Mamy Ratsimbazafy 638cb71e16
Fr: Finite Field parametrized by the curve order (#115)
* Introduce Fr type: finite field over curve order. Need workaround for https://github.com/nim-lang/Nim/issues/16774

* Split curve properties into core and derived

* Attach field properties to an instantiated field instead of the curve enum

* Workaround https://github.com/nim-lang/Nim/issues/14021, yet another "working with types in macros" is difficult https://github.com/nim-lang/RFCs/issues/44

* Implement finite field over prime order of a curve subgroup

* skip OpenSSL tests on windows
2021-01-22 00:09:52 +01:00

213 lines
7.4 KiB
Nim

# Constantine
# Copyright (c) 2018-2019 Status Research & Development GmbH
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
import
../config/[curves, type_ff],
../towers,
../elliptic/[
ec_shortweierstrass_affine,
ec_shortweierstrass_projective
],
./lines_projective,
./mul_fp12_by_lines,
./cyclotomic_fp12,
../isogeny/frobenius,
../curves/zoo_pairings
# ############################################################
#
# Optimal ATE pairing for
# BN curves
#
# ############################################################
# - Memory-saving computation of the pairing final exponentiation on BN curves
# Sylvain Duquesne and Loubna Ghammam, 2015
# https://eprint.iacr.org/2015/192
#
# - Faster hashing to G2
# Laura Fuentes-Castañeda, Edward Knapp,
# Francisco Jose Rodríguez-Henríquez, 2011
# https://link.springer.com/content/pdf/10.1007%2F978-3-642-28496-0_25.pdf
#
# - Faster Pairing Computations on Curves with High-Degree Twists
# Craig Costello, Tanja Lange, and Michael Naehrig, 2009
# https://eprint.iacr.org/2009/615.pdf
# Generic pairing implementation
# ----------------------------------------------------------------
func millerLoopGenericBN*[C](
f: var Fp12[C],
P: ECP_ShortW_Aff[Fp[C], NotOnTwist],
Q: ECP_ShortW_Aff[Fp2[C], OnTwist]
) =
## Generic Miller Loop for BN curves
## Computes f{6u+2,Q}(P) with u the BN curve parameter
# TODO - boundary cases
# Loop start
# The literatture starts from both L-1 or L-2:
# L-1:
# - Scott2019, Pairing Implementation Revisited, Algorithm 1
# - Aranha2010, Faster Explicit Formulas ..., Algorithm 1
# L-2
# - Beuchat2010, High-Speed Software Implementation ..., Algorithm 1
# - Aranha2013, The Realm of The Pairings, Algorithm 1
# - Costello, Thesis, Algorithm 2.1
# - Costello2012, Pairings for Beginners, Algorithm 5.1
#
# Even the guide to pairing based cryptography has both
# Chapter 3: L-1 (Algorithm 3.1)
# Chapter 11: L-2 (Algorithm 11.1) but it explains why L-2 (unrolling)
# Loop end
# - Some implementation, for example Beuchat2010 or the Guide to Pairing-Based Cryptography
# have an extra line addition after the main loop, this seems related to
# the NAF recoding and not Miller Loop
# - With r the order of G1 / G2 / GT,
# we have [r]T = Inf
# Hence, [r-1]T = -T
# so either we use complete addition
# or we special case line addition of T and -T (it's a vertical line)
# or we ensure the loop is done for a number of iterations strictly less
# than the curve order which is the case for BN curves
var
T {.noInit.}: ECP_ShortW_Proj[Fp2[C], OnTwist]
line {.noInit.}: Line[Fp2[C]]
nQ{.noInit.}: typeof(Q)
T.projectiveFromAffine(Q)
nQ.neg(Q)
f.setOne()
template u: untyped = C.pairing(ate_param)
let u3 = 3*C.pairing(ate_param)
for i in countdown(u3.bits - 2, 1):
f.square()
line.line_double(T, P)
f.mul(line)
let naf = u3.bit(i).int8 - u.bit(i).int8 # This can throw exception
