# Demo of API using a very inefficient π approcimation algorithm. import std/[strutils, math, cpuinfo], ../threadpool # From https://github.com/nim-lang/Nim/blob/v1.6.2/tests/parallel/tpi.nim # Leibniz Formula https://en.wikipedia.org/wiki/Leibniz_formula_for_%CF%80 proc term(k: int): float = if k mod 2 == 1: -4'f / float(2*k + 1) else: 4'f / float(2*k + 1) proc piApprox(tp: Threadpool, n: int): float = var pendingFuts = newSeq[Flowvar[float]](n) for k in 0 ..< pendingFuts.len: pendingFuts[k] = tp.spawn term(k) # Schedule a task on the threadpool a return a handle to retrieve the result. for k in 0 ..< pendingFuts.len: result += sync pendingFuts[k] # Block until the result is available. proc main() = echo "\n==============================================================================================" echo "Running 'threadpool/examples/e02_parallel_pi.nim'" echo "==============================================================================================" var n = 1_000_000 var nthreads = countProcessors() var tp = Threadpool.new(num_threads = nthreads) # Default to the number of hardware threads. echo formatFloat(tp.piApprox(n)) tp.shutdown() # Compile with nim c -r -d:release --threads:on --outdir:build example.nim main()