feat: add banderwagon (#271)

* banderwagon curve declaration added

* equality for banderwagon implemented

* subgroup check added

* map_to_field added

* feat: banderwagon serialization

* fix: imported codecs_status_codes into bls_signature

* fix: spec links added in comments

* fix: typo in curve declaration

* fix: banderwagon subgroup check shifted to subgroups file + map_to_field removed

* feat:  new equality re-exported

* fix: codecs_status_codes imported

* fix: equality check removed from banderwagon.nim to twistedEdwards implementation

* Update constantine/math/elliptic/ec_twistededwards_affine.nim

Co-authored-by: Mamy Ratsimbazafy <mamy_github@numforge.co>

* Update constantine/math/elliptic/ec_twistededwards_projective.nim

Co-authored-by: Mamy Ratsimbazafy <mamy_github@numforge.co>

* adding and doubling tests with minor fixes

* feat: banderwagon & bandersnatch generators added

* fix: doubling point error for twisted edwards projective

* fix: negation of x co-ordinate in spec

* fix: negetion of x in serialization

* fix: negetion in deserializarion

* feat: banderwagon tests

* fix: comments added for tests and serialization

* Update suggestion constantine/math/config/precompute.nim

---------

Co-authored-by: Mamy Ratsimbazafy <mamy_github@numforge.co>
This commit is contained in:
Advaita Saha 2023-09-23 20:29:52 +05:30 committed by GitHub
parent 7b64f85a29
commit f9258531f9
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
21 changed files with 656 additions and 28 deletions

View File

@ -80,6 +80,7 @@ import
],
./math/io/[io_bigints, io_fields],
signatures/bls_signatures,
serialization/codecs_status_codes,
serialization/codecs_bls12_381
export

View File

@ -18,7 +18,7 @@ import
./commitments/kzg_polynomial_commitments,
./hashes,
./platforms/[abstractions, allocs],
./serialization/[codecs_bls12_381, endians],
./serialization/[codecs_status_codes, codecs_bls12_381, endians],
./trusted_setups/ethereum_kzg_srs
export loadTrustedSetup, TrustedSetupStatus, EthereumKZGContext

View File

@ -155,6 +155,24 @@ declareCurves:
coef_a: -5
coef_d: "6389c12633c267cbc66e3bf86be3b6d8cb66677177e54f92b369f2f5188d58e7"
curve Banderwagon: # Banderwagon is a prime subgroup constructed over the Bandersnatch Curve.
# https://hackmd.io/@6iQDuIePQjyYBqDChYw_jg/BJBNcv9fq
bitwidth: 255
modulus: "0x73eda753299d7d483339d80809a1d80553bda402fffe5bfeffffffff00000001"
# Weierstrass form: y² = x³ 3763200000x 7867596800000
# Mongomery form: By² = x³ + Ax² + x
# B=0x300c3385d13bedb7c9e229e185c4ce8b1dd3b71366bb97c30855c0aa41d62727
# A=0x4247698f4e32ad45a293959b4ca17afa4a2d2317e4c6ce5023e1f
# Twisted Edwards form: 5x² + y² = 1 + dx²y²
# d = 138827208126141220649022263972958607803 / 171449701953573178309673572579671231137
order: "0x1cfb69d4ca675f520cce760202687600ff8f87007419047174fd06b52876e7e1"
orderBitwidth: 253
cofactor: 4
eq_form: TwistedEdwards
coef_a: -5
coef_d: "6389c12633c267cbc66e3bf86be3b6d8cb66677177e54f92b369f2f5188d58e7"
curve Edwards25519: # Bernstein curve
bitwidth: 255
modulus: "0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffed"

View File

@ -102,6 +102,13 @@ macro genDerivedConstants*(mode: static DerivedConstantMode): untyped =
M
)
)
# const MyCurve_PrimeMinus1div2 = primeMinus1div2(MyCurve_Modulus)
result.add newConstStmt(
used(curve & ff & "_PrimeMinus1div2"), newCall(
bindSym"primeMinus1div2",
M
)
)
# const MyCurve_PrimeMinus3div4_BE = primeMinus3div4_BE(MyCurve_Modulus)
result.add newConstStmt(
used(curve & ff & "_PrimeMinus3div4_BE"), newCall(

