constantine/constantine/primitives/extended_precision.nim
Mamy André-Ratsimbazafy c8e482f6d2
Properly handle 32 bits
2020-03-01 16:18:45 +01:00

244 lines
10 KiB
Nim

# Constantine
# Copyright (c) 2018-2019 Status Research & Development GmbH
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
# ############################################################
#
# Unsafe constant-time primitives with specific restrictions
#
# ############################################################
import ./constant_time
# ############################################################
#
# 32-bit words
#
# ############################################################
func unsafeDiv2n1n*(q, r: var Ct[uint32], n_hi, n_lo, d: Ct[uint32]) {.inline.}=
## Division uint64 by uint32
## Warning ⚠️ :
## - if n_hi == d, quotient does not fit in an uint32
## - if n_hi > d result is undefined
##
## To avoid issues, n_hi, n_lo, d should be normalized.
## i.e. shifted (== multiplied by the same power of 2)
## so that the most significant bit in d is set.
# TODO !!! - Replace by constant-time, portable, non-assembly version
# -> use uint128? Compiler might add unwanted branches
{.warning: "unsafeDiv2n1n is not constant-time at the moment on most hardware".}
let dividend = (uint64(n_hi) shl 32) or uint64(n_lo)
let divisor = uint64(d)
q = (Ct[uint32])(dividend div divisor)
r = (Ct[uint32])(dividend mod divisor)
func unsafeFMA*(hi, lo: var Ct[uint32], a, b, c: Ct[uint32]) {.inline.} =
## Extended precision multiplication + addition
## This is constant-time on most hardware except some specific one like Cortex M0
## (hi, lo) <- a*b + c
block:
# Note: since a and b use 31-bit,
# the result is 62-bit and carrying cannot overflow
let dblPrec = uint64(a) * uint64(b) + uint64(c)
hi = Ct[uint32](dblPrec shr 31)
lo = Ct[uint32](dblPrec) and Ct[uint32](1 shl 31 - 1)
func unsafeFMA2*(hi, lo: var Ct[uint32], a1, b1, a2, b2, c1, c2: Ct[uint32]) {.inline.}=
## (hi, lo) <- a1 * b1 + a2 * b2 + c1 + c2
block:
# TODO: Can this overflow?
let dblPrec = uint64(a1) * uint64(b1) +
uint64(a2) * uint64(b2) +
uint64(c1) +
uint64(c2)
hi = Ct[uint32](dblPrec shr 31)
lo = Ct[uint32](dblPrec) and Ct[uint32](1 shl 31 - 1)
func unsafeFMA2_hi*(hi: var Ct[uint32], a1, b1, a2, b2, c1: Ct[uint32]) {.inline.}=
## Returns the high word of the sum of extended precision multiply-adds
## (hi, _) <- a1 * b1 + a2 * b2 + c
block:
# TODO: Can this overflow?
let dblPrec = uint64(a1) * uint64(b1) +
uint64(a2) * uint64(b2) +
uint64(c1)
hi = Ct[uint32](dblPrec shr 31)
# ############################################################
#
# 64-bit words
#
# ############################################################
when sizeof(int) == 8:
const GccCompatible = defined(gcc) or defined(clang) or defined(llvm_gcc)
when GccCompatible:
type
uint128*{.importc: "unsigned __int128".} = object
func unsafeDiv2n1n*(q, r: var Ct[uint64], n_hi, n_lo, d: Ct[uint64]) {.inline.}=
## Division uint128 by uint64
## Warning ⚠️ :
## - if n_hi == d, quotient does not fit in an uint64 and will throw SIGFPE
## - if n_hi > d result is undefined
{.warning: "unsafeDiv2n1n is not constant-time at the moment on most hardware".}
# TODO !!! - Replace by constant-time, portable, non-assembly version
# -> use uint128? Compiler might add unwanted branches
# DIV r/m64
# Divide RDX:RAX (n_hi:n_lo) by r/m64
#
# Inputs
# - numerator high word in RDX,
# - numerator low word in RAX,
# - divisor as r/m parameter (register or memory at the compiler discretion)
# Result
# - Quotient in RAX
# - Remainder in RDX
# 1. name the register/memory "divisor"
# 2. don't forget to dereference the var hidden pointer
# 3. -
# 4. no clobbered registers beside explectly used RAX and RDX
when defined(amd64):
asm """
divq %[divisor]
: "=a" (`*q`), "=d" (`*r`)
: "d" (`n_hi`), "a" (`n_lo`), [divisor] "rm" (`d`)
:
"""
else:
var dblPrec {.noInit.}: uint128
{.emit:[dblPrec, " = (unsigned __int128)", n_hi," << 64 | (unsigned __int128)",n_lo,";"].}
# Don't forget to dereference the var param
{.emit:["*",q, " = (NU64)(", dblPrec," / ", d, ");"].}
{.emit:["*",r, " = (NU64)(", dblPrec," % ", d, ");"].}
func unsafeFMA*(hi, lo: var Ct[uint64], a, b, c: Ct[uint64]) {.inline.}=
## Extended precision multiplication + addition
## This is constant-time on most hardware except some specific one like Cortex M0
## (hi, lo) <- a*b + c
block:
# Note: since a and b use 63-bit,
# the result is 126-bit and carrying cannot overflow
var dblPrec {.noInit.}: uint128
{.emit:[dblPrec, " = (unsigned __int128)", a," * (unsigned __int128)", b, " + (unsigned __int128)",c,";"].}
# Don't forget to dereference the var param
{.emit:["*",hi, " = (NU64)(", dblPrec," >> ", 63'u64, ");"].}
{.emit:["*",lo, " = (NU64)", dblPrec," & ", 1'u64 shl 63 - 1, ";"].}
func unsafeFMA2*(hi, lo: var Ct[uint64], a1, b1, a2, b2, c1, c2: Ct[uint64]) {.inline.}=
## (hi, lo) <- a1 * b1 + a2 * b2 + c1 + c2
block:
