feat: generalize final analysis to Codex experiments

This commit is contained in:
gmega 2025-02-18 17:44:25 -03:00
parent d1077d0972
commit ad6e94db7d
No known key found for this signature in database
GPG Key ID: 6290D34EAD824B18
3 changed files with 109 additions and 86 deletions

View File

@ -1,13 +1,17 @@
PIECE_SIZE <- 262144
is_completed <- function(completion) 1.0 - completion > -1e-7
piece_count <- function(experiment_meta) {
experiment_meta$file_size / PIECE_SIZE
}
extract_repetitions <- function(deluge_torrent_download) {
deluge_torrent_download |>
#' Extracts repetition id and seed set id from the dataset name,
#' which should be in the format `dataset-<seed_set>-<repetition>`.
#'
#' @param download_metric
#' @param meta
#'
#' @returns
#' @export
extract_repetitions <- function(download_metric) {
download_metric |>
mutate(
temp = str_remove(torrent_name, '^dataset-'),
temp = str_remove(dataset_name, '^dataset-'),
seed_set = as.numeric(str_extract(temp, '^\\d+')),
run = as.numeric(str_extract(temp, '\\d+$'))
) |>
@ -15,35 +19,42 @@ extract_repetitions <- function(deluge_torrent_download) {
select(-temp, -name)
}
compute_pieces <- function(deluge_torrent_download, n_pieces) {
deluge_torrent_download |>
#' Computes the progress, in percentage, of the download. The underlying
#' assumption is that downloads are logged as discrete chunks of the same size,
#' and that the `value` column contains something that identifies this chunk.
#'
#' This makes it compatible with BitTorrent, which logs piece ids, whereas with
#' other systems we can simply use a byte count, provided the logger is smart
#' enough to log at equally-sized, discrete intervals.
#'
compute_progress <- function(download_metric, meta, count_distinct) {
download_metric |>
group_by(node, seed_set, run) |>
arrange(timestamp) |>
mutate(
piece_count = seq_along(timestamp)
piece_count = if (count_distinct) seq_along(timestamp) else piece
) |>
ungroup() |>
mutate(completed = piece_count / n_pieces)
mutate(completed = (piece_count * meta$download_metric_unit_bytes) / meta$file_size)
}
process_incomplete_downloads <- function(deluge_torrent_download, n_pieces, discard_incomplete) {
incomplete_downloads <- deluge_torrent_download |>
process_incomplete_downloads <- function(download_metric, discard_incomplete) {
incomplete_downloads <- download_metric |>
group_by(node, seed_set, run) |>
count() |>
ungroup() |>
filter(n != n_pieces)
summarise(completed = max(completed)) |>
filter(!is_completed(completed))
if(nrow(incomplete_downloads) > 0) {
(if (!discard_incomplete) stop else warning)(
'Experiment contained incomplete downloads.')
}
deluge_torrent_download |> anti_join(
download_metric |> anti_join(
incomplete_downloads, by = c('node', 'seed_set', 'run'))
}
process_incomplete_repetitions <- function(deluge_torrent_download, repetitions, allow_missing) {
mismatching_repetitions <- deluge_torrent_download |>
process_incomplete_repetitions <- function(download_metric, repetitions, allow_missing) {
mismatching_repetitions <- download_metric |>
select(seed_set, node, run) |>
distinct() |>
group_by(seed_set, node) |>
@ -55,10 +66,10 @@ process_incomplete_repetitions <- function(deluge_torrent_download, repetitions,
'Experiment data did not have all repetitions.')
}
deluge_torrent_download
download_metric
}
compute_download_times <- function(meta, request_event, deluge_torrent_download, group_id) {
compute_download_times <- function(meta, request_event, download_metric, group_id) {
n_leechers <- meta$nodes$network_size - meta$seeders
download_start <- request_event |>
@ -68,14 +79,15 @@ compute_download_times <- function(meta, request_event, deluge_torrent_download,
# We didn't log those on the runner side so I have to reconstruct them.
run = rep(rep(
1:meta$repetitions - 1,
each = n_leechers), times=meta$seeder_sets),
