mirror of
https://github.com/logos-messaging/nim-sds.git
synced 2026-01-02 14:13:07 +00:00
add nim bloom pkg
This commit is contained in:
parent
a83dcc0331
commit
5d065c168b
7
nim-bloom/.gitignore
vendored
Normal file
7
nim-bloom/.gitignore
vendored
Normal file
@ -0,0 +1,7 @@
|
||||
nimcache
|
||||
nimcache/*
|
||||
tests/test
|
||||
bloom
|
||||
*.html
|
||||
*.css
|
||||
/.DS_Store
|
||||
20
nim-bloom/LICENSE
Normal file
20
nim-bloom/LICENSE
Normal file
@ -0,0 +1,20 @@
|
||||
The MIT License (MIT)
|
||||
|
||||
Copyright (c) 2013 Nick Greenfield
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy of
|
||||
this software and associated documentation files (the "Software"), to deal in
|
||||
the Software without restriction, including without limitation the rights to
|
||||
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
|
||||
the Software, and to permit persons to whom the Software is furnished to do so,
|
||||
subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
|
||||
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
|
||||
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
|
||||
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
||||
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||||
41
nim-bloom/README.md
Normal file
41
nim-bloom/README.md
Normal file
@ -0,0 +1,41 @@
|
||||
nim-bloom
|
||||
============
|
||||
|
||||
Bloom filter implementation in Nim. Uses a C implementation of MurmurHash3 for optimal speed and numeric distribution.
|
||||
|
||||
On a 10 year old Macbook Pro Retina the test case for 10M insertions executes in ~4.0 seconds and 10M lookups in ~3.5 seconds for a Bloom filter with a 1 in 1000 error rate (0.001). This is ~2.5M insertions/sec and ~2.9M lookups/sec on a single thread (but passing the `-d:release` flag to the Nim compiler and thus activating the C compiler's optimizations). If k is lowered to 5 or 6 vs. a larger "optimal" number, performance further increases to ~4M ops/sec. Note that this test is for a Bloom filter ~20-25MB in size and thus accurately reflects the cost of main memory accesses (vs. a smaller filter that might fit solely in L3 cache, for example, and can achieve several million additional ops/sec).
|
||||
|
||||
|
||||
Currently supports inserting and looking up string elements. Forthcoming features include:
|
||||
* Support for other types beyond strings
|
||||
* Support for iterables in the insert method
|
||||
* Persistence
|
||||
|
||||
|
||||
quickstart
|
||||
====
|
||||
Quick functionality demo:
|
||||
```
|
||||
import bloom
|
||||
var bf = initializeBloomFilter(capacity = 10000, errorRate = 0.001)
|
||||
echo bf # Get characteristics of the Bloom filter
|
||||
echo bf.lookup("An element not in the Bloom filter") # Prints 'false'
|
||||
bf.insert("Here we go...")
|
||||
assert(bf.lookup("Here we go..."))
|
||||
```
|
||||
|
||||
|
||||
By default, the Bloom filter will use a mathematically optimal number of k hash functions, which minimizes the amount of error per bit of storage required. In many cases, however, it may be advantageous to specify a smaller value of k in order to save time hashing. This is supported by passing an explicit `k` parameter, which will then either create an optimal Bloom filter for the specified error rate.[1]
|
||||
|
||||
[1] If `k` <= 12 and the number of required bytes per element is <= 4. If either of these conditions doesn't hold, a fully manual Bloom filter can be constructed by passing both `k` and `force_n_bits_per_elem`.
