mirror of
https://github.com/logos-storage/constantine.git
synced 2026-01-03 05:33:07 +00:00
* Lay out the refactoring objectives and tradeoffs * Refactor the 32 and 64-bit primitives [skip ci] * BigInts and Modular BigInts compile * Make the bigints test compile * Fix modular reduction * Fix reduction tests vs GMP * Implement montegomery mul, pow, inverse, WIP finite field compilation * Make FiniteField compile * Fix exponentiation compilation * Fix Montgomery magic constant computation for 2^64 words * Fix typo in non-optimized CIOS - passing finite fields IO tests * Add limbs comparisons [skip ci] * Fix on precomputation of the Montgomery magic constant * Passing all tests including 𝔽p2 * modular addition, the test for mersenne prime was wrong * update benches * Fix "nimble test" + typo on out-of-place field addition * bigint division, normalization is needed: https://travis-ci.com/github/mratsim/constantine/jobs/298359743 * missing conversion in subborrow non-x86 fallback - https://travis-ci.com/github/mratsim/constantine/jobs/298359744 * Fix little-endian serialization * Constantine32 flag to run 32-bit constantine on 64-bit machines * IO Field test, ensure that BaseType is used instead of uint64 when the prime can field in uint32 * Implement proper addcarry and subborrow fallback for the compile-time VM * Fix export issue when the logical wordbitwidth == physical wordbitwidth - passes all tests (32-bit and 64-bit) * Fix uint128 on ARM * Fix C++ conditional copy and ARM addcarry/subborrow * Add investigation for SIGFPE in Travis * Fix debug display for unsafeDiv2n1n * multiplexer typo * moveMem bug in glibc of Ubuntu 16.04? * Was probably missing an early clobbered register annotation on conditional mov * Note on Montgomery-friendly moduli * Strongly suspect a GCC before GCC 7 codegen bug (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=87139) * hex conversion was (for debugging) not taking requested order into account + inlining comment * Use 32-bit limbs on ARM64, uint128 builtin __udivti4 bug? * Revert "Use 32-bit limbs on ARM64, uint128 builtin __udivti4 bug?" This reverts commit 087f9aa7fb40bbd058d05cbd8eec7fc082911f49. * Fix subborrow fallback for non-x86 (need to maks the borrow)
162 lines
4.7 KiB
Nim
162 lines
4.7 KiB
Nim
# Constantine
|
|
# Copyright (c) 2018-2019 Status Research & Development GmbH
|
|
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
|
|
# Licensed and distributed under either of
|
|
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
|
|
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
|
|
# at your option. This file may not be copied, modified, or distributed except according to those terms.
|
|
|
|
import unittest,
|
|
../constantine/arithmetic/[bigints, finite_fields],
|
|
../constantine/io/io_fields,
|
|
../constantine/config/curves
|
|
|
|
import ../constantine/io/io_bigints
|
|
|
|
static: doAssert defined(testingCurves), "This modules requires the -d:testingCurves compile option"
|
|
|
|
proc main() =
|
|
suite "Modular exponentiation over finite fields":
|
|
test "n² mod 101":
|
|
let exponent = BigInt[64].fromUint(2'u64)
|
|
|
|
block: # 1*1 mod 101
|
|
var n, expected: Fp[Fake101]
|
|
|
|
n.fromUint(1'u32)
|
|
expected = n
|
|
|
|
var r: Fp[Fake101]
|
|
r.prod(n, n)
|
|
|
|
var r_bytes: array[8, byte]
|
|
r_bytes.exportRawUint(r, cpuEndian)