View File

@ -104,6 +104,11 @@ macro getPrimePlus1div2*(ff: type FF): untyped =
## Warning ⚠️: Result in canonical domain (not Montgomery)
result = bindConstant(ff, "PrimePlus1div2")
macro getPrimeMinus1div2*(ff: type FF): untyped =
## Get (P-1) / 2 for an odd prime
## Warning ⚠️: Result in canonical domain (not Montgomery)
result = bindConstant(ff, "PrimeMinus1div2")
macro getPrimeMinus3div4_BE*(ff: type FF): untyped =
## Get (P-3) / 4 in big-endian serialized format
result = bindConstant(ff, "PrimeMinus3div4_BE")

View File

@ -392,6 +392,16 @@ func primePlus1div2*(P: BigInt): BigInt =
let carry = result.add(1)
doAssert not carry
func primeMinus1div2*(P: BigInt): BigInt =
## Compute (P-1)/2
## For use in constant-time modular inversion
##
## Warning ⚠️: Result is in the canonical domain (not Montgomery)
result = P
# discard result.sub(1) # right-shifting automatically implies "-1" for odd numbers (which all prime >2 are).
result.shiftRight(1)
func primeMinus3div4_BE*[bits: static int](
P: BigInt[bits]
): array[bits.ceilDiv_vartime(8), byte] {.noInit.} =

View File

@ -0,0 +1,23 @@
# Constantine
# Copyright (c) 2018-2019 Status Research & Development GmbH
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
import
../config/curves,
../elliptic/ec_twistededwards_affine,
../io/[io_fields, io_extfields]
{.used.}
# Generators
# -----------------------------------------------------------------
# https://eprint.iacr.org/2021/1152.pdf
const Bandersnatch_generator* = ECP_TwEdwards_Aff[Fp[Bandersnatch]](
x: Fp[Bandersnatch].fromHex"0x29c132cc2c0b34c5743711777bbe42f32b79c022ad998465e1e71866a252ae18",
y: Fp[Bandersnatch].fromHex"0x2a6c669eda123e0f157d8b50badcd586358cad81eee464605e3167b6cc974166"
)

View File

@ -0,0 +1,23 @@
# Constantine
# Copyright (c) 2018-2019 Status Research & Development GmbH
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
import
../config/curves,
../elliptic/ec_twistededwards_affine,
../io/[io_fields, io_extfields]
{.used.}
# Generators
# -----------------------------------------------------------------
# https://eprint.iacr.org/2021/1152.pdf
const Banderwagon_generator* = ECP_TwEdwards_Aff[Fp[Banderwagon]](
x: Fp[Banderwagon].fromHex("29c132cc2c0b34c5743711777bbe42f32b79c022ad998465e1e71866a252ae18"),
y: Fp[Banderwagon].fromHex("2a6c669eda123e0f157d8b50badcd586358cad81eee464605e3167b6cc974166")
)

View File

@ -0,0 +1,19 @@
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
import
../config/curves,
../io/[io_bigints, io_fields],
../arithmetic/finite_fields
const
# with e = 2adicity
# p == s * 2^e + 1
# root_of_unity = smallest_quadratic_nonresidue^s
# exponent = (p-1-2^e)/2^e / 2
Banderwagon_TonelliShanks_exponent* = BigInt[222].fromHex"0x39f6d3a994cebea4199cec0404d0ec02a9ded2017fff2dff7fffffff"
Banderwagon_TonelliShanks_twoAdicity* = 32
Banderwagon_TonelliShanks_root_of_unity* = Fp[Banderwagon].fromHex"0x212d79e5b416b6f0fd56dc8d168d6c0c4024ff270b3e0941b788f500b912f1f"

View File

@ -0,0 +1,42 @@
# Constantine
# Copyright (c) 2018-2019 Status Research & Development GmbH
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
import
../../platforms/abstractions,
../config/curves,
../arithmetic,
../extension_fields,
../elliptic/ec_twistededwards_projective
# ############################################################
#
# Subgroup Check
#
# ############################################################
func isInSubGroup*(P: ECP_TwEdwards_Prj[Fp[Banderwagon]]): SecretBool =
## Checks if the point is in the quotient subgroup
## The group law does not change because what we quotiented by was a subgroup.
## These are still points on the bandersnatch curve and form a group under point addition.
##
## This is to be used to check if the point lies in the Banderwagon
## while importing a point from serialized bytes
var res{.noInit.}: typeof(P).F
var one{.noInit.}: typeof(P).F
one.setOne()
res.setZero()
## Compute 1 - aX^2 and check its legendre symbol
res.prod(P.x, P.x)
res.prod(res, Banderwagon.getCoefA())
res.neg(res)
res.sum(res, one)
return res.isSquare()

