mirror of
https://github.com/logos-storage/bittorrent-benchmarks.git
synced 2026-01-03 05:23:06 +00:00
178 lines
6.3 KiB
Python
178 lines
6.3 KiB
Python
import datetime
|
|
import logging
|
|
from collections.abc import Iterator
|
|
from typing import Optional, Tuple, Any, Dict, List
|
|
|
|
from elasticsearch import Elasticsearch
|
|
|
|
from benchmarks.core.concurrency import pflatmap
|
|
from benchmarks.logging.sources.sources import LogSource, ExperimentId, NodeId, RawLine
|
|
|
|
GROUP_LABEL = "app.kubernetes.io/part-of"
|
|
EXPERIMENT_LABEL = "app.kubernetes.io/instance"
|
|
DEFAULT_HORIZON = 5
|
|
ES_MAX_BATCH_SIZE = 10_000
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class LogstashSource(LogSource):
|
|
"""Log source for logs stored in Elasticsearch by Logstash. This is typically used when running experiments
|
|
in a Kubernetes cluster."""
|
|
|
|
def __init__(
|
|
self,
|
|
client: Elasticsearch,
|
|
structured_only: bool = False,
|
|
chronological: bool = False,
|
|
slices: int = 1,
|
|
horizon: int = DEFAULT_HORIZON,
|
|
today: Optional[datetime.date] = None,
|
|
):
|
|
"""
|
|
@:param client: Elasticsearch client to use for retrieving logs
|
|
@:param structured_only: If True, only return structured log lines (those starting with '>>').
|
|
@:param chronological: If True, return logs in chronological order. This is mostly meant for use
|
|
in testing, and can get quite slow/expensive for large queries.
|
|
"""
|
|
self.client = client
|
|
self.structured_only = structured_only
|
|
self.chronological = chronological
|
|
self.slices = slices
|
|
self._indexes = self._generate_indexes(today, horizon)
|
|
|
|
def __enter__(self):
|
|
return self
|
|
|
|
def __exit__(self, exc_type, exc_val, exc_tb):
|
|
self.client.close()
|
|
|
|
@property
|
|
def indexes(self) -> List[str]:
|
|
return list(self._indexes)
|
|
|
|
def experiments(self, group_id: str) -> Iterator[str]:
|
|
"""Retrieves all experiment IDs within an experiment group."""
|
|
query = {
|
|
"size": 0,
|
|
"query": {
|
|
"constant_score": {
|
|
"filter": {"term": {f"pod_labels.{GROUP_LABEL}.keyword": group_id}}
|
|
}
|
|
},
|
|
"aggs": {
|
|
"experiments": {
|
|
"terms": {
|
|
"field": f"pod_labels.{EXPERIMENT_LABEL}.keyword",
|
|
"size": 1000,
|
|
}
|
|
}
|
|
},
|
|
}
|
|
|
|
response = self.client.search(index="benchmarks-*", body=query)
|
|
for bucket in response["aggregations"]["experiments"]["buckets"]:
|
|
yield bucket["key"]
|
|
|
|
def logs(
|
|
self, group_id: str, experiment_id: Optional[str] = None
|
|
) -> Iterator[Tuple[ExperimentId, NodeId, RawLine]]:
|
|
"""Retrieves logs for either all experiments within a group, or a specific experiment."""
|
|
filters = [{"term": {f"pod_labels.{GROUP_LABEL}.keyword": group_id}}]
|
|
|
|
if experiment_id:
|
|
filters.append(
|
|
{"term": {f"pod_labels.{EXPERIMENT_LABEL}.keyword": experiment_id}}
|
|
)
|
|
|
|
if self.structured_only:
|
|
filters.append({"match_phrase": {"message": "entry_type"}})
|
|
|
|
query: Dict[str, Any] = {"query": {"bool": {"filter": filters}}}
|
|
|
|
if self.chronological:
|
|
query["sort"] = [{"@timestamp": {"order": "asc"}}]
|
|
else:
|
|
# More efficient, as per https://www.elastic.co/guide/en/elasticsearch/reference/current/paginate-search-results.html#scroll-search-results
|
|
query["sort"] = ["_doc"]
|
|
|
|
# We can probably cache this, but for now OK.
|
|
actual_indexes = [
|
|
index for index in self.indexes if self.client.indices.exists(index=index)
|
|
]
|
|
|
|
if self.slices > 1:
|
|
logger.info(f"Querying ES with {self.slices} scroll slices.")
|
|
yield from pflatmap(
|
|
[
|
|
self._run_scroll(sliced_query, actual_indexes)
|
|
for sliced_query in self._sliced_queries(query)
|
|
],
|
|
workers=self.slices,
|
|
max_queue_size=100_000,
|
|
)
|
|
else:
|
|
yield from self._run_scroll(query, actual_indexes)
|
|
|
|
def _sliced_queries(self, query: Dict[str, Any]) -> Iterator[Dict[str, Any]]:
|
|
for i in range(self.slices):
|
|
query_slice = query.copy()
|
|
query_slice["slice"] = {"id": i, "max": self.slices}
|
|
yield query_slice
|
|
|
|
def _run_scroll(self, query: Dict[str, Any], actual_indexes: List[str]):
|
|
scroll_response = self.client.search(
|
|
index=actual_indexes, body=query, scroll="2m", size=ES_MAX_BATCH_SIZE
|
|
)
|
|
scroll_id = scroll_response["_scroll_id"]
|
|
|
|
try:
|
|
while True:
|
|
hits = scroll_response["hits"]["hits"]
|
|
logger.info(f"Retrieved {len(hits)} log entries.")
|
|
if not hits:
|
|
break
|
|
|
|
for hit in hits:
|
|
source = hit["_source"]
|
|
message = source["message"]
|
|
|
|
experiment_id = source["pod_labels"][EXPERIMENT_LABEL]
|
|
node_id = source["pod_name"]
|
|
|
|
if (
|
|
not isinstance(experiment_id, str)
|
|
or not isinstance(node_id, str)
|
|
or not isinstance(message, str)
|
|
):
|
|
logger.warning(
|
|
"Skipping log entry with invalid data: %s", source
|
|
)
|
|
continue
|
|
|
|
yield experiment_id, node_id, message
|
|
|
|
# Get next batch of results
|
|
scroll_response = self.client.scroll(scroll_id=scroll_id, scroll="2m")
|
|
except Exception as e:
|
|
logger.exception(f"Error while scrolling: {e}")
|
|
finally:
|
|
# Clean up scroll context
|
|
logger.info("Worker done, clearing scroll context.")
|
|
self.client.clear_scroll(scroll_id=scroll_id)
|
|
|
|
def __str__(self):
|
|
return (
|
|
f"LogstashSource(client={self.client}, structured_only={self.structured_only}, "
|
|
f"chronological={self.chronological}, indexes={self.indexes})"
|
|
)
|
|
|
|
def _generate_indexes(self, today: Optional[datetime.date], horizon: int):
|
|
if today is None:
|
|
today = datetime.date.today()
|
|
|
|
return [
|
|
f"benchmarks-{(today - datetime.timedelta(days=i)).strftime('%Y.%m.%d')}"
|
|
for i in range(horizon)
|
|
]
|