if naf == 1:
line.line_add(T, Q, P)
f.mul(line)
elif naf == -1:
line.line_add(T, nQ, P)
f.mul(line)
when C.pairing(ate_param_isNeg):
# In GT, x^-1 == conjugate(x)
# Remark 7.1, chapter 7.1.1 of Guide to Pairing-Based Cryptography, El Mrabet, 2017
f.conj()
# Ate pairing for BN curves need adjustment after Miller loop
when C.pairing(ate_param_isNeg):
T.neg()
var V {.noInit.}: typeof(Q)
V.frobenius_psi(Q)
line.line_add(T, V, P)
f.mul(line)
V.frobenius_psi(Q, 2)
V.neg()
line.line_add(T, V, P)
f.mul(line)
func finalExpGeneric[C: static Curve](f: var Fp12[C]) =
## A generic and slow implementation of final exponentiation
## for sanity checks purposes.
f.powUnsafeExponent(C.pairing(finalexponent), window = 3)
func pairing_bn_reference*[C](
gt: var Fp12[C],
P: ECP_ShortW_Proj[Fp[C], NotOnTwist],
Q: ECP_ShortW_Proj[Fp2[C], OnTwist]) =
## Compute the optimal Ate Pairing for BN curves
## Input: P ∈ G1, Q ∈ G2
## Output: e(P, Q) ∈ Gt
##
## Reference implementation
var Paff {.noInit.}: ECP_ShortW_Aff[Fp[C], NotOnTwist]
var Qaff {.noInit.}: ECP_ShortW_Aff[Fp2[C], OnTwist]
Paff.affineFromProjective(P)
Qaff.affineFromProjective(Q)
gt.millerLoopGenericBN(Paff, Qaff)
gt.finalExpGeneric()
# Optimized pairing implementation
# ----------------------------------------------------------------
func finalExpHard_BN*[C: static Curve](f: var Fp12[C]) =
## Hard part of the final exponentiation
## Specialized for BN curves
##
# - Memory-saving computation of the pairing final exponentiation on BN curves
# Sylvain Duquesne and Loubna Ghammam, 2015
# https://eprint.iacr.org/2015/192
# - Faster hashing to G2
# Laura Fuentes-Castañeda, Edward Knapp,
# Francisco Jose Rodríguez-Henríquez, 2011
# https://link.springer.com/content/pdf/10.1007%2F978-3-642-28496-0_25.pdf
#
# We use the Fuentes-Castañeda et al algorithm without
# memory saving optimization
# as that variant has an exponentiation by -2u-1
# that requires another addition chain
var t0 {.noInit.}, t1 {.noinit.}, t2 {.noinit.}, t3 {.noinit.}, t4 {.noinit.}: Fp12[C]
t0.pow_u(f, invert = false) # t0 = f^|u|
t0.cyclotomic_square() # t0 = f^2|u|
t1.cyclotomic_square(t0) # t1 = f^4|u|
t1 *= t0 # t1 = f^6|u|
t2.pow_u(t1, invert = false) # t2 = f^6u²
if C.pairing(ate_param_is_Neg):
t3.cyclotomic_inv(t1) # t3 = f^6u
else:
t3 = t1 # t3 = f^6u
t1.prod(t2, t3) # t1 = f^6u.f^6u²
t3.cyclotomic_square(t2) # t3 = f^12u²
t4.pow_u(t3) # t4 = f^12u³
t4 *= t1 # t4 = f^(6u + 6u² + 12u³) = f^λ₂
if not C.pairing(ate_param_is_Neg):
t0.cyclotomic_inv() # t0 = f^-2u
t3.prod(t4, t0) # t3 = f^(4u + 6u² + 12u³)
t0.prod(t2, t4) # t0 = f^6u.f^12u².f^12u³
t0 *= f # t0 = f^(1 + 6u + 12u² + 12u³) = f^λ₀
t2.frobenius_map(t3) # t2 = f^(4u + 6u² + 12u³)p = f^λ₁p
t0 *= t2 # t0 = f^(λ₀+λ₁p)
t2.frobenius_map(t4, 2) # t2 = f^λ₂p²
t0 *= t2 # t0 = f^(λ₀ + λ₁p + λ₂p²)
t2.cyclotomic_inv(f) # t2 = f⁻¹
t2 *= t3 # t3 = f^(-1 + 4u + 6u² + 12u³) = f^λ₃
f.frobenius_map(t2, 3) # r = f^λ₃p³
f *= t0 # r = f^(λ₀ + λ₁p + λ₂p² + λ₃p³) = f^((p⁴-p²+1)/r)
func pairing_bn*[C](
gt: var Fp12[C],
P: ECP_ShortW_Proj[Fp[C], NotOnTwist],
Q: ECP_ShortW_Proj[Fp2[C], OnTwist]) =
## Compute the optimal Ate Pairing for BLS12 curves
## Input: P ∈ G1, Q ∈ G2
## Output: e(P, Q) ∈ Gt
var Paff {.noInit.}: ECP_ShortW_Aff[Fp[C], NotOnTwist]
var Qaff {.noInit.}: ECP_ShortW_Aff[Fp2[C], OnTwist]
Paff.affineFromProjective(P)
Qaff.affineFromProjective(Q)
gt.millerLoopGenericBN(Paff, Qaff)
gt.finalExpEasy()
gt.finalExpHard_BN()