View File

@ -10,7 +10,9 @@ import
std/macros,
../config/curves,
./bls12_381_generators,
./bn254_snarks_generators
./bn254_snarks_generators,
./bandersnatch_generators,
./banderwagon_generators
{.experimental: "dynamicbindsym".}

View File

@ -17,6 +17,7 @@ import
./curve25519_sqrt,
./jubjub_sqrt,
./bandersnatch_sqrt,
./banderwagon_sqrt,
./pallas_sqrt,
./vesta_sqrt
@ -29,6 +30,7 @@ export
curve25519_sqrt,
jubjub_sqrt,
bandersnatch_sqrt,
banderwagon_sqrt,
pallas_sqrt,
vesta_sqrt

View File

@ -39,6 +39,11 @@ func isInf*(P: ECP_TwEdwards_Aff): SecretBool =
## and false otherwise
result = P.x.isZero() and P.y.isOne()
func setInf*(P: var ECP_TwEdwards_Aff) {.inline.} =
## Set ``P`` to infinity
P.x.setZero()
P.y.setOne()
func isOnCurve*[F](x, y: F): SecretBool =
## Returns true if the (x, y) coordinates
@ -76,6 +81,51 @@ func isOnCurve*[F](x, y: F): SecretBool =
t2 -= t0
return t2.isOne()
func trySetFromCoordX*[F](P: var ECP_TwEdwards_Aff[F], x: F): SecretBool =
## Try to create a point on the elliptic curve from X co-ordinate
## ax²+y²=1+dx²y² (affine coordinate)
##
## return true and update `P` if `y` leads to a valid point
## return false otherwise, in that case `P` is undefined.
# y² = (1 - ax²)/(1 - dx²)
var t {.noInit.}: F
var one {.noInit.}: F
one.setOne()
# (1 - dx²)
t.square(x)
when F.C.getCoefD() is int:
when F.C.getCoefD() >= 0:
P.y.fromUint uint F.C.getCoefD()
else:
P.y.fromUint uint -F.C.getCoefD()
P.y.neg()
else:
P.y = F.C.getCoefD()
P.y *= t
P.y.neg()
P.y += one
# (1 - ax²)
when F.C.getCoefA() is int:
when F.C.getCoefA() >= 0:
P.x.fromUint uint F.C.getCoefA()
else:
P.x.fromUint uint -F.C.getCoefA()
P.x.neg()
else:
P.x = F.C.getCoefA()
P.x *= t
P.x.neg()
P.x += one
# √((1 - ax²)/(1 - dx²))
result = sqrt_ratio_if_square(t, P.x, P.y)
P.y = t
P.x = x
func trySetFromCoordY*[F](P: var ECP_TwEdwards_Aff[F], y: F): SecretBool =
## Try to create a point the elliptic curve
## ax²+y²=1+dx²y² (affine coordinate)
@ -147,3 +197,30 @@ func cneg*(P: var ECP_TwEdwards_Aff, ctl: CTBool) =
## Conditional negation.
## Negate if ``ctl`` is true
P.x.cneg(ctl)
# ############################################################
#
# Banderwagon Specific Operations
#
# ############################################################
func `==`*(P, Q: ECP_TwEdwards_Aff[Fp[Banderwagon]]): SecretBool =
## Equality check for points in the Banderwagon Group
## The equality check is optimized for the quotient group
## see: https://hackmd.io/@6iQDuIePQjyYBqDChYw_jg/BJBNcv9fq#Equality-check
##
## Check for the (0,0) point, which is possible
##
## This is a costly operation
var lhs{.noInit.}, rhs{.noInit.}: typeof(P).F
# Check for the zero points
result = not(P.x.is_zero() and P.y.is_zero())
result = result or not(Q.x.is_zero() and Q.y.is_zero())
## Check for the equality of the points
## X1 * Y2 == X2 * Y1
lhs.prod(P.x, Q.y)
rhs.prod(Q.x, P.y)
result = result and lhs == rhs