|
||||
|
||||
Example:
|
||||
```
|
||||
var bf2 = initializeBloomFilter(capacity = 10000, errorRate = 0.001, k = 5)
|
||||
assert bf2.kHashes == 5
|
||||
assert bf2.nBitsPerElem == 18
|
||||
|
||||
var bf3 = initializeBloomFilter(capacity = 10000, errorRate = 0.001, k = 5, forceNBitsPerElem = 12)
|
||||
assert bf3.kHashes == 5
|
||||
assert bf3.nBitsPerElem == 12 # But note, however, that bf.errorRate will *not* be correct
|
||||
```
|
||||
9
nim-bloom/bloom.nimble
Normal file
9
nim-bloom/bloom.nimble
Normal file
@ -0,0 +1,9 @@
|
||||
# Package
|
||||
version = "0.1.0"
|
||||
author = "Waku Team"
|
||||
description = "Efficient Bloom filter implementation for Nim"
|
||||
license = "MIT"
|
||||
srcDir = "src"
|
||||
|
||||
# Dependencies
|
||||
requires "nim >= 1.0.0"
|
||||
BIN
nim-bloom/src/.DS_Store
vendored
Normal file
BIN
nim-bloom/src/.DS_Store
vendored
Normal file
Binary file not shown.
244
nim-bloom/src/bloom.nim
Normal file
244
nim-bloom/src/bloom.nim
Normal file
@ -0,0 +1,244 @@
|
||||
from math import ceil, ln, pow, round
|
||||
import hashes
|
||||
import strutils
|
||||
import private/probabilities
|
||||
|
||||
# Import MurmurHash3 code and compile at the same time as Nim code
|
||||
{.compile: "murmur3.c".}
|
||||
|
||||
type
|
||||
BloomFilterError = object of CatchableError
|
||||
MurmurHashes = array[0..1, int]
|
||||
BloomFilter* = object
|
||||
capacity*: int
|
||||
errorRate*: float
|
||||
kHashes*: int
|
||||
mBits*: int
|
||||
intArray: seq[int]
|
||||
nBitsPerElem*: int
|
||||
useMurmurHash*: bool
|
||||
|
||||
proc rawMurmurHash(key: cstring, len: int, seed: uint32,
|
||||
outHashes: var MurmurHashes): void {.
|
||||
importc: "MurmurHash3_x64_128".}
|
||||
|
||||
proc murmurHash(key: string, seed = 0'u32): MurmurHashes =
|
||||
rawMurmurHash(key, key.len, seed, outHashes = result)
|
||||
|
||||
proc hashA(item: string, maxValue: int): int =
|
||||
hash(item) mod maxValue
|
||||
|
||||
proc hashB(item: string, maxValue: int): int =
|
||||
hash(item & " b") mod maxValue
|
||||
|
||||
proc hashN(item: string, n: int, maxValue: int): int =
|
||||
## Get the nth hash of a string using the formula hashA + n * hashB
|
||||
## which uses 2 hash functions vs. k and has comparable properties
|
||||
## See Kirsch and Mitzenmacher, 2008:
|
||||
## http://www.eecs.harvard.edu/~kirsch/pubs/bbbf/rsa.pdf
|
||||
abs((hashA(item, maxValue) + n * hashB(item, maxValue))) mod maxValue
|
||||
|
||||
proc getMOverNBitsForK(k: int, targetError: float,
|
||||
probabilityTable = kErrors): int =
|
||||
## Returns the optimal number of m/n bits for a given k.
|
||||
if k notin 0..12:
|
||||
raise newException(BloomFilterError,
|
||||
"K must be <= 12 if forceNBitsPerElem is not also specified.")
|
||||
|
||||
for mOverN in 2..probabilityTable[k].high:
|
||||
if probabilityTable[k][mOverN] < targetError:
|
||||
return mOverN
|
||||
|
||||
raise newException(BloomFilterError,
|
||||
"Specified value of k and error rate for which is not achievable using less than 4 bytes / element.")
