noise/state.go
Jason A. Donenfeld 6a0d1cad82 psk mode: update for redesign
The PSK mode has been redesigned in the latest revision of Noise, which
WireGuard is using. This patch updates the library to use this new
construction. It adds a outputs parameter to HKDF, a
PresharedKeyPlacement config parameter, as well as a PSK token. This has
been tested against the latest WireGuard git master, and the two are
compatible.

Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2017-05-15 13:21:07 +02:00

462 lines
13 KiB
Go

// Package noise implements the Noise Protocol Framework.
//
// Noise is a low-level framework for building crypto protocols. Noise protocols
// support mutual and optional authentication, identity hiding, forward secrecy,
// zero round-trip encryption, and other advanced features. For more details,
// visit http://noiseprotocol.org.
package noise
import (
"crypto/rand"
"errors"
"fmt"
"io"
)
// A CipherState provides symmetric encryption and decryption after a successful
// handshake.
type CipherState struct {
cs CipherSuite
c Cipher
k [32]byte
n uint64
invalid bool
}
// Encrypt encrypts the plaintext and then appends the ciphertext and an
// authentication tag across the ciphertext and optional authenticated data to
// out. This method automatically increments the nonce after every call, so
// messages must be decrypted in the same order.
func (s *CipherState) Encrypt(out, ad, plaintext []byte) []byte {
if s.invalid {
panic("noise: CipherSuite has been copied, state is invalid")
}
out = s.c.Encrypt(out, s.n, ad, plaintext)
s.n++
return out
}
// Decrypt checks the authenticity of the ciphertext and authenticated data and
// then decrypts and appends the plaintext to out. This method automatically
// increments the nonce after every call, messages must be provided in the same
// order that they were encrypted with no missing messages.
func (s *CipherState) Decrypt(out, ad, ciphertext []byte) ([]byte, error) {
if s.invalid {
panic("noise: CipherSuite has been copied, state is invalid")
}
out, err := s.c.Decrypt(out, s.n, ad, ciphertext)
s.n++
return out, err
}
// Cipher returns the low-level symmetric encryption primitive. It should only
// be used if nonces need to be managed manually, for example with a network
// protocol that can deliver out-of-order messages. This is dangerous, users
// must ensure that they are incrementing a nonce after every encrypt operation.
// After calling this method, it is an error to call Encrypt/Decrypt on the
// CipherState.
func (s *CipherState) Cipher() Cipher {
s.invalid = true
return s.c
}
type symmetricState struct {
CipherState
hasK bool
ck []byte
h []byte
prevCK []byte
prevH []byte
}
func (s *symmetricState) InitializeSymmetric(handshakeName []byte) {
h := s.cs.Hash()
if len(handshakeName) <= h.Size() {
s.h = make([]byte, h.Size())
copy(s.h, handshakeName)
} else {
h.Write(handshakeName)
s.h = h.Sum(nil)
}
s.ck = make([]byte, len(s.h))
copy(s.ck, s.h)
}
func (s *symmetricState) MixKey(dhOutput []byte) {
s.n = 0
s.hasK = true
var hk []byte
s.ck, hk, _ = hkdf(s.cs.Hash, 2, s.ck[:0], s.k[:0], nil, s.ck, dhOutput)
copy(s.k[:], hk)
s.c = s.cs.Cipher(s.k)
}
func (s *symmetricState) MixHash(data []byte) {
h := s.cs.Hash()
h.Write(s.h)
h.Write(data)
s.h = h.Sum(s.h[:0])
}
func (s *symmetricState) MixKeyAndHash(data []byte) {
var hk []byte
var temp []byte
s.ck, temp, hk = hkdf(s.cs.Hash, 3, s.ck[:0], temp, s.k[:0], s.ck, data)
s.MixHash(temp)
copy(s.k[:], hk)
s.c = s.cs.Cipher(s.k)
s.n = 0
s.hasK = true
}
func (s *symmetricState) EncryptAndHash(out, plaintext []byte) []byte {
if !s.hasK {
s.MixHash(plaintext)
return append(out, plaintext...)
