||
|
||
when N and 1 == 1: # N >= 2 and N is odd, there is a leftover
|
||
line.line_double(Ts[N-1], Ps[N-1])
|
||
f.mul_sparse_by_line_xy000z(line)
|
||
else:
|
||
line.line_double(Ts[0], Ps[0])
|
||
f.mul_sparse_by_line_xy000z(line)
|
||
|
||
{.pop.} # No OverflowError or IndexError allowed
|
||
|
||
func miller_accum_addition[N: static int](
|
||
f: var Fp12[BLS12_381],
|
||
Ts: var array[N, ECP_ShortW_Prj[Fp2[BLS12_381], OnTwist]],
|
||
Qs: array[N, ECP_ShortW_Aff[Fp2[BLS12_381], OnTwist]],
|
||
Ps: array[N, ECP_ShortW_Aff[Fp[BLS12_381], NotOnTwist]]
|
||
) =
|
||
## Accumulate a Miller loop addition step into `f`
|
||
static: doAssert N >= 1
|
||
{.push checks: off.} # No OverflowError or IndexError allowed
|
||
|
||
var line {.noInit.}: Line[Fp2[BLS12_381]]
|
||
|
||
when N >= 2:
|
||
# Sparse merge 2 by 2, starting from 0
|
||
for i in countup(0, N-1, 2):
|
||
# var f2 {.noInit.}: Fp12[BLS12_381] # TODO: sparse-sparse mul
|
||
var line2 {.noInit.}: Line[Fp2[BLS12_381]]
|
||
|
||
line.line_add(Ts[i], Qs[i], Ps[i])
|
||
line2.line_add(Ts[i+1], Qs[i+1], Ps[i+1])
|
||
|
||
# f2.mul_sparse_sparse(line, line2)
|
||
# f.mul_somewhat_sparse(f2)
|
||
f.mul_sparse_by_line_xy000z(line)
|
||
f.mul_sparse_by_line_xy000z(line2)
|
||
|
||
when N and 1 == 1: # N >= 2 and N is odd, there is a leftover
|
||
line.line_add(Ts[N-1], Qs[N-1], Ps[N-1])
|
||
f.mul_sparse_by_line_xy000z(line)
|
||
|
||
else:
|
||
line.line_add(Ts[0], Qs[0], Ps[0])
|
||
f.mul_sparse_by_line_xy000z(line)
|
||
|
||
{.pop.} # No OverflowError or IndexError allowed
|
||
|
||
func millerLoop_opt_BLS12_381*[N: static int](
|
||
f: var Fp12[BLS12_381],
|
||
Qs: array[N, ECP_ShortW_Aff[Fp2[BLS12_381], OnTwist]],
|
||
Ps: array[N, ECP_ShortW_Aff[Fp[BLS12_381], NotOnTwist]]
|
||
) {.meter.} =
|
||
## Generic Miller Loop for BLS12 curve
|
||
## Computes f{u,Q}(P) with u the BLS curve parameter
|
||
|
||
var Ts {.noInit.}: array[N, ECP_ShortW_Prj[Fp2[BLS12_381], OnTwist]]
|
||
|
||
# Ate param addition chain
|
||
# Hex: 0xd201000000010000
|
||
# Bin: 0b1101001000000001000000000000000000000000000000010000000000000000
|
||
|
||
var iter = 1'u64
|
||
|
||
f.miller_first_iter(Ts, Qs, Ps) # 0b11
|
||
f.miller_accum_doublings(Ts, Ps, 2) # 0b1100
|
||
f.miller_accum_addition(Ts, Qs, Ps) # 0b1101
|
||
f.miller_accum_doublings(Ts, Ps, 3) # 0b1101000
|
||
f.miller_accum_addition(Ts, Qs, Ps) # 0b1101001
|
||
f.miller_accum_doublings(Ts, Ps, 9) # 0b1101001000000000
|
||
f.miller_accum_addition(Ts, Qs, Ps) # 0b1101001000000001
|
||
f.miller_accum_doublings(Ts, Ps, 32) # 0b110100100000000100000000000000000000000000000000
|
||
f.miller_accum_addition(Ts, Qs, Ps) # 0b110100100000000100000000000000000000000000000001
|
||
f.miller_accum_doublings(Ts, Ps, 16) # 0b1101001000000001000000000000000000000000000000010000000000000000
|
||
|
||
# TODO: what is the threshold for Karabina's compressed squarings?
|