View File

@ -13,6 +13,7 @@ import
../extension_fields,
./ec_twistededwards_affine
# ############################################################
#
# Elliptic Curve in Twisted Edwards form
@ -65,6 +66,25 @@ func ccopy*(P: var ECP_TwEdwards_Prj, Q: ECP_TwEdwards_Prj, ctl: SecretBool) {.i
for fP, fQ in fields(P, Q):
ccopy(fP, fQ, ctl)
func trySetFromCoordX*[F](
P: var ECP_TwEdwards_Prj[F],
x: F): SecretBool =
## Try to create a point on the elliptic curve from X co-ordinate
## ax²+y²=1+dx²y² (affine coordinate)
##
## The `Z` coordinates is set to 1
##
## return true and update `P` if `y` leads to a valid point
## return false otherwise, in that case `P` is undefined.
var Q{.noInit.}: ECP_TwEdwards_Aff[F]
result = Q.trySetFromCoordX(x)
P.x = Q.x
P.y = Q.y
P.z.setOne()
func trySetFromCoordY*[F](
P: var ECP_TwEdwards_Prj[F],
y: F): SecretBool =
@ -259,11 +279,11 @@ func double*[Field](
# (B-C-D) => 2X1Y1, but With squaring and 2 substractions instead of mul + addition
# In practice, squaring is not cheap enough to compasate the extra substraction cost.
E.square(P.x)
r.x.prod(P.x, P.y)
r.x.double()
D.square(P.y)
E.square(P.x)
E *= Field.C.getCoefA()
r.y.sum(E, D) # Ry stores F = E+D
@ -293,6 +313,14 @@ func diff*(r: var ECP_TwEdwards_Prj,
nQ.neg(Q)
r.sum(P, nQ)
template affine*[F](_: type ECP_TwEdwards_Prj[F]): typedesc =
## Returns the affine type that corresponds to the Jacobian type input
ECP_TwEdwards_Aff[F]
template projective*[F](_: type ECP_TwEdwards_Aff[F]): typedesc =
## Returns the projective type that corresponds to the affine type input
ECP_TwEdwards_Aff[F]
func affine*[F](
aff: var ECP_TwEdwards_Aff[F],
proj: ECP_TwEdwards_Prj[F]) =
@ -302,9 +330,36 @@ func affine*[F](
aff.x.prod(proj.x, invZ)
aff.y.prod(proj.y, invZ)
func projective*[F](
proj: var ECP_TwEdwards_Aff[F],
aff: ECP_TwEdwards_Prj[F]) {.inline.} =
func fromAffine*[F](
proj: var ECP_TwEdwards_Prj[F],
aff: ECP_TwEdwards_Aff[F]) {.inline.} =
proj.x = aff.x
proj.y = aff.y
proj.z.setOne()
# ############################################################
#
# Banderwagon Specific Operations
#
# ############################################################
func `==`*(P, Q: ECP_TwEdwards_Prj[Fp[Banderwagon]]): SecretBool =
## Equality check for points in the Banderwagon Group
## The equality check is optimized for the quotient group
## see: https://hackmd.io/@6iQDuIePQjyYBqDChYw_jg/BJBNcv9fq#Equality-check
##
## Check for the (0,0) point, which is possible
##
## This is a costly operation
var lhs{.noInit.}, rhs{.noInit.}: typeof(P).F
# Check for the zero points
result = not(P.x.is_zero() and P.y.is_zero())
result = result or not(Q.x.is_zero() and Q.y.is_zero())
## Check for the equality of the points
## X1 * Y2 == X2 * Y1
lhs.prod(P.x, Q.y)
rhs.prod(Q.x, P.y)
result = result and lhs == rhs

