constantine/tests/test_finite_fields.nim
Mamy Ratsimbazafy 2613356281
Endomorphism acceleration for Scalar Multiplication (#44)
* Add MultiScalar recoding from "Efficient and Secure Algorithms for GLV-Based Scalar Multiplication" by Faz et al

* precompute cube root of unity - Add VM precomputation of Fp - workaround upstream bug https://github.com/nim-lang/Nim/issues/14585

* Add the φ-accelerated lookup table builder

* Add a dedicated bithacks file

* cosmetic import consistency

* Build the φ precompute table with n-1 EC additions instead of 2^(n-1) additions

* remove binary

* Add the GLV precomputations to the sage scripts

* You can't avoid it, bigint multiplication is needed at one point

* Add bigint multiplication discarding some low words

* Implement the lattice decomposition in sage

* Proper decomposition for BN254

* Prepare the code for a new scalar mul

* We compile, and now debugging hunt

* More helpers to debug GLV scalar Mul

* Fix conditional negation

* Endomorphism accelerated scalar mul working for BN254 curve

* Implement endomorphism acceleration for BLS12-381 (needed cofactor clearing of the point)

* fix nimble test script after bench rename
2020-06-14 15:39:06 +02:00

315 lines
7.7 KiB
Nim

# Constantine
# Copyright (c) 2018-2019 Status Research & Development GmbH
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
import std/unittest,
../constantine/arithmetic,
../constantine/io/io_fields,
../constantine/config/curves
static: doAssert defined(testingCurves), "This modules requires the -d:testingCurves compile option"
proc main() =
suite "Basic arithmetic over finite fields":
test "Addition mod 101":
block:
var x, y, z: Fp[Fake101]
x.fromUint(80'u32)
y.fromUint(10'u32)
z.fromUint(90'u32)
let u = x + y
x += y
var x_bytes: array[8, byte]
x_bytes.exportRawUint(x, cpuEndian)
check:
# Check equality in the Montgomery domain
bool(z == x)
bool(z == u)
# Check equality when converting back to natural domain
90'u64 == cast[uint64](x_bytes)
block:
var x, y, z: Fp[Fake101]
x.fromUint(80'u32)
y.fromUint(21'u32)
z.fromUint(0'u32)
let u = x + y
x += y
var x_bytes: array[8, byte]
x_bytes.exportRawUint(x, cpuEndian)
check:
# Check equality in the Montgomery domain
bool(z == x)
bool(z == u)
# Check equality when converting back to natural domain
0'u64 == cast[uint64](x_bytes)
block:
var x, y, z: Fp[Fake101]
x.fromUint(80'u32)
y.fromUint(22'u32)
z.fromUint(1'u32)
let u = x + y
x += y
var x_bytes: array[8, byte]
x_bytes.exportRawUint(x, cpuEndian)
check:
# Check equality in the Montgomery domain
bool(z == x)
bool(z == u)
# Check equality when converting back to natural domain
1'u64 == cast[uint64](x_bytes)
test "Substraction mod 101":
block:
var x, y, z: Fp[Fake101]
x.fromUint(80'u32)
y.fromUint(10'u32)
z.fromUint(70'u32)
let u = x - y
x -= y
var x_bytes: array[8, byte]
x_bytes.exportRawUint(x, cpuEndian)
check:
# Check equality in the Montgomery domain
bool(z == x)
bool(z == u)
# Check equality when converting back to natural domain
70'u64 == cast[uint64](x_bytes)
block:
var x, y, z: Fp[Fake101]
x.fromUint(80'u32)
y.fromUint(80'u32)
z.fromUint(0'u32)
let u = x - y
x -= y
var x_bytes: array[8, byte]
x_bytes.exportRawUint(x, cpuEndian)
check:
# Check equality in the Montgomery domain
bool(z == x)
bool(z == u)
# Check equality when converting back to natural domain
0'u64 == cast[uint64](x_bytes)
block:
var x, y, z: Fp[Fake101]
x.fromUint(80'u32)
y.fromUint(81'u32)