|
||||
|
||||
proc initializeBloomFilter*(capacity: int, errorRate: float, k = 0,
|
||||
forceNBitsPerElem = 0,
|
||||
useMurmurHash = true): BloomFilter =
|
||||
## Initializes a Bloom filter, using a specified ``capacity``,
|
||||
## ``errorRate``, and – optionally – specific number of k hash functions.
|
||||
## If ``kHashes`` is < 1 (default argument is 0), ``kHashes`` will be
|
||||
## optimally calculated on the fly. Otherwise, ``kHashes`` will be set to
|
||||
## the passed integer, which requires that ``forceNBitsPerElem`` is
|
||||
## also set to be greater than 0. Otherwise a ``BloomFilterError``
|
||||
## exception is raised.
|
||||
## See http://pages.cs.wisc.edu/~cao/papers/summary-cache/node8.html for
|
||||
## useful tables on k and m/n (n bits per element) combinations.
|
||||
##
|
||||
## The Bloom filter uses the MurmurHash3 implementation by default,
|
||||
## though it can fall back to using the built-in nim ``hash`` function
|
||||
## if ``useMurmurHash = false``. This is compiled alongside the Nim
|
||||
## code using the ``{.compile.}`` pragma.
|
||||
var
|
||||
kHashes: int
|
||||
bitsPerElem: float
|
||||
nBitsPerElem: int
|
||||
|
||||
if k < 1: # Calculate optimal k and use that
|
||||
bitsPerElem = ceil(-1.0 * (ln(errorRate) / (pow(ln(2.float), 2))))
|
||||
kHashes = round(ln(2.float) * bitsPerElem).int
|
||||
nBitsPerElem = round(bitsPerElem).int
|
||||
else: # Use specified k if possible
|
||||
if forceNBitsPerElem < 1: # Use lookup table
|
||||
nBitsPerElem = getMOverNBitsForK(k = k, targetError = errorRate)
|
||||
else:
|
||||
nBitsPerElem = forceNBitsPerElem
|
||||
kHashes = k
|
||||
|
||||
let
|
||||
mBits = capacity * nBitsPerElem
|
||||
mInts = 1 + mBits div (sizeof(int) * 8)
|
||||
|
||||
BloomFilter(capacity: capacity, errorRate: errorRate, kHashes: kHashes,
|
||||
mBits: mBits, intArray: newSeq[int](mInts), nBitsPerElem: nBitsPerElem,
|
||||
useMurmurHash: useMurmurHash)
|
||||
|
||||
proc `$`*(bf: BloomFilter): string =
|
||||
## Prints the capacity, set error rate, number of k hash functions,
|
||||
## and total bits of memory allocated by the Bloom filter.
|
||||
"Bloom filter with $1 capacity, $2 error rate, $3 hash functions, and requiring $4 bits per stored element." %
|
||||
[$bf.capacity,
|
||||
formatFloat(bf.errorRate, format = ffScientific, precision = 1),
|
||||
$bf.kHashes, $bf.nBitsPerElem]
|
||||
|
||||
{.push overflowChecks: off.}
|
||||
|
||||
proc hashMurmur(bf: BloomFilter, key: string): seq[int] =
|
||||
result.newSeq(bf.kHashes)
|
||||
let murmurHashes = murmurHash(key, seed = 0'u32)
|
||||
for i in 0..<bf.kHashes:
|
||||
result[i] = abs(murmurHashes[0] + i * murmurHashes[1]) mod bf.mBits
|
||||
|
||||
{.pop.}
|
||||
|
||||
proc hashNim(bf: BloomFilter, key: string): seq[int] =
|
||||
result.newSeq(bf.kHashes)
|
||||
for i in 0..<bf.kHashes:
|
||||
result[i] = hashN(key, i, bf.mBits)
|
||||
|
||||
proc hash(bf: BloomFilter, key: string): seq[int] =
|
||||
if bf.useMurmurHash:
|
||||
bf.hashMurmur(key)
|
||||
else:
|
||||
bf.hashNim(key)
