constantine/benchmarks/bench_ec_g1.nim
Mamy Ratsimbazafy 2613356281
Endomorphism acceleration for Scalar Multiplication (#44)
* Add MultiScalar recoding from "Efficient and Secure Algorithms for GLV-Based Scalar Multiplication" by Faz et al

* precompute cube root of unity - Add VM precomputation of Fp - workaround upstream bug https://github.com/nim-lang/Nim/issues/14585

* Add the φ-accelerated lookup table builder

* Add a dedicated bithacks file

* cosmetic import consistency

* Build the φ precompute table with n-1 EC additions instead of 2^(n-1) additions

* remove binary

* Add the GLV precomputations to the sage scripts

* You can't avoid it, bigint multiplication is needed at one point

* Add bigint multiplication discarding some low words

* Implement the lattice decomposition in sage

* Proper decomposition for BN254

* Prepare the code for a new scalar mul

* We compile, and now debugging hunt

* More helpers to debug GLV scalar Mul

* Fix conditional negation

* Endomorphism accelerated scalar mul working for BN254 curve

* Implement endomorphism acceleration for BLS12-381 (needed cofactor clearing of the point)

* fix nimble test script after bench rename
2020-06-14 15:39:06 +02:00

72 lines
2.3 KiB
Nim

# Constantine
# Copyright (c) 2018-2019 Status Research & Development GmbH
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
import
# Internals
../constantine/config/curves,
../constantine/arithmetic,
../constantine/elliptic/ec_weierstrass_projective,
# Helpers
../helpers/static_for,
./bench_elliptic_template,
# Standard library
std/strutils
# ############################################################
#
# Benchmark of the G1 group of
# Short Weierstrass elliptic curves
# in (homogeneous) projective coordinates
#
# ############################################################
const Iters = 1_000_000
const MulIters = 1000
const AvailableCurves = [
# P224,
# BN254_Nogami,
BN254_Snarks,
# Curve25519,
# P256,
# Secp256k1,
# BLS12_377,
BLS12_381,
# BN446,
# FKM12_447,
# BLS12_461,
# BN462
]
proc main() =
separator()
staticFor i, 0, AvailableCurves.len:
const curve = AvailableCurves[i]
addBench(ECP_SWei_Proj[Fp[curve]], Iters)
separator()
doublingBench(ECP_SWei_Proj[Fp[curve]], Iters)
separator()
scalarMulUnsafeDoubleAddBench(ECP_SWei_Proj[Fp[curve]], MulIters)
separator()
scalarMulGenericBench(ECP_SWei_Proj[Fp[curve]], scratchSpaceSize = 1 shl 2, MulIters)
separator()
scalarMulGenericBench(ECP_SWei_Proj[Fp[curve]], scratchSpaceSize = 1 shl 3, MulIters)
separator()
scalarMulGenericBench(ECP_SWei_Proj[Fp[curve]], scratchSpaceSize = 1 shl 4, MulIters)
separator()
scalarMulGLV(ECP_SWei_Proj[Fp[curve]], MulIters)
separator()
separator()
main()
echo "\nNotes:"
echo " - GCC is significantly slower than Clang on multiprecision arithmetic."
echo " - The simplest operations might be optimized away by the compiler."
echo " - Fast Squaring and Fast Multiplication are possible if there are spare bits in the prime representation (i.e. the prime uses 254 bits out of 256 bits)"