View File

@ -0,0 +1,113 @@
# Constantine
# Copyright (c) 2018-2019 Status Research & Development GmbH
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
## ############################################################
##
## Banderwagon Serialization
##
## ############################################################
import
../platforms/abstractions,
../math/config/curves,
../math/elliptic/[
ec_twistededwards_affine,
ec_twistededwards_projective
],
../math/[
extension_fields,
arithmetic,
constants/banderwagon_subgroups
],
../math/io/[io_bigints, io_fields],
./codecs_status_codes
type
EC_Prj* = ECP_TwEdwards_Prj[Fp[Banderwagon]]
EC_Aff* = ECP_TwEdwards_Aff[Fp[Banderwagon]]
func serialize*(dst: var array[32, byte], P: EC_Prj): CttCodecEccStatus =
## Serialize a Banderwagon point(x, y) in the format
##
## serialize = bigEndian( sign(y) * x )
## If y is not lexicographically largest
## set x -> -x
## then serialize
##
## Returns cttCodecEcc_Success if successful
## Spec: https://hackmd.io/@6iQDuIePQjyYBqDChYw_jg/BJBNcv9fq#Serialisation
# Setting all bits to 0 for the point of infinity
if P.isInf().bool():
for i in 0 ..< dst.len:
dst[i] = byte 0
return cttCodecEcc_Success
# Convert the projective points into affine format before encoding
var aff {.noInit.}: EC_Aff
aff.affine(P)
let lexicographicallyLargest = aff.y.toBig() >= Fp[Banderwagon].getPrimeMinus1div2()
if not lexicographicallyLargest.bool():
aff.x.neg()
dst.marshal(aff.x, bigEndian)
return cttCodecEcc_Success
func deserialize_unchecked*(dst: var EC_Prj, src: array[32, byte]): CttCodecEccStatus =
## Deserialize a Banderwagon point (x, y) in format
##
## if y is not lexicographically largest
## set y -> -y
##
## Returns cttCodecEcc_Success if successful
## https://hackmd.io/@6iQDuIePQjyYBqDChYw_jg/BJBNcv9fq#Serialisation
# If infinity, src must be all zeros
var check: bool = true
for i in 0 ..< src.len:
if src[i] != byte 0:
check = false
break
if check:
dst.setInf()
return cttCodecEcc_PointAtInfinity
var t{.noInit.}: matchingBigInt(Banderwagon)
t.unmarshal(src, bigEndian)
if bool(t >= Banderwagon.Mod()):
return cttCodecEcc_CoordinateGreaterThanOrEqualModulus
var x{.noInit.}: Fp[Banderwagon]
x.fromBig(t)
let onCurve = dst.trySetFromCoordX(x)
if not(bool onCurve):
return cttCodecEcc_PointNotOnCurve
let isLexicographicallyLargest = dst.y.toBig() >= Fp[Banderwagon].getPrimeMinus1div2()
dst.y.cneg(not isLexicographicallyLargest)
return cttCodecEcc_Success
func deserialize*(dst: var EC_Prj, src: array[32, byte]): CttCodecEccStatus =
## Deserialize a Banderwagon point (x, y) in format
##
## Also checks if the point lies in the banderwagon scheme subgroup
##
## Returns cttCodecEcc_Success if successful
## Returns cttCodecEcc_PointNotInSubgroup if doesn't lie in subgroup
result = deserialize_unchecked(dst, src)
if result != cttCodecEcc_Success:
return result
if not(bool dst.isInSubgroup()):
return cttCodecEcc_PointNotInSubgroup
return cttCodecEcc_Success

View File

@ -45,22 +45,11 @@ import
extension_fields,
arithmetic,
constants/zoo_subgroups],
../math/io/[io_bigints, io_fields]
../math/io/[io_bigints, io_fields],
./codecs_status_codes
type
CttCodecScalarStatus* = enum
cttCodecScalar_Success
cttCodecScalar_Zero
cttCodecScalar_ScalarLargerThanCurveOrder
CttCodecEccStatus* = enum
cttCodecEcc_Success
cttCodecEcc_InvalidEncoding
cttCodecEcc_CoordinateGreaterThanOrEqualModulus
cttCodecEcc_PointNotOnCurve
cttCodecEcc_PointNotInSubgroup
cttCodecEcc_PointAtInfinity
Scalar* = matchingOrderBigInt(BLS12_381)
G1P* = ECP_ShortW_Aff[Fp[BLS12_381], G1]
G2P* = ECP_ShortW_Aff[Fp2[BLS12_381], G2]

View File

@ -0,0 +1,21 @@
# Constantine
# Copyright (c) 2018-2019 Status Research & Development GmbH
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
type
CttCodecScalarStatus* = enum
cttCodecScalar_Success
cttCodecScalar_Zero
cttCodecScalar_ScalarLargerThanCurveOrder
CttCodecEccStatus* = enum
cttCodecEcc_Success
cttCodecEcc_InvalidEncoding
cttCodecEcc_CoordinateGreaterThanOrEqualModulus
cttCodecEcc_PointNotOnCurve
cttCodecEcc_PointNotInSubgroup
cttCodecEcc_PointAtInfinity