each = n_leechers), times = meta$seeder_sets),
seed_set = rep(
1:meta$seeder_sets - 1,
each = n_leechers * meta$repetitions),
destination = gsub('"', '', destination) # sometimes we get double-quoted strings in logs
) |>
transmute(node = destination, run, seed_set, seed_request_time = timestamp)
download_times <- deluge_torrent_download |>
download_times <- download_metric |>
left_join(download_start, by = c('node', 'run', 'seed_set')) |>
mutate(
elapsed_download_time = as.numeric(timestamp - seed_request_time)
@ -95,38 +107,39 @@ compute_download_times <- function(meta, request_event, deluge_torrent_download,
download_times
}
check_seeder_count <- function(download_times, seeders) {
mismatching_seeders <- download_times |>
filter(is.na(seed_request_time)) |>
select(node, seed_set, run) |>
distinct() |>
group_by(seed_set, run) |>
count() |>
filter(n != seeders)
nrow(mismatching_seeders) == 0
download_times <- function(experiment, piece_count_distinct, discard_incomplete = TRUE, allow_missing = TRUE) {
meta <- experiment$meta
downloads <- experiment$download_metric |>
extract_repetitions() |>
compute_progress(meta, count_distinct = piece_count_distinct)
downloads <- process_incomplete_downloads(
downloads,
discard_incomplete
) |>
process_incomplete_repetitions(meta$repetitions, allow_missing)
download_times <- compute_download_times(
meta,
experiment$request_event,
downloads,
group_id
)
if (!check_seeder_count(download_times, meta$seeders)) {
warning(glue::glue('Undefined download times do not match seeder count'))
return(NULL)
}
download_times
}
download_stats <- function(download_times) {
download_times |>
filter(!is.na(elapsed_download_time)) |>
group_by(piece_count, completed) |>
summarise(
mean = mean(elapsed_download_time),
median = median(elapsed_download_time),
max = max(elapsed_download_time),
min = min(elapsed_download_time),
p90 = quantile(elapsed_download_time, p = 0.95),
p10 = quantile(elapsed_download_time, p = 0.05),
.groups = 'drop'
)
}
completion_time_stats <- function(download_times, meta) {
n_pieces <- meta |> piece_count()
completion_times <- download_times |>
filter(!is.na(elapsed_download_time),
piece_count == n_pieces) |>
is_completed(completed)) |>
pull(elapsed_download_time)
n_experiments <- meta$repetitions * meta$seeder_sets
@ -156,35 +169,32 @@ completion_time_stats <- function(download_times, meta) {
)
}
download_times <- function(experiment, discard_incomplete = TRUE, allow_missing = TRUE) {
meta <- experiment$meta
pieces <- experiment$meta |> piece_count()
downloads <- experiment$deluge_torrent_download |>
extract_repetitions() |>
compute_pieces(pieces)
check_seeder_count <- function(download_times, seeders) {
mismatching_seeders <- download_times |>
filter(is.na(seed_request_time)) |>
select(node, seed_set, run) |>
distinct() |>
group_by(seed_set, run) |>
count() |>
filter(n != seeders)
downloads <- process_incomplete_downloads(
downloads,
pieces,
discard_incomplete
) |>
process_incomplete_repetitions(meta$repetitions, allow_missing)
download_times <- compute_download_times(
meta,
experiment$request_event,
downloads,
group_id
)
if (!check_seeder_count(download_times, meta$seeders)) {
warning(glue::glue('Undefined download times do not match seeder count'))
return(NULL)
}
download_times
nrow(mismatching_seeders) == 0
}
download_stats <- function(download_times) {
download_times |>
filter(!is.na(elapsed_download_time)) |>
group_by(piece_count, completed) |>
summarise(
mean = mean(elapsed_download_time),
median = median(elapsed_download_time),
max = max(elapsed_download_time),
min = min(elapsed_download_time),
p90 = quantile(elapsed_download_time, p = 0.95),
p10 = quantile(elapsed_download_time, p = 0.05),
.groups = 'drop'
)
}
compute_compact_summary <- function(download_ecdf) {
lapply(c(0.05, 0.5, 0.95), function(p)

