constantine/tests/test_precomputed.nim
Mamy Ratsimbazafy 2613356281
Endomorphism acceleration for Scalar Multiplication (#44)
* Add MultiScalar recoding from "Efficient and Secure Algorithms for GLV-Based Scalar Multiplication" by Faz et al

* precompute cube root of unity - Add VM precomputation of Fp - workaround upstream bug https://github.com/nim-lang/Nim/issues/14585

* Add the φ-accelerated lookup table builder

* Add a dedicated bithacks file

* cosmetic import consistency

* Build the φ precompute table with n-1 EC additions instead of 2^(n-1) additions

* remove binary

* Add the GLV precomputations to the sage scripts

* You can't avoid it, bigint multiplication is needed at one point

* Add bigint multiplication discarding some low words

* Implement the lattice decomposition in sage

* Proper decomposition for BN254

* Prepare the code for a new scalar mul

* We compile, and now debugging hunt

* More helpers to debug GLV scalar Mul

* Fix conditional negation

* Endomorphism accelerated scalar mul working for BN254 curve

* Implement endomorphism acceleration for BLS12-381 (needed cofactor clearing of the point)

* fix nimble test script after bench rename
2020-06-14 15:39:06 +02:00

38 lines
1.3 KiB
Nim

# Constantine
# Copyright (c) 2018-2019 Status Research & Development GmbH
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
import std/unittest,
../constantine/arithmetic,
../constantine/config/curves,
../constantine/io/[io_bigints, io_fields]
proc checkCubeRootOfUnity(curve: static Curve) =
test $curve & " cube root of unity (mod p)":
var cru = curve.getCubicRootOfUnity_mod_p()
cru.square()
cru *= curve.getCubicRootOfUnity_mod_p()
check: bool cru.isOne()
test $curve & " cube root of unity (mod r)":
var cru: BigInt[3 * curve.getCurveOrderBitwidth()]
cru.prod(curve.getCubicRootOfUnity_mod_r(), curve.getCubicRootOfUnity_mod_r())
cru.prod(cru, curve.getCubicRootOfUnity_mod_r())
var r: BigInt[curve.getCurveOrderBitwidth()]
r.reduce(cru, curve.getCurveOrder)
check: bool r.isOne()
proc main() =
suite "Sanity checks on precomputed values":
checkCubeRootOfUnity(BN254_Snarks)
# checkCubeRootOfUnity(BLS12_381)
main()