}
ciphertext := s.Encrypt(out, s.h, plaintext)
s.MixHash(ciphertext[len(out):])
return ciphertext
}
func (s *symmetricState) DecryptAndHash(out, data []byte) ([]byte, error) {
if !s.hasK {
s.MixHash(data)
return append(out, data...), nil
}
plaintext, err := s.Decrypt(out, s.h, data)
if err != nil {
return nil, err
}
s.MixHash(data)
return plaintext, nil
}
func (s *symmetricState) Split() (*CipherState, *CipherState) {
s1, s2 := &CipherState{cs: s.cs}, &CipherState{cs: s.cs}
hk1, hk2, _ := hkdf(s.cs.Hash, 2, s1.k[:0], s2.k[:0], nil, s.ck, nil)
copy(s1.k[:], hk1)
copy(s2.k[:], hk2)
s1.c = s.cs.Cipher(s1.k)
s2.c = s.cs.Cipher(s2.k)
return s1, s2
}
func (s *symmetricState) Checkpoint() {
if len(s.ck) > cap(s.prevCK) {
s.prevCK = make([]byte, len(s.ck))
}
s.prevCK = s.prevCK[:len(s.ck)]
copy(s.prevCK, s.ck)
if len(s.h) > cap(s.prevH) {
s.prevH = make([]byte, len(s.h))
}
s.prevH = s.prevH[:len(s.h)]
copy(s.prevH, s.h)
}
func (s *symmetricState) Rollback() {
s.ck = s.ck[:len(s.prevCK)]
copy(s.ck, s.prevCK)
s.h = s.h[:len(s.prevH)]
copy(s.h, s.prevH)
}
// A MessagePattern is a single message or operation used in a Noise handshake.
type MessagePattern int
// A HandshakePattern is a list of messages and operations that are used to
// perform a specific Noise handshake.
type HandshakePattern struct {
Name string
InitiatorPreMessages []MessagePattern
ResponderPreMessages []MessagePattern
Messages [][]MessagePattern
}
const (
MessagePatternS MessagePattern = iota
MessagePatternE
MessagePatternDHEE
MessagePatternDHES
MessagePatternDHSE
MessagePatternDHSS
MessagePatternPSK
)
// MaxMsgLen is the maximum number of bytes that can be sent in a single Noise
// message.
const MaxMsgLen = 65535
// A HandshakeState tracks the state of a Noise handshake. It may be discarded
// after the handshake is complete.
type HandshakeState struct {
ss symmetricState
s DHKey // local static keypair
e DHKey // local ephemeral keypair
rs []byte // remote party's static public key
re []byte // remote party's ephemeral public key
psk []byte // preshared key, maybe zero length
messagePatterns [][]MessagePattern
shouldWrite bool
msgIdx int
rng io.Reader
}
// A Config provides the details necessary to process a Noise handshake. It is
// never modified by this package, and can be reused.
type Config struct {
// CipherSuite is the set of cryptographic primitives that will be used.
CipherSuite CipherSuite
// Random is the source for cryptographically appropriate random bytes. If
// zero, it is automatically configured.
Random io.Reader
// Pattern is the pattern for the handshake.
Pattern HandshakePattern
// Initiator must be true if the first message in the handshake will be sent
// by this peer.
Initiator bool
// Prologue is an optional message that has already be communicated and must
// be identical on both sides for the handshake to succeed.
Prologue []byte
// PresharedKey is the optional preshared key for the handshake.
PresharedKey []byte
// PresharedKeyPlacement specifies the placement position of the PSK token
// when PresharedKey is specified
PresharedKeyPlacement int
// StaticKeypair is this peer's static keypair, required if part of the
// handshake.
StaticKeypair DHKey
// EphemeralKeypair is this peer's ephemeral keypair that was provided as
// a pre-message in the handshake.
EphemeralKeypair DHKey
// PeerStatic is the static public key of the remote peer that was provided
// as a pre-message in the handshake.