|
|
let rU64 = cast[uint64](r_bytes)
|
|
|
|
check:
|
|
# Check equality in the Montgomery domain
|
|
bool(r == expected)
|
|
# Check equality when converting back to natural domain
|
|
1'u64 == rU64
|
|
|
|
block: # 1^2 mod 101
|
|
var n, expected: Fp[Fake101]
|
|
|
|
n.fromUint(1'u32)
|
|
expected = n
|
|
|
|
n.pow(exponent)
|
|
|
|
var n_bytes: array[8, byte]
|
|
n_bytes.exportRawUint(n, cpuEndian)
|
|
let r = cast[uint64](n_bytes)
|
|
|
|
check:
|
|
# Check equality in the Montgomery domain
|
|
bool(n == expected)
|
|
# Check equality when converting back to natural domain
|
|
1'u64 == r
|
|
|
|
block: # 2^2 mod 101
|
|
var n, expected: Fp[Fake101]
|
|
|
|
n.fromUint(2'u32)
|
|
expected.fromUint(4'u32)
|
|
|
|
n.pow(exponent)
|
|
|
|
var n_bytes: array[8, byte]
|
|
n_bytes.exportRawUint(n, cpuEndian)
|
|
let r = cast[uint64](n_bytes)
|
|
|
|
check:
|
|
# Check equality in the Montgomery domain
|
|
bool(n == expected)
|
|
# Check equality when converting back to natural domain
|
|
4'u64 == r
|
|
|
|
block: # 10^2 mod 101
|
|
var n, expected: Fp[Fake101]
|
|
|
|
n.fromUint(10'u32)
|
|
expected.fromUint(100'u32)
|
|
|
|
n.pow(exponent)
|
|
|
|
var n_bytes: array[8, byte]
|
|
n_bytes.exportRawUint(n, cpuEndian)
|
|
let r = cast[uint64](n_bytes)
|
|
|
|
check:
|
|
# Check equality in the Montgomery domain
|
|
bool(n == expected)
|
|
# Check equality when converting back to natural domain
|
|
100'u64 == r
|
|
|
|
block: # 11^2 mod 101
|
|
var n, expected: Fp[Fake101]
|
|
|
|
n.fromUint(11'u32)
|
|
expected.fromUint(20'u32)
|
|
|
|
n.pow(exponent)
|
|
|
|
var n_bytes: array[8, byte]
|
|
n_bytes.exportRawUint(n, cpuEndian)
|
|
let r = cast[uint64](n_bytes)
|
|
|
|
check:
|
|
# Check equality in the Montgomery domain
|
|
bool(n == expected)
|
|
# Check equality when converting back to natural domain
|
|
20'u64 == r
|
|
|
|
test "x^(p-2) mod p (modular inversion if p prime)":
|
|
block:
|
|
var x: Fp[BLS12_381]
|
|
|
|
# BN254 field modulus
|
|
x.fromHex("0x30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd47")
|
|
# BLS12-381 prime - 2
|
|
let exponent = BigInt[381].fromHex("0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffaaa9")
|
|
|
|
let expected = "0x0636759a0f3034fa47174b2c0334902f11e9915b7bd89c6a2b3082b109abbc9837da17201f6d8286fe6203caa1b9d4c8"
|
|
|
|
x.pow(exponent)
|
|
let computed = x.toHex()
|
|
|
|
check:
|
|
computed == expected
|
|
|
|
block:
|
|
var x: Fp[BLS12_381]
|
|
|
|
# BN254 field modulus
|
|
x.fromHex("0x30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd47")
|
|
# BLS12-381 prime - 2
|
|
let exponent = BigInt[381].fromHex("0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffaaa9")
|
|
|
|
let expected = "0x0636759a0f3034fa47174b2c0334902f11e9915b7bd89c6a2b3082b109abbc9837da17201f6d8286fe6203caa1b9d4c8"
|
|
|
|
x.powUnsafeExponent(exponent)
|
|
let computed = x.toHex()
|
|
|
|
check:
|
|
computed == expected
|
|
|
|
suite "Modular inversion over prime fields":
|
|
test "x^(-1) mod p":
|
|
var x: Fp[BLS12_381]
|
|
|
|
# BN254 field modulus
|
|
x.fromHex("0x30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd47")
|
|
|
|
let expected = "0x0636759a0f3034fa47174b2c0334902f11e9915b7bd89c6a2b3082b109abbc9837da17201f6d8286fe6203caa1b9d4c8"
|
|
x.inv()
|
|
let computed = x.toHex()
|
|
|
|
check:
|
|
computed == expected
|
|
|
|
main()
|