# TODO: Can this overflow?
var dblPrec: uint128
{.emit:[dblPrec, " = (unsigned __int128)", a1," * (unsigned __int128)", b1,
" + (unsigned __int128)", a2," * (unsigned __int128)", b2,
" + (unsigned __int128)", c1,
" + (unsigned __int128)", c2, ";"].}
# Don't forget to dereference the var param
{.emit:["*",hi, " = (NU64)(", dblPrec," >> ", 63'u64, ");"].}
{.emit:["*",lo, " = (NU64)", dblPrec," & ", (1'u64 shl 63 - 1), ";"].}
func unsafeFMA2_hi*(hi: var Ct[uint64], a1, b1, a2, b2, c: Ct[uint64]) {.inline.}=
## Returns the high word of the sum of extended precision multiply-adds
## (hi, _) <- a1 * b1 + a2 * b2 + c
block:
var dblPrec: uint128
{.emit:[dblPrec, " = (unsigned __int128)", a1," * (unsigned __int128)", b1,
" + (unsigned __int128)", a2," * (unsigned __int128)", b2,
" + (unsigned __int128)", c, ";"].}
# Don't forget to dereference the var param
{.emit:["*",hi, " = (NU64)(", dblPrec," >> ", 63'u64, ");"].}
elif defined(vcc):
func udiv128(highDividend, lowDividend, divisor: uint64, remainder: var uint64): uint64 {.importc:"_udiv128", header: "<immintrin.h>", nodecl.}
## Division 128 by 64, Microsoft only, 64-bit only,
## returns quotient as return value remainder as var parameter
## Warning ⚠️ :
## - if n_hi == d, quotient does not fit in an uint64 and will throw SIGFPE
## - if n_hi > d result is undefined
func unsafeDiv2n1n*(q, r: var Ct[uint64], n_hi, n_lo, d: Ct[uint64]) {.inline.}=
## Division uint128 by uint64
## Warning ⚠️ :
## - if n_hi == d, quotient does not fit in an uint64 and will throw SIGFPE
## - if n_hi > d result is undefined
{.warning: "unsafeDiv2n1n is not constant-time at the moment on most hardware".}
# TODO !!! - Replace by constant-time, portable, non-assembly version
# -> use uint128? Compiler might add unwanted branches
q = udiv128(n_hi, n_lo, d, r)
func addcarry_u64(carryIn: cuchar, a, b: uint64, sum: var uint64): cuchar {.importc:"_addcarry_u64", header:"<intrin.h>", nodecl.}
## (CarryOut, Sum) <-- a + b
## Available on MSVC and ICC (Clang and GCC have very bad codegen, use uint128 instead)
## Return value is the carry-out
func umul128(a, b: uint64, hi: var uint64): uint64 {.importc:"_umul128", header:"<intrin.h>", nodecl.}
## (hi, lo) <-- a * b
## Return value is the low word
func unsafeFMA*(hi, lo: var Ct[uint64], a, b, c: Ct[uint64]) {.inline.}=
## Extended precision multiplication + addition
## This is constant-time on most hardware except some specific one like Cortex M0
## (hi, lo) <- a*b + c
var carry: cuchar
var hi, lo: uint64
lo = umul128(uint64(a), uint64(b), hi)
carry = addcarry_u64(cuchar(0), lo, uint64(c), lo)
discard addcarry_u64(carry, hi, 0, hi)
func unsafeFMA2*(hi, lo: var Ct[uint64], a1, b1, a2, b2, c1, c2: Ct[uint64]) {.inline.}=
## (hi, lo) <- a1 * b1 + a2 * b2 + c1 + c2
var f1_lo, f1_hi, f2_lo, f2_hi: uint64
var carry: cuchar
f1_lo = umul128(uint64(a1), uint64(b1), f1_hi)
f2_lo = umul128(uint64(a2), uint64(b2), f2_hi)
# On CPU with ADX: we can use addcarryx_u64 (adcx/adox) to have
# separate carry chains that can be processed in parallel by CPU
# Carry chain 1
carry = addcarry_u64(cuchar(0), f1_lo, uint64(c1), f1_lo)
discard addcarry_u64(carry, f1_hi, 0, f1_hi)
# Carry chain 2
carry = addcarry_u64(cuchar(0), f2_lo, uint64(c2), f2_lo)
discard addcarry_u64(carry, f2_hi, 0, f2_hi)
# Merge
carry = addcarry_u64(cuchar(0), f1_lo, f2_lo, lo)
discard addcarry_u64(carry, f1_hi, f2_hi, hi)
func unsafeFMA2_hi*(hi: var Ct[uint64], a1, b1, a2, b2, c: Ct[uint64]) {.inline.}=
## Returns the high word of the sum of extended precision multiply-adds
## (hi, _) <- a1 * b1 + a2 * b2 + c
var f1_lo, f1_hi, f2_lo, f2_hi: uint64
var carry: cuchar
f1_lo = umul128(uint64(a1), uint64(b1), f1_hi)
f2_lo = umul128(uint64(a2), uint64(b2), f2_hi)
carry = addcarry_u64(cuchar(0), f1_lo, uint64(c), f1_lo)
discard addcarry_u64(carry, f1_hi, 0, f1_hi)
# Merge
var lo: uint64
carry = addcarry_u64(cuchar(0), f1_lo, f2_lo, lo)
discard addcarry_u64(carry, f1_hi, f2_hi, hi)
else:
{.error: "Compiler not implemented".}