PeerStatic []byte
// PeerEphemeral is the ephemeral public key of the remote peer that was
// provided as a pre-message in the handshake.
PeerEphemeral []byte
}
// NewHandshakeState starts a new handshake using the provided configuration.
func NewHandshakeState(c Config) *HandshakeState {
hs := &HandshakeState{
s: c.StaticKeypair,
e: c.EphemeralKeypair,
rs: c.PeerStatic,
psk: c.PresharedKey,
messagePatterns: c.Pattern.Messages,
shouldWrite: c.Initiator,
rng: c.Random,
}
if hs.rng == nil {
hs.rng = rand.Reader
}
if len(c.PeerEphemeral) > 0 {
hs.re = make([]byte, len(c.PeerEphemeral))
copy(hs.re, c.PeerEphemeral)
}
hs.ss.cs = c.CipherSuite
pskModifier := ""
if len(hs.psk) > 0 {
if len(hs.psk) != 32 {
panic("noise: specification mandates 256-bit preshared keys")
}
pskModifier = fmt.Sprintf("psk%d", c.PresharedKeyPlacement)
hs.messagePatterns = append([][]MessagePattern(nil), hs.messagePatterns...)
if (c.PresharedKeyPlacement == 0) {
hs.messagePatterns[0] = append([]MessagePattern{MessagePatternPSK}, hs.messagePatterns[0]...)
} else {
hs.messagePatterns[c.PresharedKeyPlacement - 1] = append(hs.messagePatterns[c.PresharedKeyPlacement - 1], MessagePatternPSK)
}
}
hs.ss.InitializeSymmetric([]byte("Noise_" + c.Pattern.Name + pskModifier + "_" + string(hs.ss.cs.Name())))
hs.ss.MixHash(c.Prologue)
for _, m := range c.Pattern.InitiatorPreMessages {
switch {
case c.Initiator && m == MessagePatternS:
hs.ss.MixHash(hs.s.Public)
case c.Initiator && m == MessagePatternE:
hs.ss.MixHash(hs.e.Public)
case !c.Initiator && m == MessagePatternS:
hs.ss.MixHash(hs.rs)
case !c.Initiator && m == MessagePatternE:
hs.ss.MixHash(hs.re)
}
}
for _, m := range c.Pattern.ResponderPreMessages {
switch {
case !c.Initiator && m == MessagePatternS:
hs.ss.MixHash(hs.s.Public)
case !c.Initiator && m == MessagePatternE:
hs.ss.MixHash(hs.e.Public)
case c.Initiator && m == MessagePatternS:
hs.ss.MixHash(hs.rs)
case c.Initiator && m == MessagePatternE:
hs.ss.MixHash(hs.re)
}
}
return hs
}
// WriteMessage appends a handshake message to out. The message will include the
// optional payload if provided. If the handshake is completed by the call, two
// CipherStates will be returned, one is used for encryption of messages to the
// remote peer, the other is used for decryption of messages from the remote
// peer. It is an error to call this method out of sync with the handshake
// pattern.
func (s *HandshakeState) WriteMessage(out, payload []byte) ([]byte, *CipherState, *CipherState) {
if !s.shouldWrite {
panic("noise: unexpected call to WriteMessage should be ReadMessage")
}
if s.msgIdx > len(s.messagePatterns)-1 {
panic("noise: no handshake messages left")
}
if len(payload) > MaxMsgLen {
panic("noise: message is too long")
}
for _, msg := range s.messagePatterns[s.msgIdx] {
switch msg {
case MessagePatternE:
s.e = s.ss.cs.GenerateKeypair(s.rng)
out = append(out, s.e.Public...)