|
||||
|
||||
proc insert*(bf: var BloomFilter, item: string) =
|
||||
## Insert an item (string) into the Bloom filter.
|
||||
var hashSet = bf.hash(item)
|
||||
for h in hashSet:
|
||||
let
|
||||
intAddress = h div (sizeof(int) * 8)
|
||||
bitOffset = h mod (sizeof(int) * 8)
|
||||
bf.intArray[intAddress] = bf.intArray[intAddress] or (1 shl bitOffset)
|
||||
|
||||
proc lookup*(bf: BloomFilter, item: string): bool =
|
||||
## Lookup an item (string) into the Bloom filter.
|
||||
## If the item is present, ``lookup`` is guaranteed to return ``true``.
|
||||
## If the item is not present, ``lookup`` will return ``false``
|
||||
## with a probability 1 - ``bf.errorRate``.
|
||||
var hashSet = bf.hash(item)
|
||||
for h in hashSet:
|
||||
let
|
||||
intAddress = h div (sizeof(int) * 8)
|
||||
bitOffset = h mod (sizeof(int) * 8)
|
||||
currentInt = bf.intArray[intAddress]
|
||||
if currentInt != (currentInt or (1 shl bitOffset)):
|
||||
return false
|
||||
return true
|
||||
|
||||
when isMainModule:
|
||||
from random import rand, randomize
|
||||
import times
|
||||
|
||||
# Test murmurhash 3
|
||||
echo("Testing MurmurHash3 code...")
|
||||
var hashOutputs: MurmurHashes
|
||||
hashOutputs = [0, 0]
|
||||
rawMurmurHash("hello", 5, 0, hashOutputs)
|
||||
assert int(hashOutputs[0]) == -3758069500696749310 # Correct murmur outputs (cast to int64)
|
||||
assert int(hashOutputs[1]) == 6565844092913065241
|
||||
|
||||
let hashOutputs2 = murmurHash("hello", 0)
|
||||
assert hashOutputs2[0] == hashOutputs[0]
|
||||
assert hashOutputs2[1] == hashOutputs[1]
|
||||
let hashOutputs3 = murmurHash("hello", 10)
|
||||
assert hashOutputs3[0] != hashOutputs[0]
|
||||
assert hashOutputs3[1] != hashOutputs[1]
|
||||
|
||||
# Some quick and dirty tests (not complete)
|
||||
var nElementsToTest = 100000
|
||||
var bf = initializeBloomFilter(nElementsToTest, 0.001)
|
||||
assert(bf of BloomFilter)
|
||||
echo(bf)
|
||||
|
||||
var bf2 = initializeBloomFilter(10000, 0.001, k = 4,
|
||||
forceNBitsPerElem = 20)
|
||||
assert(bf2 of BloomFilter)
|
||||
echo(bf2)
|
||||
|
||||
echo("Testing insertions and lookups...")
|
||||
echo("Test element in BF2?: ", bf2.lookup("testing"))
|
||||
echo("Inserting element.")
|
||||
bf2.insert("testing")
|
||||
echo("Test element in BF2?: ", bf2.lookup("testing"))
|
||||
assert(bf2.lookup("testing"))
|
||||
|
||||
# Now test for speed with bf
|
||||
randomize(2882) # Seed the RNG
|
||||
var
|
||||
sampleChars = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"
|
||||
kTestElements, sampleLetters: seq[string]
|
||||
kTestElements = newSeq[string](nElementsToTest)
|
||||
sampleLetters = newSeq[string](62)
|
||||
|
||||
for i in 0..(nElementsToTest - 1):
|
||||
var newString = ""
|
||||
for j in 0..7:
|
||||
newString.add(sampleChars[rand(51)])
|
||||
kTestElements[i] = newString
|
||||
|
||||
var startTime, endTime: float
|
||||
startTime = cpuTime()
|
||||
for i in 0..(nElementsToTest - 1):
|
||||
bf.insert(kTestElements[i])
|
||||
endTime = cpuTime()
|
||||
echo("Took ", formatFloat(endTime - startTime, format = ffDecimal,
|
||||
precision = 4), " seconds to insert ", nElementsToTest, " items.")