View File

@ -95,7 +95,7 @@ proc run_EC_addition_tests*(
const testSuiteDesc = "Elliptic curve in " & $ec.F.C.getEquationForm() & " form"
suite testSuiteDesc & " - " & $ec & " - [" & $WordBitWidth & "-bit mode]":
test "The infinity point is the neutral element w.r.t. to EC " & $ec.G & " addition":
test "The infinity point is the neutral element w.r.t. to EC " & " addition":
proc test(EC: typedesc, randZ: bool, gen: RandomGen) =
var inf {.noInit.}: EC
inf.setInf()
@ -182,7 +182,7 @@ proc run_EC_addition_tests*(
test(ec, randZ = false, gen = Long01Sequence)
test(ec, randZ = true, gen = Long01Sequence)
test "EC " & $ec.G & " add is commutative":
test "EC" & " add is commutative":
proc test(EC: typedesc, randZ: bool, gen: RandomGen) =
for _ in 0 ..< Iters:
var r0{.noInit.}, r1{.noInit.}: EC
@ -200,7 +200,7 @@ proc run_EC_addition_tests*(
test(ec, randZ = false, gen = Long01Sequence)
test(ec, randZ = true, gen = Long01Sequence)
test "EC " & $ec.G & " add is associative":
test "EC" & " add is associative":
proc test(EC: typedesc, randZ: bool, gen: RandomGen) =
for _ in 0 ..< Iters:
let a = rng.random_point(EC, randZ, gen)
@ -249,7 +249,7 @@ proc run_EC_addition_tests*(
test(ec, randZ = false, gen = Long01Sequence)
test(ec, randZ = true, gen = Long01Sequence)
test "EC " & $ec.G & " double and EC " & $ec.G & " add are consistent":
test "EC " & " double and EC " & " add are consistent":
proc test(EC: typedesc, randZ: bool, gen: RandomGen) =
for _ in 0 ..< Iters:
let a = rng.random_point(EC, randZ, gen)
@ -469,7 +469,7 @@ proc run_EC_mul_sanity_tests*(
const testSuiteDesc = "Elliptic curve in " & $ec.F.C.getEquationForm() & " form"
suite testSuiteDesc & " - " & $ec & " - [" & $WordBitWidth & "-bit mode]":
test "EC " & $ec.G & " mul [0]P == Inf":
test "EC " & " mul [0]P == Inf":
proc test(EC: typedesc, bits: static int, randZ: bool, gen: RandomGen) =
for _ in 0 ..< ItersMul:
let a = rng.random_point(EC, randZ, gen)
@ -506,7 +506,7 @@ proc run_EC_mul_sanity_tests*(
test(ec, bits = ec.F.C.getCurveOrderBitwidth(), randZ = false, gen = Long01Sequence)
test(ec, bits = ec.F.C.getCurveOrderBitwidth(), randZ = true, gen = Long01Sequence)
test "EC " & $ec.G & " mul [1]P == P":
test "EC " & " mul [1]P == P":
proc test(EC: typedesc, bits: static int, randZ: bool, gen: RandomGen) =
for _ in 0 ..< ItersMul:
let a = rng.random_point(EC, randZ, gen)
@ -532,7 +532,7 @@ proc run_EC_mul_sanity_tests*(
test(ec, bits = ec.F.C.getCurveOrderBitwidth(), randZ = false, gen = Long01Sequence)
test(ec, bits = ec.F.C.getCurveOrderBitwidth(), randZ = true, gen = Long01Sequence)
test "EC " & $ec.G & " mul [2]P == P.double()":
test "EC " & " mul [2]P == P.double()":
proc test(EC: typedesc, bits: static int, randZ: bool, gen: RandomGen) =
for _ in 0 ..< ItersMul:
let a = rng.random_point(EC, randZ, gen)
@ -575,7 +575,7 @@ proc run_EC_mul_distributive_tests*(
suite testSuiteDesc & " - " & $ec & " - [" & $WordBitWidth & "-bit mode]":
test "EC " & $ec.G & " mul is distributive over EC add":
test "EC" & " mul is distributive over EC add":
proc test(EC: typedesc, bits: static int, randZ: bool, gen: RandomGen) =
for _ in 0 ..< ItersMul:
let a = rng.random_point(EC, randZ, gen)

View File

@ -32,4 +32,10 @@ run_EC_addition_tests(
ec = ECP_TwEdwards_Prj[Fp[Bandersnatch]],
Iters = Iters,
moduleName = "test_ec_twistededwards_projective_add_double_" & $Bandersnatch
)
run_EC_addition_tests(
ec = ECP_TwEdwards_Prj[Fp[Banderwagon]],
Iters = Iters,
moduleName = "test_ec_twistededwards_projective_add_double_" & $Banderwagon
)

View File

@ -34,3 +34,9 @@ run_EC_mul_distributive_tests(
ItersMul = ItersMul,
moduleName = "test_ec_twistededwards_projective_mul_distributive_" & $Bandersnatch
)
run_EC_mul_distributive_tests(
ec = ECP_TwEdwards_Prj[Fp[Banderwagon]],
ItersMul = ItersMul,
moduleName = "test_ec_twistededwards_projective_mul_distributive_" & $Banderwagon
)

