research/rln-delay-simulations/plot_paper_distribution.py
2024-02-23 10:43:48 +01:00

56 lines
1.8 KiB
Python

import matplotlib.pyplot as plt
import scienceplots
import numpy as np
import pandas as pd
from analyze import load
latencies = pd.DataFrame({
"2kb": load("raw/paper_latency_2kb_v2.txt", "arrival_diff="),
"25kb": load("raw/paper_latency_25kb_v2.txt", "arrival_diff="),
"100kb": load("raw/paper_latency_100kb_v2.txt", "arrival_diff="),
"500kb": load("raw/paper_latency_500kb_v2.txt", "arrival_diff=")})
num_bins = 50
# Best (1 hop) and worst (4 hops) latencies in ms
# See Table 2 from paper
multi_host_simulations = {
"2kb": [364, 709],
"25kb": [436, 1084],
"100kb": [471, 1922],
"500kb": [564, 2988]
}
with plt.style.context(['science', 'ieee']):
fig, ax = plt.subplots(2, 2)
possitions = [
("2kb", ax[0][0]),
("25kb", ax[0][1]),
("100kb", ax[1][0]),
("500kb", ax[1][1])
]
for (size, pos) in possitions:
# Plot single host results
latencies.hist(size, bins=num_bins, ax=pos)
# Plot multi host results
pos.axvline(x=multi_host_simulations[size][0], color='red', linestyle='--')
pos.axvline(x=multi_host_simulations[size][1], color='red', linestyle='--')
pos.grid(False)
title = ('size={size}\n' + r'$\mu$={mean:.0f} $p_{{95}}$={p95:.0f} min={min:.0f} max={max:.0f}').format(
size=size,
mean=latencies[size].mean(axis=0),
p95=np.percentile(latencies[size], 95),
min=latencies[size].min(),
max=latencies[size].max())
pos.set_title(title, fontsize=8)
ax[0][0].set(ylabel='Amount messages')
ax[1][0].set(xlabel='Latency (ms)', ylabel='Amount messages')
ax[1][1].set(xlabel='Latency (ms)')
plt.tight_layout(pad=0, w_pad=0.1, h_pad=0.1)
fig.set_size_inches(4, 3)
fig.savefig('paper_distribution.svg', dpi=600)