View File

@ -1,9 +1,9 @@
read_all_experiments <- function(base_path, skip_incomplete = TRUE) {
read_all_experiments <- function(base_path, skip_incomplete = TRUE, prefix = '') {
roots <- list.files(base_path,
include.dirs = TRUE, no.. = TRUE, full.names = TRUE)
experiments <- lapply(roots, read_single_experiment)
names(experiments) <- sapply(roots, basename)
names(experiments) <- paste0(prefix, sapply(roots, basename))
# Validates that no experiment has missing data.
key_sets <- lapply(experiments, ls) |> unique()
@ -24,8 +24,7 @@ read_all_experiments <- function(base_path, skip_incomplete = TRUE) {
experiments[!is.null(experiments)]
}
merge_experiments <- function(set_1, set_2, prefix) {
maxid <- max(as.integer(sub(pattern = 'e', '', ls(deluge))))
merge_experiments <- function(set_1, set_2) {
merged <- list()
for (set_1_id in ls(set_1)) {
@ -33,7 +32,10 @@ merge_experiments <- function(set_1, set_2, prefix) {
}
for (set_2_id in ls(set_2)) {
merged[[paste0(prefix, set_2_id)]] <- set_2[[set_2_id]]
if (set_2_id %in% names(merged)) {
stop(glue::glue('Duplicate experiment ID {set_2_id}. Cannot merge.'))
}
merged[[set_2_id]] <- set_2[[set_2_id]]
}
merged

View File

@ -20,25 +20,34 @@ devtools::load_all()
This is data that's been pre-parsed from an experiment [log source](https://github.com/codex-storage/bittorrent-benchmarks/blob/1ee8ea8a35a2c0fccea6e7c955183c4ed03eebb3/benchmarks/logging/sources.py#L27).
```{r}
deluge <- read_all_experiments('./data/g1738145663/') |>
merge_experiments(
read_all_experiments('./data/g1738248455/'), prefix = 's')
experiments <- read_all_experiments('./data/g1739826980')
```
```{r}
COUNT_DISTINCT = list(
'codex_static_dissemination' = FALSE,
'deluge_static_dissemination' = TRUE
)
```
Computes the benchmark statistics from raw download logs.
```{r}
benchmarks <- lapply(deluge, function(experiment) {
benchmarks <- lapply(experiments, function(experiment) {
print(glue::glue('Process {experiment$experiment_id}'))
download_time_stats <- tryCatch({
meta <- experiment$meta
completion <- experiment |>
download_times() |>
download_times(
piece_count_distinct = COUNT_DISTINCT[[meta$experiment_type]]) |>
completion_time_stats(meta)
if (is.null(completion)) {
NULL
} else {
completion |> mutate(
experiment_type = meta$experiment_type,
network_size = meta$nodes$network_size,
seeders = meta$seeders,
leechers = network_size - meta$seeders,
@ -71,7 +80,7 @@ benchmarks
We then plot the median by network size, and facet it by seeder ratio and file size to see if looks sane:
```{r fig.width = 10, warning=FALSE, message=FALSE}
ggplot(benchmarks) +
ggplot(benchmarks, aes(col = experiment_type, fill = experiment_type)) +
geom_ribbon(aes(ymin = p25, ymax = p75, x = network_size),
fill = scales::alpha('blue', 0.5), col = 'lightgray') +
geom_point(aes(x = network_size, y = p25), col = 'darkgray', size=10.0, shape='-') +
@ -90,5 +99,7 @@ ggplot(benchmarks) +
paste0("seeder ratio: ", scales::percent(as.numeric(x)))
}))
) +
scale_color_discrete(name = 'experiment type') +
guides(fill = 'none') +
ylim(c(0,NA))
```