187 lines
6.2 KiB
Nim

{.push raises: [].}
import std/bitops
import std/tables
import pkg/constantine/math/arithmetic
import pkg/constantine/math/io/io_bigints
import ./graph
import ./field
#-------------------------------------------------------------------------------
func bigIntBitwiseComplement(x: B): B =
var bytes1 : seq[byte] = newSeq[byte](32)
var bytes2 : seq[byte] = newSeq[byte](32)
marshal(bytes1, x, littleEndian)
for i in 0..<32:
bytes2[i] = bitxor( bytes1[i] , 0xff )
var output : B
unmarshal(output, bytes2, littleEndian)
return output
func bigIntBitwiseAnd(x, y: B): B =
var bytes1 : seq[byte] = newSeq[byte](32)
var bytes2 : seq[byte] = newSeq[byte](32)
var bytes3 : seq[byte] = newSeq[byte](32)
marshal(bytes1, x, littleEndian)
marshal(bytes2, y, littleEndian)
for i in 0..<32:
bytes3[i] = bitand( bytes1[i] , bytes2[i] )
var output : B
unmarshal(output, bytes3, littleEndian)
return output
func bigIntBitwiseOr(x, y: B): B =
var bytes1 : seq[byte] = newSeq[byte](32)
var bytes2 : seq[byte] = newSeq[byte](32)
var bytes3 : seq[byte] = newSeq[byte](32)
marshal(bytes1, x, littleEndian)
marshal(bytes2, y, littleEndian)
for i in 0..<32:
bytes3[i] = bitor( bytes1[i] , bytes2[i] )
var output : B
unmarshal(output, bytes3, littleEndian)
return output
func bigIntBitwiseXor(x, y: B): B =
var bytes1 : seq[byte] = newSeq[byte](32)
var bytes2 : seq[byte] = newSeq[byte](32)
var bytes3 : seq[byte] = newSeq[byte](32)
marshal(bytes1, x, littleEndian)
marshal(bytes2, y, littleEndian)
for i in 0..<32:
bytes3[i] = bitxor( bytes1[i] , bytes2[i] )
var output : B
unmarshal(output, bytes3, littleEndian)
return output
#-------------------------------------------------------------------------------
func applyFieldMask(big : B) : F =
return bigToF( bigIntBitwiseAnd( fieldMask, big ) )
func fieldComplement(x: F): F =
let big1 = fToBig(x)
let comp = bigIntBitwiseComplement( big1 )
return applyFieldMask(comp)
#-------------------------------------------------------------------------------
func fieldNegateB(x : B): B =
if bool(isZero(x)):
return x
else:
return fieldPrime - x
func smallShiftRightB(x: B, k: int): B =
if (k == 0):
return x
elif (k < 64):
var y : B = x
y.shiftRight(k)
return y
else:
# more constantine limitations...
var y : B = x
y.shiftRight(63)
return smallShiftRightB(y, k-63)
func shiftLeftF*( x: F, kbig: B ) : F
func shiftRightF*( x: F, kbig: B ) : F
func shiftLeftF*( x: F, kbig: B ) : F {.raises: [].} =
if (isZeroB(kbig)):
return x
elif bool(kbig >= halfPrimePlus1):
return shiftRightF( x , fieldNegateB(kbig) )
elif bool(kbig > numberOfBitsAsBigInt):
return zeroF
else:
let k = int(kbig.limbs[0])
var y = fToBig(x)
for i in 0..<k: # constantine has `shiftRight` but no `shiftLeft`, WTF seriously
let _ = y.double()
return applyFieldMask( y )
func shiftRightF*( x: F, kbig: B ) : F =
if (isZeroB(kbig)):
return x # WTF constantine ?!?!?!
if bool(kbig >= halfPrimePlus1):
return shiftLeftF( x , fieldNegateB(kbig) )
elif bool(kbig > numberOfBitsAsBigInt):
return zeroF
else:
let k = int(kbig.limbs[0])
var y : B = fToBig(x)
return bigToF( smallShiftRightB( y , k ) )
#[
proc shiftSanityCheck*() =
let x: F = intToF(12345678903)
let k: B = uintToB(8)
let nk: B = fieldPrime - k
echo fToDecimal( shiftLeftF( x,k) )
echo fToDecimal( shiftRightF(x,k) )
echo fToDecimal( shiftLeftF( x,nk) )
echo fToDecimal( shiftRightF(x,nk) )
let x2: F = decimalToF("21051029818893485635560069555360071249585393429228441201546820650188605022495") # intToF(12345678903)
let k2: B = uintToB(0)
echo fToDecimal( shiftLeftF( x2,k2) )
echo fToDecimal( shiftRightF(x2,k2) )
let x3: F = decimalToF("21051029818893485635560069555360071249585393429228441201546820650188605022495") # intToF(12345678903)
let k3: B = uintToB(100)
echo fToDecimal( shiftRightF(x3,k3) )
]#
#-------------------------------------------------------------------------------
func evalUnoOpNode(op: UnoOp, x: F): F =
case op:
of Neg: return negF(x)
of Id: return x
of LNot: return boolToF( not (fToBool x) )
of Bnot: return fieldComplement(x)
func evalDuoOpNode(op: DuoOp, x: F, y: F): F =
case op:
of Mul: return x * y
of Div: return if isZeroF(y): zeroF else: x / y
of Add: return x + y
of Sub: return x - y
of Pow: return powF(x, fToBig(y)) # assert( false, "Pow: not yet implemented" )
of Idiv: assert( false, "Idiv: not yet implemented" ) # return bigToF( fToBig(x) div fToBig(y) )
of Mod: assert( false, "Mod: not yet implemented" ) # return bigToF( fToBig(x) mod fToBig(y) )
of Eq: return boolToF( x === y )
of Neq: return boolToF( not (x === y) )
of Lt: return boolToF( bool( fToBig(x) < fToBig(y) ) )
of Gt: return boolToF( bool( fToBig(x) > fToBig(y) ) )
of Leq: return boolToF( bool( fToBig(x) <= fToBig(y) ) )
of Geq: return boolToF( bool( fToBig(x) >= fToBig(y) ) )
of Land: return boolToF( fToBool(x) and fToBool(y) )
of Lor: return boolToF( fToBool(x) or fToBool(y) )
of Shl: return shiftLeftF( x , fToBig(y) )
of Shr: return shiftRightF( x , fToBig(y) )
of Bor: return bigToF( bigIntBitwiseOr( fToBig(x) , fToBig(y) ) )
of Band: return bigToF( bigIntBitwiseAnd( fToBig(x) , fToBig(y) ) )
of Bxor: return bigToF( bigIntBitwiseXor( fToBig(x) , fToBig(y) ) )
func evalTresOpNode(op: TresOp, x: F, y: F, z: F): F =
case op:
of TernCond:
return (if fToBool(x): y else: z)
#-------------------------------------------------------------------------------
func evalNode*( inputs: Table[int,F] , node: Node[F] ): F {.raises: KeyError.} =
case node.kind:
of Input: inputs[int(node.inp.idx)]
of Const: fromBigUInt(node.kst.bigVal)
of Uno: evalUnoOpNode( node.uno.op , node.uno.arg1 )
of Duo: evalDuoOpNode( node.duo.op , node.duo.arg1 , node.duo.arg2 )
of Tres: evalTresOpNode(node.tres.op, node.tres.arg1, node.tres.arg2, node.tres.arg3 )
#-------------------------------------------------------------------------------