constantine/constantine/primitives/extended_precision.nim
Mamy Ratsimbazafy 4ff0e3d90b
Internals refactor + renewed focus on perf (#17)
* Lay out the refactoring objectives and tradeoffs

* Refactor the 32 and 64-bit primitives [skip ci]

* BigInts and Modular BigInts compile

* Make the bigints test compile

* Fix modular reduction

* Fix reduction tests vs GMP

* Implement montegomery mul, pow, inverse, WIP finite field compilation

* Make FiniteField compile

* Fix exponentiation compilation

* Fix Montgomery magic constant computation  for 2^64 words

* Fix typo in non-optimized CIOS - passing finite fields IO tests

* Add limbs comparisons [skip ci]

* Fix on precomputation of the Montgomery magic constant

* Passing all tests including 𝔽p2

* modular addition, the test for mersenne prime was wrong

* update benches

* Fix "nimble test" + typo on out-of-place field addition

* bigint division, normalization is needed: https://travis-ci.com/github/mratsim/constantine/jobs/298359743

* missing conversion in subborrow non-x86 fallback - https://travis-ci.com/github/mratsim/constantine/jobs/298359744

* Fix little-endian serialization

* Constantine32 flag to run 32-bit constantine on 64-bit machines

* IO Field test, ensure that BaseType is used instead of uint64 when the prime can field in uint32

* Implement proper addcarry and subborrow fallback for the compile-time VM

* Fix export issue when the logical wordbitwidth == physical wordbitwidth - passes all tests (32-bit and 64-bit)

* Fix uint128 on ARM

* Fix C++ conditional copy and ARM addcarry/subborrow

* Add investigation for SIGFPE in Travis

* Fix debug display for unsafeDiv2n1n

* multiplexer typo

* moveMem bug in glibc of Ubuntu 16.04?

* Was probably missing an early clobbered register annotation on conditional mov

* Note on Montgomery-friendly moduli

* Strongly suspect a GCC before GCC 7 codegen bug (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=87139)

* hex conversion was (for debugging) not taking requested order into account + inlining comment

* Use 32-bit limbs on ARM64, uint128 builtin __udivti4 bug?

* Revert "Use 32-bit limbs on ARM64, uint128 builtin __udivti4 bug?"

This reverts commit 087f9aa7fb40bbd058d05cbd8eec7fc082911f49.

* Fix subborrow fallback for non-x86 (need to maks the borrow)
2020-03-16 16:33:51 +01:00

83 lines
3.3 KiB
Nim

# Constantine
# Copyright (c) 2018-2019 Status Research & Development GmbH
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
# ############################################################
#
# Extended precision primitives
#
# ############################################################
import ./constant_time_types
# ############################################################
#
# 32-bit words
#
# ############################################################
func unsafeDiv2n1n*(q, r: var Ct[uint32], n_hi, n_lo, d: Ct[uint32]) {.inline.}=
## Division uint64 by uint32
## Warning ⚠️ :
## - if n_hi == d, quotient does not fit in an uint32
## - if n_hi > d result is undefined
##
## To avoid issues, n_hi, n_lo, d should be normalized.
## i.e. shifted (== multiplied by the same power of 2)
## so that the most significant bit in d is set.
# TODO !!! - Replace by constant-time, portable, non-assembly version
# -> use uint128? Compiler might add unwanted branches
{.warning: "unsafeDiv2n1n is not constant-time at the moment on most hardware".}
let dividend = (uint64(n_hi) shl 32) or uint64(n_lo)
let divisor = uint64(d)
q = (Ct[uint32])(dividend div divisor)
r = (Ct[uint32])(dividend mod divisor)
func muladd1*(hi, lo: var Ct[uint32], a, b, c: Ct[uint32]) {.inline.} =
## Extended precision multiplication + addition
## (hi, lo) <- a*b + c
##
## Note: 0xFFFFFFFF² -> (hi: 0xFFFFFFFE, lo: 0x00000001)
## so adding any c cannot overflow
##
## This is constant-time on most hardware
## See: https://www.bearssl.org/ctmul.html
let dblPrec = uint64(a) * uint64(b) + uint64(c)
lo = (Ct[uint32])(dblPrec)
hi = (Ct[uint32])(dblPrec shr 32)
func muladd2*(hi, lo: var Ct[uint32], a, b, c1, c2: Ct[uint32]) {.inline.}=
## Extended precision multiplication + addition + addition
## This is constant-time on most hardware except some specific one like Cortex M0
## (hi, lo) <- a*b + c1 + c2
##
## Note: 0xFFFFFFFF² -> (hi: 0xFFFFFFFE, lo: 0x00000001)
## so adding 0xFFFFFFFF leads to (hi: 0xFFFFFFFF, lo: 0x00000000)
## and we have enough space to add again 0xFFFFFFFF without overflowing
let dblPrec = uint64(a) * uint64(b) + uint64(c1) + uint64(c2)
lo = (Ct[uint32])(dblPrec)
hi = (Ct[uint32])(dblPrec shr 32)
# ############################################################
#
# 64-bit words
#
# ############################################################
when sizeof(int) == 8:
when defined(vcc):
from ./extended_precision_x86_64_msvc import unsafeDiv2n1n, muladd1, muladd2
elif GCCCompatible:
# TODO: constant-time div2n1n
when X86:
from ./extended_precision_x86_64_gcc import unsafeDiv2n1n
from ./extended_precision_64bit_uint128 import muladd1, muladd2
else:
from ./extended_precision_64bit_uint128 import unsafeDiv2n1n, muladd1, muladd2
export unsafeDiv2n1n, muladd1, muladd2