|
||||
|
||||
var falsePositives = 0
|
||||
for i in 0..(nElementsToTest - 1):
|
||||
var falsePositiveString = ""
|
||||
for j in 0..8: # By definition not in bf as 9 chars not 8
|
||||
falsePositiveString.add(sampleChars[rand(51)])
|
||||
if bf.lookup(falsePositiveString):
|
||||
falsePositives += 1
|
||||
|
||||
echo("N false positives (of ", nElementsToTest, " lookups): ", falsePositives)
|
||||
echo("False positive rate ", formatFloat(falsePositives / nElementsToTest,
|
||||
format = ffDecimal, precision = 4))
|
||||
|
||||
var lookupErrors = 0
|
||||
startTime = cpuTime()
|
||||
for i in 0..(nElementsToTest - 1):
|
||||
if not bf.lookup(kTestElements[i]):
|
||||
lookupErrors += 1
|
||||
endTime = cpuTime()
|
||||
echo("Took ", formatFloat(endTime - startTime, format = ffDecimal,
|
||||
precision = 4), " seconds to lookup ", nElementsToTest, " items.")
|
||||
|
||||
echo("N lookup errors (should be 0): ", lookupErrors)
|
||||
|
||||
# Finally test correct k / mOverN specification,
|
||||
# first case raises an error, second works
|
||||
try:
|
||||
discard getMOverNBitsForK(k = 2, targetError = 0.00001)
|
||||
assert false
|
||||
except BloomFilterError:
|
||||
assert true
|
||||
|
||||
assert getMOverNBitsForK(k = 2, targetError = 0.1) == 6
|
||||
assert getMOverNBitsForK(k = 7, targetError = 0.01) == 10
|
||||
assert getMOverNBitsForK(k = 7, targetError = 0.001) == 16
|
||||
|
||||
var bf3 = initializeBloomFilter(1000, 0.01, k = 4)
|
||||
assert bf3.nBitsPerElem == 11
|
||||
314
nim-bloom/src/murmur3.c
Normal file
314
nim-bloom/src/murmur3.c
Normal file
@ -0,0 +1,314 @@
|
||||
//-----------------------------------------------------------------------------
|
||||
// MurmurHash3 was written by Austin Appleby, and is placed in the public
|
||||
// domain. The author hereby disclaims copyright to this source code.
|
||||
|
||||
// Note - The x86 and x64 versions do _not_ produce the same results, as the
|
||||
// algorithms are optimized for their respective platforms. You can still
|
||||
// compile and run any of them on any platform, but your performance with the
|
||||
// non-native version will be less than optimal.
|
||||
|
||||
#include "murmur3.h"
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
// Platform-specific functions and macros
|
||||
|
||||
#ifdef __GNUC__
|
||||
#define FORCE_INLINE __attribute__((always_inline)) inline
|
||||
#else
|
||||
#define FORCE_INLINE
|
||||
#endif
|
||||
|
||||
static inline FORCE_INLINE uint32_t rotl32 ( uint32_t x, int8_t r )
|
||||
{
|
||||
return (x << r) | (x >> (32 - r));
|
||||
}
|
||||
|
||||