209
tests/t_banderwagon.nim Normal file
View File

@ -0,0 +1,209 @@
# Constantine
# Copyright (c) 2018-2019 Status Research & Development GmbH
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
import
std/unittest,
../constantine/math/config/[type_ff, curves],
../constantine/math/elliptic/[
ec_twistededwards_affine,
ec_twistededwards_projective
],
../constantine/math/io/io_fields,
../constantine/serialization/[
codecs_status_codes,
codecs_banderwagon,
codecs
],
../constantine/math/arithmetic,
../constantine/math/constants/zoo_generators
type
EC* = ECP_TwEdwards_Prj[Fp[Banderwagon]]
Bytes* = array[32, byte]
# The generator point from Banderwagon
var generator = Banderwagon.getGenerator()
# serialized points which lie on Banderwagon
const expected_bit_strings: array[16, string] = [
"0x4a2c7486fd924882bf02c6908de395122843e3e05264d7991e18e7985dad51e9",
"0x43aa74ef706605705989e8fd38df46873b7eae5921fbed115ac9d937399ce4d5",
"0x5e5f550494159f38aa54d2ed7f11a7e93e4968617990445cc93ac8e59808c126",
"0x0e7e3748db7c5c999a7bcd93d71d671f1f40090423792266f94cb27ca43fce5c",
"0x14ddaa48820cb6523b9ae5fe9fe257cbbd1f3d598a28e670a40da5d1159d864a",
"0x6989d1c82b2d05c74b62fb0fbdf8843adae62ff720d370e209a7b84e14548a7d",
"0x26b8df6fa414bf348a3dc780ea53b70303ce49f3369212dec6fbe4b349b832bf",
"0x37e46072db18f038f2cc7d3d5b5d1374c0eb86ca46f869d6a95fc2fb092c0d35",
"0x2c1ce64f26e1c772282a6633fac7ca73067ae820637ce348bb2c8477d228dc7d",
"0x297ab0f5a8336a7a4e2657ad7a33a66e360fb6e50812d4be3326fab73d6cee07",
"0x5b285811efa7a965bd6ef5632151ebf399115fcc8f5b9b8083415ce533cc39ce",
"0x1f939fa2fd457b3effb82b25d3fe8ab965f54015f108f8c09d67e696294ab626",
"0x3088dcb4d3f4bacd706487648b239e0be3072ed2059d981fe04ce6525af6f1b8",
"0x35fbc386a16d0227ff8673bc3760ad6b11009f749bb82d4facaea67f58fc60ed",
"0x00f29b4f3255e318438f0a31e058e4c081085426adb0479f14c64985d0b956e0",
"0x3fa4384b2fa0ecc3c0582223602921daaa893a97b64bdf94dcaa504e8b7b9e5f",
]
## These are all points which will be shown to be on the curve
## but are not in the correct subgroup
const bad_bit_string: array[16, string] = [
"0x1b6989e2393c65bbad7567929cdbd72bbf0218521d975b0fb209fba0ee493c32",
"0x280e608d5bbbe84b16aac62aa450e8921840ea563f1c9c266e0240d89cbe6a78",
"0x31468782818807366dbbcd20b9f10f0d5b93f22e33fe49b450dfbddaf3ba6a9b",
"0x6bfc4097e4874cdddebe74e041fcd329d8455278cd42b6dd4f40b042d4fc466b",
"0x65dc0a9730cce485d82b230ce32c7c21688967c8943b4a51ba468f927e2e28ef",
"0x0fd3536157199b46617c3fba4bae1c2ffab5409dfea1de62161bc10748651671",
"0x5bdc73f43e90ae5c2956320ce2ef2b17809b11d6b9758c7861793b41f39b7c01",
"0x23a89c778ee10b9925ad3df5dc1f7ab244c1daf305669bc6b03d1aaa100037a4",
"0x67505814852867356aaa8387896efa1d1b9a72aad95549e53e69c15eb36a642c",
"0x301bc9b1129a727c2a65b96f55a5bcd642a3d37e0834196863c4430e4281dc3a",
"0x45d08715ac67ebb088bcfa3d04bcce76510edeb9e23f12ed512894ba1e6518fc",
"0x0b3b6e1f8ec72e63c6aa7ae87628071df3d82ea2bea6516d1948dac2edc12179",
"0x72430a05f507747aa5a42481b4f93522aa682b1d56e5285f089aa1b5fb09c67a",
"0x5eb4d3e5ce8107c6dd7c6398f2a903a0df75ce655939c29a3e309f43fe5bcd1f",
"0x6671109a7a15f4852ead3298318595a36010930fddbd3c8f667c6390e7ac3c66",
"0x120faa1df94d5d831bbb69fc44816e25afd27288a333299ac3c94518fd0e016f",
]
# ############################################################
#
# Banderwagon Serialization Tests
#
# ############################################################
suite "Banderwagon Serialization Tests":
var points: seq[EC]
## Check encoding if it is as expected or not
test "Test Encoding from Fixed Vectors":
proc testSerialize(len: int) =
# First the point is set to generator P
# then with each iteration 2P, 4P, . . . doubling
var point {.noInit.}: EC
point.fromAffine(generator)
for i in 0 ..< len:
var arr: Bytes
let stat = arr.serialize(point)
