Georgios Konstantopoulos 11e6d04f3b
Feat: Use pre-calculated ConstraintMatrices (#2)
* feat: add function for calculating the coefficients

* fix tests / debug coeffs

* feat: use groth16 with configurable matrices

* test: add no r1cs test

* test: add a test to check matrices values

* scaffold of the matrix calculation

* feat: correctly load and use matrices in the without_r1cs variant

* chore: cargo fmt

* chore: cargo fmt / lints

* ci: do not double run tests

* fix: calculate correctly points at inf

* test: use correct abicoder v2 types

Co-authored-by: Kobi Gurkan <kobigurk@gmail.com>
2021-08-17 14:45:13 +03:00

107 lines
4.0 KiB
Rust

use ark_ff::PrimeField;
use ark_groth16::r1cs_to_qap::{evaluate_constraint, LibsnarkReduction, R1CStoQAP};
use ark_poly::EvaluationDomain;
use ark_relations::r1cs::{ConstraintMatrices, ConstraintSystemRef, SynthesisError};
use ark_std::{cfg_into_iter, cfg_iter, cfg_iter_mut, vec};
/// Implements the witness map used by snarkjs. The arkworks witness map calculates the
/// coefficients of H through computing (AB-C)/Z in the evaluation domain and going back to the
/// coefficients domain. snarkjs instead precomputes the Lagrange form of the powers of tau bases
/// in a domain twice as large and the witness map is computed as the odd coefficients of (AB-C)
/// in that domain. This serves as HZ when computing the C proof element.
pub struct CircomReduction;
impl R1CStoQAP for CircomReduction {
#[allow(clippy::type_complexity)]
fn instance_map_with_evaluation<F: PrimeField, D: EvaluationDomain<F>>(
cs: ConstraintSystemRef<F>,
t: &F,
) -> Result<(Vec<F>, Vec<F>, Vec<F>, F, usize, usize), SynthesisError> {
LibsnarkReduction::instance_map_with_evaluation::<F, D>(cs, t)
}
fn witness_map_from_matrices<F: PrimeField, D: EvaluationDomain<F>>(
matrices: &ConstraintMatrices<F>,
num_inputs: usize,
num_constraints: usize,
full_assignment: &[F],
) -> Result<Vec<F>, SynthesisError> {
let zero = F::zero();
let domain =
D::new(num_constraints + num_inputs).ok_or(SynthesisError::PolynomialDegreeTooLarge)?;
let domain_size = domain.size();
let mut a = vec![zero; domain_size];
let mut b = vec![zero; domain_size];
cfg_iter_mut!(a[..num_constraints])
.zip(cfg_iter_mut!(b[..num_constraints]))
.zip(cfg_iter!(&matrices.a))
.zip(cfg_iter!(&matrices.b))
.for_each(|(((a, b), at_i), bt_i)| {
*a = evaluate_constraint(at_i, full_assignment);
*b = evaluate_constraint(bt_i, full_assignment);
});
{
let start = num_constraints;
let end = start + num_inputs;
a[start..end].clone_from_slice(&full_assignment[..num_inputs]);
}
let mut c = vec![zero; domain_size];
cfg_iter_mut!(c[..num_constraints])
.zip(&a)
.zip(&b)
.for_each(|((c_i, &a), &b)| {
*c_i = a * b;
});
domain.ifft_in_place(&mut a);
domain.ifft_in_place(&mut b);
let root_of_unity = {
let domain_size_double = 2 * domain_size;
let domain_double =
D::new(domain_size_double).ok_or(SynthesisError::PolynomialDegreeTooLarge)?;
domain_double.element(1)
};
D::distribute_powers_and_mul_by_const(&mut a, root_of_unity, F::one());
D::distribute_powers_and_mul_by_const(&mut b, root_of_unity, F::one());
domain.fft_in_place(&mut a);
domain.fft_in_place(&mut b);
let mut ab = domain.mul_polynomials_in_evaluation_domain(&a, &b);
drop(a);
drop(b);
domain.ifft_in_place(&mut c);
D::distribute_powers_and_mul_by_const(&mut c, root_of_unity, F::one());
domain.fft_in_place(&mut c);
cfg_iter_mut!(ab)
.zip(c)
.for_each(|(ab_i, c_i)| *ab_i -= &c_i);
Ok(ab)
}
fn h_query_scalars<F: PrimeField, D: EvaluationDomain<F>>(
max_power: usize,
t: F,
_: F,
delta_inverse: F,
) -> Result<Vec<F>, SynthesisError> {
// the usual H query has domain-1 powers. Z has domain powers. So HZ has 2*domain-1 powers.
let mut scalars = cfg_into_iter!(0..2 * max_power + 1)
.map(|i| delta_inverse * t.pow([i as u64]))
.collect::<Vec<_>>();
let domain_size = scalars.len();
let domain = D::new(domain_size).ok_or(SynthesisError::PolynomialDegreeTooLarge)?;
// generate the lagrange coefficients
domain.ifft_in_place(&mut scalars);
Ok(cfg_into_iter!(scalars).skip(1).step_by(2).collect())
}
}