s.ss.MixHash(s.e.Public)
if len(s.psk) > 0 {
s.ss.MixKey(s.e.Public)
}
case MessagePatternS:
if len(s.s.Public) == 0 {
panic("noise: invalid state, s.Public is nil")
}
out = s.ss.EncryptAndHash(out, s.s.Public)
case MessagePatternDHEE:
s.ss.MixKey(s.ss.cs.DH(s.e.Private, s.re))
case MessagePatternDHES:
s.ss.MixKey(s.ss.cs.DH(s.e.Private, s.rs))
case MessagePatternDHSE:
s.ss.MixKey(s.ss.cs.DH(s.s.Private, s.re))
case MessagePatternDHSS:
s.ss.MixKey(s.ss.cs.DH(s.s.Private, s.rs))
case MessagePatternPSK:
s.ss.MixKeyAndHash(s.psk)
}
}
s.shouldWrite = false
s.msgIdx++
out = s.ss.EncryptAndHash(out, payload)
if s.msgIdx >= len(s.messagePatterns) {
cs1, cs2 := s.ss.Split()
return out, cs1, cs2
}
return out, nil, nil
}
// ErrShortMessage is returned by ReadMessage if a message is not as long as it should be.
var ErrShortMessage = errors.New("noise: message is too short")
// ReadMessage processes a received handshake message and appends the payload,
// if any to out. If the handshake is completed by the call, two CipherStates
// will be returned, one is used for encryption of messages to the remote peer,
// the other is used for decryption of messages from the remote peer. It is an
// error to call this method out of sync with the handshake pattern.
func (s *HandshakeState) ReadMessage(out, message []byte) ([]byte, *CipherState, *CipherState, error) {
if s.shouldWrite {
panic("noise: unexpected call to ReadMessage should be WriteMessage")
}
if s.msgIdx > len(s.messagePatterns)-1 {
panic("noise: no handshake messages left")
}
s.ss.Checkpoint()
var err error
for _, msg := range s.messagePatterns[s.msgIdx] {
switch msg {
case MessagePatternE, MessagePatternS:
expected := s.ss.cs.DHLen()
if msg == MessagePatternS && s.ss.hasK {
expected += 16
}
if len(message) < expected {
return nil, nil, nil, ErrShortMessage
}
switch msg {
case MessagePatternE:
if cap(s.re) < s.ss.cs.DHLen() {
s.re = make([]byte, s.ss.cs.DHLen())
}
s.re = s.re[:s.ss.cs.DHLen()]
copy(s.re, message)
s.ss.MixHash(s.re)
if len(s.psk) > 0 {
s.ss.MixKey(s.re)
}
case MessagePatternS:
if len(s.rs) > 0 {
panic("noise: invalid state, rs is not nil")
}
s.rs, err = s.ss.DecryptAndHash(s.rs[:0], message[:expected])
}
if err != nil {
s.ss.Rollback()
return nil, nil, nil, err
}
message = message[expected:]
case MessagePatternDHEE:
s.ss.MixKey(s.ss.cs.DH(s.e.Private, s.re))
case MessagePatternDHES:
s.ss.MixKey(s.ss.cs.DH(s.s.Private, s.re))
case MessagePatternDHSE:
s.ss.MixKey(s.ss.cs.DH(s.e.Private, s.rs))
case MessagePatternDHSS:
s.ss.MixKey(s.ss.cs.DH(s.s.Private, s.rs))
case MessagePatternPSK:
s.ss.MixKeyAndHash(s.psk)
}
}
out, err = s.ss.DecryptAndHash(out, message)
if err != nil {
s.ss.Rollback()
return nil, nil, nil, err
}
s.shouldWrite = true
s.msgIdx++
if s.msgIdx >= len(s.messagePatterns) {
cs1, cs2 := s.ss.Split()
return out, cs1, cs2, nil
}
return out, nil, nil, nil
}
// ChannelBinding provides a value that uniquely identifies the session and can
// be used as a channel binding. It is an error to call this method before the
// handshake is complete.
func (s *HandshakeState) ChannelBinding() []byte {
return s.ss.h
}
// PeerStatic returns the static key provided by the remote peer during
// a handshake. It is an error to call this method if a handshake message
// containing a static key has not been read.
func (s *HandshakeState) PeerStatic() []byte {
return s.rs
}