static inline FORCE_INLINE uint64_t rotl64 ( uint64_t x, int8_t r )
|
||||
{
|
||||
return (x << r) | (x >> (64 - r));
|
||||
}
|
||||
|
||||
#define ROTL32(x,y) rotl32(x,y)
|
||||
#define ROTL64(x,y) rotl64(x,y)
|
||||
|
||||
#define BIG_CONSTANT(x) (x##LLU)
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
// Block read - if your platform needs to do endian-swapping or can only
|
||||
// handle aligned reads, do the conversion here
|
||||
|
||||
#define getblock(p, i) (p[i])
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
// Finalization mix - force all bits of a hash block to avalanche
|
||||
|
||||
static inline FORCE_INLINE uint32_t fmix32 ( uint32_t h )
|
||||
{
|
||||
h ^= h >> 16;
|
||||
h *= 0x85ebca6b;
|
||||
h ^= h >> 13;
|
||||
h *= 0xc2b2ae35;
|
||||
h ^= h >> 16;
|
||||
|
||||
return h;
|
||||
}
|
||||
|
||||
//----------
|
||||
|
||||
static inline FORCE_INLINE uint64_t fmix64 ( uint64_t k )
|
||||
{
|
||||
k ^= k >> 33;
|
||||
k *= BIG_CONSTANT(0xff51afd7ed558ccd);
|
||||
k ^= k >> 33;
|
||||
k *= BIG_CONSTANT(0xc4ceb9fe1a85ec53);
|
||||
k ^= k >> 33;
|
||||
|
||||
return k;
|
||||
}
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
|
||||
void MurmurHash3_x86_32 ( const void * key, int len,
|
||||
uint32_t seed, void * out )
|
||||
{
|
||||
const uint8_t * data = (const uint8_t*)key;
|
||||
const int nblocks = len / 4;
|
||||
int i;
|
||||
|
||||
uint32_t h1 = seed;
|
||||
|
||||
uint32_t c1 = 0xcc9e2d51;
|
||||
uint32_t c2 = 0x1b873593;
|
||||
|
||||
//----------
|
||||
// body
|
||||
|
||||
const uint32_t * blocks = (const uint32_t *)(data + nblocks*4);
|
||||
|
||||
for(i = -nblocks; i; i++)
|
||||
{
|
||||
uint32_t k1 = getblock(blocks,i);
|
||||
|
||||
k1 *= c1;
|
||||
k1 = ROTL32(k1,15);
|
||||
k1 *= c2;
|
||||
|
||||
h1 ^= k1;
|
||||
h1 = ROTL32(h1,13);
|
||||
h1 = h1*5+0xe6546b64;
|
||||
}
|
||||
|
||||
//----------
|
||||
// tail
|
||||
|
||||
const uint8_t * tail = (const uint8_t*)(data + nblocks*4);
|
||||
|
||||
uint32_t k1 = 0;
|
||||
|
||||
switch(len & 3)
|
||||
{
|
||||
case 3: k1 ^= tail[2] << 16;
|
||||
case 2: k1 ^= tail[1] << 8;
|
||||
case 1: k1 ^= tail[0];
|
||||
k1 *= c1; k1 = ROTL32(k1,15); k1 *= c2; h1 ^= k1;
|
||||
};
|
||||
|
||||
//----------
|
||||
// finalization
|
||||
|
||||
h1 ^= len;
|
||||
|
||||
h1 = fmix32(h1);
|
||||
|
||||
*(uint32_t*)out = h1;
|
||||
}
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
|
||||
void MurmurHash3_x86_128 ( const void * key, const int len,
|
||||
uint32_t seed, void * out )
|
||||
{
|
||||
const uint8_t * data = (const uint8_t*)key;
|
||||
const int nblocks = len / 16;
|
||||
