211 lines
6.6 KiB
R

is_completed <- function(completion) abs(1.0 - completion) < 1e-7
#' Extracts repetition id and seed set id from the dataset name,
#' which should be in the format `dataset-<seed_set>-<repetition>`.
#'
#' @param download_metric
#' @param meta
#'
#' @returns
#' @export
extract_repetitions <- function(download_metric) {
download_metric |>
mutate(
temp = str_remove(dataset_name, '^dataset-'),
seed_set = as.numeric(str_extract(temp, '^\\d+')),
run = as.numeric(str_extract(temp, '\\d+$'))
) |>
rename(piece = value) |>
select(-temp, -name)
}
#' Computes the progress, in percentage, of the download. The underlying
#' assumption is that downloads are logged as discrete chunks of the same size,
#' and that the `value` column contains something that identifies this chunk.
#'
#' This makes it compatible with BitTorrent, which logs piece ids, whereas with
#' other systems we can simply use a byte count, provided the logger is smart
#' enough to log at equally-sized, discrete intervals.
#'
compute_progress <- function(download_metric, meta, count_distinct) {
download_metric |>
group_by(node, seed_set, run) |>
arrange(timestamp) |>
mutate(
piece_count = if (count_distinct) seq_along(timestamp) else piece
) |>
ungroup() |>
mutate(completed = (as.integer64(piece_count) * meta$download_metric_unit_bytes) / meta$file_size)
}
process_incomplete_downloads <- function(download_metric, discard_incomplete) {
incomplete_downloads <- download_metric |>
group_by(node, seed_set, run) |>
summarise(completed = max(completed)) |>
filter(!is_completed(completed))
if(nrow(incomplete_downloads) > 0) {
(if (!discard_incomplete) stop else warning)(
'Experiment contained incomplete downloads.')
}
download_metric |> anti_join(
incomplete_downloads, by = c('node', 'seed_set', 'run'))
}
process_incomplete_repetitions <- function(download_metric, repetitions, allow_missing) {
mismatching_repetitions <- download_metric |>
select(seed_set, node, run) |>
distinct() |>
group_by(seed_set, node) |>
count() |>
filter(n != repetitions)
if(nrow(mismatching_repetitions) > 0) {
(if (!allow_missing) stop else warning)(
'Experiment data did not have all repetitions.')
}
download_metric
}
compute_download_times <- function(meta, request_event, download_metric, group_id) {
n_leechers <- meta$nodes$network_size - meta$seeders
download_start <- request_event |>
select(-request_id) |>
filter(name == 'leech', type == 'EventBoundary.start') |>
mutate(
# We didn't log those on the runner side so I have to reconstruct them.
run = rep(rep(
1:meta$repetitions - 1,
each = n_leechers), times = meta$seeder_sets),
seed_set = rep(
1:meta$seeder_sets - 1,
each = n_leechers * meta$repetitions),
destination = gsub('"', '', destination) # sometimes we get double-quoted strings in logs
) |>
transmute(node = destination, run, seed_set, seed_request_time = timestamp)
download_times <- download_metric |>
left_join(download_start, by = c('node', 'run', 'seed_set')) |>
mutate(
elapsed_download_time = as.numeric(timestamp - seed_request_time)
) |>
group_by(node, run, seed_set) |>
mutate(
time_to_first_byte = min(timestamp),
lookup_time = as.numeric(time_to_first_byte - seed_request_time)
) |>
ungroup()
if (nrow(download_times |>
filter(elapsed_download_time < 0 | lookup_time < 0)) > 0) {
stop('Calculation for download times contains negative numbers')
}
download_times
}
download_times <- function(experiment, piece_count_distinct, discard_incomplete = TRUE, allow_missing = TRUE) {
meta <- experiment$meta
downloads <- experiment$download_metric |>
extract_repetitions() |>
compute_progress(meta, count_distinct = piece_count_distinct)
downloads <- process_incomplete_downloads(
downloads,
discard_incomplete
) |>
process_incomplete_repetitions(meta$repetitions, allow_missing)
download_times <- compute_download_times(
meta,
experiment$request_event,
downloads,
group_id
)
if (!check_seeder_count(download_times, meta$seeders)) {
warning(glue::glue('Undefined download times do not match seeder count'))
return(NULL)
}
download_times
}
completion_time_stats <- function(download_times, meta) {
completion_times <- download_times |>
filter(!is.na(elapsed_download_time),
is_completed(completed)) |>
pull(elapsed_download_time)
n_experiments <- meta$repetitions * meta$seeder_sets
n_leechers <- meta$nodes$network_size - meta$seeders
n_points <- n_experiments * n_leechers
tibble(
n = length(completion_times),
expected_n = n_points,
missing = expected_n - n,
min = min(completion_times),
p05 = quantile(completion_times, p = 0.05),
p10 = quantile(completion_times, p = 0.10),
p20 = quantile(completion_times, p = 0.20),
p25 = quantile(completion_times, p = 0.25),
median = median(completion_times),
p75 = quantile(completion_times, p = 0.75),
p80 = quantile(completion_times, p = 0.80),
p90 = quantile(completion_times, p = 0.90),
p95 = quantile(completion_times, p = 0.95),
max = max(completion_times),
iqr = p75 - p25,
# This gives us roughly a 95% ci for comparing medians.
ci = (1.58 * iqr) / sqrt(n),
w_top = median + ci,
w_bottom = median - ci
)
}
check_seeder_count <- function(download_times, seeders) {
mismatching_seeders <- download_times |>
filter(is.na(seed_request_time)) |>
select(node, seed_set, run) |>
distinct() |>
group_by(seed_set, run) |>
count() |>
filter(n != seeders)
nrow(mismatching_seeders) == 0
}
download_stats <- function(download_times) {
download_times |>
filter(!is.na(elapsed_download_time)) |>
group_by(piece_count, completed) |>
summarise(
mean = mean(elapsed_download_time),
median = median(elapsed_download_time),
max = max(elapsed_download_time),
min = min(elapsed_download_time),
p90 = quantile(elapsed_download_time, p = 0.95),
p10 = quantile(elapsed_download_time, p = 0.05),
.groups = 'drop'
)
}
compute_compact_summary <- function(download_ecdf) {
lapply(c(0.05, 0.5, 0.95), function(p)
download_ecdf |>
filter(completed >= p) |>
slice_min(completed)
) |>
bind_rows() |>
select(completed, network_size, file_size, seeders, leechers, median) |>
pivot_wider(id_cols = c('file_size', 'network_size', 'seeders', 'leechers'),
names_from = completed, values_from = median)
}