z.fromUint(100'u32)
let u = x - y
x -= y
var x_bytes: array[8, byte]
x_bytes.exportRawUint(x, cpuEndian)
check:
# Check equality in the Montgomery domain
bool(z == x)
bool(z == u)
# Check equality when converting back to natural domain
100'u64 == cast[uint64](x_bytes)
test "Multiplication mod 101":
block:
var x, y, z: Fp[Fake101]
x.fromUint(10'u32)
y.fromUint(10'u32)
z.fromUint(100'u32)
let r = x * y
var r_bytes: array[8, byte]
r_bytes.exportRawUint(r, cpuEndian)
check:
# Check equality in the Montgomery domain
bool(z == r)
# Check equality when converting back to natural domain
100'u64 == cast[uint64](r_bytes)
block:
var x, y, z: Fp[Fake101]
x.fromUint(10'u32)
y.fromUint(11'u32)
z.fromUint(9'u32)
let r = x * y
var r_bytes: array[8, byte]
r_bytes.exportRawUint(r, cpuEndian)
check:
# Check equality in the Montgomery domain
bool(z == r)
# Check equality when converting back to natural domain
9'u64 == cast[uint64](r_bytes)
test "Addition mod 2^61 - 1":
block:
var x, y, z: Fp[Mersenne61]
x.fromUint(80'u64)
y.fromUint(10'u64)
z.fromUint(90'u64)
x += y
var x_bytes: array[8, byte]
x_bytes.exportRawUint(x, cpuEndian)
let new_x = cast[uint64](x_bytes)
check:
# Check equality in the Montgomery domain
bool(z == x)
# Check equality when converting back to natural domain
new_x == 90'u64
block:
var x, y, z: Fp[Mersenne61]
x.fromUint(1'u64 shl 61 - 2)
y.fromUint(1'u32)
z.fromUint(0'u32)
x += y
var x_bytes: array[8, byte]
x_bytes.exportRawUint(x, cpuEndian)
let new_x = cast[uint64](x_bytes)
check:
# Check equality in the Montgomery domain
bool(z == x)
# Check equality when converting back to natural domain
new_x == 0'u64
block:
var x, y, z: Fp[Mersenne61]
x.fromUint(1'u64 shl 61 - 2)
y.fromUint(2'u64)
z.fromUint(1'u64)
x += y
var x_bytes: array[8, byte]
x_bytes.exportRawUint(x, cpuEndian)
let new_x = cast[uint64](x_bytes)
check:
# Check equality in the Montgomery domain
bool(z == x)
# Check equality when converting back to natural domain
new_x == 1'u64
test "Substraction mod 2^61 - 1":
block:
var x, y, z: Fp[Mersenne61]
x.fromUint(80'u64)
y.fromUint(10'u64)
z.fromUint(70'u64)
x -= y
var x_bytes: array[8, byte]
x_bytes.exportRawUint(x, cpuEndian)
let new_x = cast[uint64](x_bytes)
check:
# Check equality in the Montgomery domain
bool(z == x)
# Check equality when converting back to natural domain
new_x == 70'u64
block:
var x, y, z: Fp[Mersenne61]
x.fromUint(0'u64)
y.fromUint(1'u64)
z.fromUint(1'u64 shl 61 - 2)
x -= y
var x_bytes: array[8, byte]
x_bytes.exportRawUint(x, cpuEndian)
let new_x = cast[uint64](x_bytes)
check:
# Check equality in the Montgomery domain
bool(z == x)
# Check equality when converting back to natural domain
new_x == 1'u64 shl 61 - 2
test "Multiplication mod 2^61 - 1":
block:
var x, y, z: Fp[Mersenne61]
x.fromUint(10'u32)
y.fromUint(10'u32)
z.fromUint(100'u32)
let r = x * y
var r_bytes: array[8, byte]
r_bytes.exportRawUint(r, cpuEndian)
let new_r = cast[uint64](r_bytes)
check:
# Check equality in the Montgomery domain
bool(z == r)
# Check equality when converting back to natural domain
cast[uint64](r_bytes) == 100'u64
block:
var x, y, z: Fp[Mersenne61]
x.fromUint(1'u32 shl 31)
y.fromUint(1'u32 shl 31)
z.fromUint(2'u32)
let r = x * y
var r_bytes: array[8, byte]
r_bytes.exportRawUint(r, cpuEndian)
let new_r = cast[uint64](r_bytes)
check:
# Check equality in the Montgomery domain
bool(z == r)
# Check equality when converting back to natural domain
new_r == 2'u64
main()