# Check if the serialization took place and in expected way
doAssert stat == cttCodecEcc_Success, "Serialization Failed"
doAssert expected_bit_strings[i] == arr.toHex(), "bit string does not match expected"
points.add(point)
point.double() #doubling the point
testSerialize(expected_bit_strings.len)
## Check decoding if it is as expected or not
test "Decoding Each bit string":
proc testDeserialization(len: int) =
# Checks if the point serialized in the previous
# tests matches with the deserialization of expected strings
for i, bit_string in expected_bit_strings:
# converts serialized value in hex to byte array
var arr: Bytes
arr.fromHex(bit_string)
# deserialization from expected bits
var point{.noInit.}: EC
let stat = point.deserialize(arr)
# Assertion check for the Deserialization Success & correctness
doAssert stat == cttCodecEcc_Success, "Deserialization Failed"
doAssert (point == points[i]).bool(), "Decoded Element is different from expected element"
testDeserialization(expected_bit_strings.len)
# Check if the subgroup check is working on eliminating
# points which don't lie on banderwagon, while
# deserializing from an untrusted source
test "Decoding Points Not on Curve":
proc testBadPointDeserialization(len: int) =
# Checks whether the bad bit string
# get deserialized, it should return error -> cttCodecEcc_PointNotInSubgroup
for bit_string in bad_bit_string:
# converts serialized value in hex to byte array
var arr: Bytes
arr.fromHex(bit_string)
# deserialization from bits
var point{.noInit.}: EC
let stat = point.deserialize(arr)
# Assertion check for error
doAssert stat == cttCodecEcc_PointNotInSubgroup, "Bad point Deserialization Failed, in subgroup check"
testBadPointDeserialization(bad_bit_string.len)
# ############################################################
#
# Banderwagon Point Operations Tests
#
# ############################################################
suite "Banderwagon Points Tests":
## Tests if the operation are consistent & correct
## consistency of Addition with doubling
## and correctness of the subtraction
test "Test for Addition, Subtraction, Doubling":
proc testAddSubDouble() =
var a, b, gen_point, identity {.noInit.} : EC
gen_point.fromAffine(generator)
# Setting the identity Element
identity.x.setZero()
identity.y.setOne()
identity.z.setOne()
a.sum(gen_point, gen_point) # a = g+g = 2g
b.double(gen_point) # b = 2g
doAssert (not (a == gen_point).bool()), "The generator should not have order < 2"
doAssert (a == b).bool(), "Add and Double formulae do not match" # Checks is doubling and addition are consistent
a.diff(a, b) # a <- a - b
doAssert (a == identity).bool(), "Sub formula is incorrect; any point minus itself should give the identity point"
testAddSubDouble()
## Points that differ by a two torsion point
## are equal, where the two torsion point is not the point at infinity
test "Test Two Torsion Equality":
proc testTwoTorsion() =
var two_torsion: EC
# Setting the two torsion point
two_torsion.x.setZero()
two_torsion.y.setMinusOne()
two_torsion.z.setOne()
var point{.noInit.}: EC
point.fromAffine(generator)
for i in 0 ..< 1000:
var point_plus_torsion: EC
point_plus_torsion.sum(point, two_torsion) # adding generator with two torsion point
doAssert (point == point_plus_torsion).bool(), "points that differ by an order-2 point should be equal"
# Serializing to the point and point added with two torsion point
var point_bytes: Bytes
let stat1 = point_bytes.serialize(point)
var plus_point_bytes: Bytes
let stat2 = plus_point_bytes.serialize(point_plus_torsion)
doAssert stat1 == cttCodecEcc_Success and stat2 == cttCodecEcc_Success, "Serialization Failed"
doAssert plus_point_bytes == point_bytes, "points that differ by an order-2 point should produce the same bit string"
point.double()
testTwoTorsion()