constantine/constantine/field_fp.nim
2020-02-08 11:42:35 +01:00

179 lines
6.1 KiB
Nim

# Constantine
# Copyright (c) 2018-2019 Status Research & Development GmbH
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
# ############################################################
#
# Field arithmetic over Fp
#
# ############################################################
# We assume that p is prime known at compile-time
import
./word_types, ./bigints
from ./private/word_types_internal import unsafe_div2n1n
type
Fp*[P: static BigInt] = object
## P is a prime number
## All operations on a field are modulo P
value: type(P)
Montgomery*[M: static BigInt] = object
## All operations in the Montgomery domain
## are modulo M. M **must** be odd
value: type(M)
# ############################################################
#
# Aliases
#
# ############################################################
const
CtTrue* = ctrue(Word)
CtFalse* = cfalse(Word)
template add(a: var Fp, b: Fp, ctl: CTBool[Word]): CTBool[Word] =
add(a.value, b.value, ctl)
template sub(a: var Fp, b: Fp, ctl: CTBool[Word]): CTBool[Word] =
sub(a.value, b.value, ctl)
template `[]`(a: Fp, idx: int): Word =
a.value.limbs[idx]
# ############################################################
#
# Field arithmetic primitives
#
# ############################################################
func `+`*(a, b: Fp): Fp =
## Addition over Fp
# Non-CT implementation from Stint
#
# let b_from_p = p - b # Don't do a + b directly to avoid overflows
# if a >= b_from_p:
# return a - b_from_p
# return m - b_from_p + a
result = a
var ctl = add(result, b, CtTrue)
ctl = ctl or not sub(result, Fp.P, CtFalse)
sub(result, Fp.P, ctl)
template shiftAddImpl(a: var Fp, c: Word) =
## Shift-accumulate
## Shift input a by a word and add c.
##
## With a word W = 2^WordBitSize and a field Fp
## Does a <- a * W + c (mod p)
const len = a.value.limbs.len
when Fp.P.bits <= WordBitSize:
# If the prime fits in a single limb
var q: Word
# (hi, lo) = a * 2^63 + c
let hi = a[0] shr 1 # 64 - 63 = 1
let lo = (a[0] shl WordBitSize) or c # Assumes most-significant bit in c is not set
unsafeDiv2n1n(q, a[0], hi, lo, Fp.P.limbs[0]) # (hi, lo) mod P
else:
## Multiple limbs
let hi = a[^1] # Save the high word to detect carries
const R = Fp.P.bits and WordBitSize # R = bits mod 64
when R == 0: # If the number of bits is a multiple of 64
let a1 = a[^2] #
let a0 = a[^1] #
moveMem(a[1], a[0], (len-1) * Word.sizeof) # we can just shift words
a[0] = c # and replace the first one by c
const p0 = Fp.P[^1]
else: # Need to deal with partial word shifts at the edge.
let a1 = ((a[^2] shl (WordBitSize-R)) or (a[^3] shr R)) and MaxWord
let a0 = ((a[^1] shl (WordBitSize-R)) or (a[^2] shr R)) and MaxWord
moveMem(a[1], a[0], (len-1) * Word.sizeof)
a[0] = c
const p0 = ((Fp.P[^1] shl (WordBitSize-R)) or (Fp.P[^2] shr R)) and MaxWord
# p0 has its high bit set. (a0, a1)/p0 fits in a limb.
# Get a quotient q, at most we will be 2 iterations off
# from the true quotient
let
a_hi = a0 shr 1 # 64 - 63 = 1
a_lo = (a0 shl WordBitSize) or a1
var q, r: Word
q = unsafeDiv2n1n(q, r, a_hi, a_lo, p0) # Estimate quotient
q = mux( # If n_hi == divisor
a0 == b0, MaxWord, # Quotient == MaxWord (0b0111...1111)
mux(
q == 0, 0, # elif q == 0, true quotient = 0
q - 1 # else instead of being of by 0, 1 or 2
) # we returning q-1 to be off by -1, 0 or 1
)
# Now substract a*2^63 - q*p
var carry = Word(0)
var over_p = Word(1) # Track if quotient than the modulus
for i in static(0 ..< Fp.P.limbs.len):
var qp_lo: Word
block: # q*p
qp_hi: Word
unsafeExtendedPrecMul(qp_hi, qp_lo, q, Fp.P[i]) # q * p
assert qp_lo.isMsbSet.not
assert carry.isMsbSet.not
qp_lo += carry # Add carry from previous limb
let qp_carry = qp_lo.isMsbSet
carry = mux(qp_carry, qp_hi + Word(1), qp_hi) # New carry
qp_lo = qp_lo and MaxWord # Normalize to u63
block: # a*2^63 - q*p
a[i] -= qp_lo
carry += Word(a[i].isMsbSet) # Adjust if borrow
a[i] = a[i] and MaxWord # Normalize to u63
over_p = mux(
a[i] == Fp.P[i], over_p,
a[i] > Fp.P[i]
)
# Fix quotient, the true quotient is either q-1, q or q+1
#
# if carry < q or carry == q and over_p we must do "a -= p"
# if carry > hi (negative result) we must do "a+= p"
let neg = carry < hi
let tooBig = not neg and (over_p or (carry < hi))
add(a, Fp.P, neg)
sub(a, Fp.P, tooBig)
func shiftAdd*(a: var Fp, c: Word) =
## Shift-accumulate modulo P
## Shift input a by a word and add c modulo P
##
## With a word W = 2^WordBitSize and a field Fp
## Does a <- a * W + c (mod p)
shiftAddImpl(a, c)
func shiftAdd*(a: var Fp, c: static Word) =
## Scale-accumulate modulo P
## Shift input a by a word and add c modulo P
##
## With a word W = 2^WordBitSize and a field Fp
## Does a <- a * W + c (mod p)
shiftAddImpl(a, c)