int i;
|
||||
|
||||
uint32_t h1 = seed;
|
||||
uint32_t h2 = seed;
|
||||
uint32_t h3 = seed;
|
||||
uint32_t h4 = seed;
|
||||
|
||||
uint32_t c1 = 0x239b961b;
|
||||
uint32_t c2 = 0xab0e9789;
|
||||
uint32_t c3 = 0x38b34ae5;
|
||||
uint32_t c4 = 0xa1e38b93;
|
||||
|
||||
//----------
|
||||
// body
|
||||
|
||||
const uint32_t * blocks = (const uint32_t *)(data + nblocks*16);
|
||||
|
||||
for(i = -nblocks; i; i++)
|
||||
{
|
||||
uint32_t k1 = getblock(blocks,i*4+0);
|
||||
uint32_t k2 = getblock(blocks,i*4+1);
|
||||
uint32_t k3 = getblock(blocks,i*4+2);
|
||||
uint32_t k4 = getblock(blocks,i*4+3);
|
||||
|
||||
k1 *= c1; k1 = ROTL32(k1,15); k1 *= c2; h1 ^= k1;
|
||||
|
||||
h1 = ROTL32(h1,19); h1 += h2; h1 = h1*5+0x561ccd1b;
|
||||
|
||||
k2 *= c2; k2 = ROTL32(k2,16); k2 *= c3; h2 ^= k2;
|
||||
|
||||
h2 = ROTL32(h2,17); h2 += h3; h2 = h2*5+0x0bcaa747;
|
||||
|
||||
k3 *= c3; k3 = ROTL32(k3,17); k3 *= c4; h3 ^= k3;
|
||||
|
||||
h3 = ROTL32(h3,15); h3 += h4; h3 = h3*5+0x96cd1c35;
|
||||
|
||||
k4 *= c4; k4 = ROTL32(k4,18); k4 *= c1; h4 ^= k4;
|
||||
|
||||
h4 = ROTL32(h4,13); h4 += h1; h4 = h4*5+0x32ac3b17;
|
||||
}
|
||||
|
||||
//----------
|
||||
// tail
|
||||
|
||||
const uint8_t * tail = (const uint8_t*)(data + nblocks*16);
|
||||
|
||||
uint32_t k1 = 0;
|
||||
uint32_t k2 = 0;
|
||||
uint32_t k3 = 0;
|
||||
uint32_t k4 = 0;
|
||||
|
||||
switch(len & 15)
|
||||
{
|
||||
case 15: k4 ^= tail[14] << 16;
|
||||
case 14: k4 ^= tail[13] << 8;
|
||||
case 13: k4 ^= tail[12] << 0;
|
||||
k4 *= c4; k4 = ROTL32(k4,18); k4 *= c1; h4 ^= k4;
|
||||
|
||||
case 12: k3 ^= tail[11] << 24;
|
||||
case 11: k3 ^= tail[10] << 16;
|
||||
case 10: k3 ^= tail[ 9] << 8;
|
||||
case 9: k3 ^= tail[ 8] << 0;
|
||||
k3 *= c3; k3 = ROTL32(k3,17); k3 *= c4; h3 ^= k3;
|
||||
|
||||
case 8: k2 ^= tail[ 7] << 24;
|
||||
case 7: k2 ^= tail[ 6] << 16;
|
||||
case 6: k2 ^= tail[ 5] << 8;
|
||||
case 5: k2 ^= tail[ 4] << 0;
|
||||
k2 *= c2; k2 = ROTL32(k2,16); k2 *= c3; h2 ^= k2;
|
||||
|
||||
case 4: k1 ^= tail[ 3] << 24;
|
||||
case 3: k1 ^= tail[ 2] << 16;
|
||||
case 2: k1 ^= tail[ 1] << 8;
|
||||
case 1: k1 ^= tail[ 0] << 0;
|
||||
k1 *= c1; k1 = ROTL32(k1,15); k1 *= c2; h1 ^= k1;
|
||||
};
|
||||
|
||||
//----------
|
||||
// finalization
|
||||
|
||||
h1 ^= len; h2 ^= len; h3 ^= len; h4 ^= len;
|
||||
|
||||
h1 += h2; h1 += h3; h1 += h4;
|
||||
h2 += h1; h3 += h1; h4 += h1;
|
||||
|
||||
h1 = fmix32(h1);
|
||||
h2 = fmix32(h2);
|
||||
h3 = fmix32(h3);
|
||||
h4 = fmix32(h4);
|
||||
|
||||
h1 += h2; h1 += h3; h1 += h4;
|
||||
h2 += h1; h3 += h1; h4 += h1;
|
||||
|
||||
((uint32_t*)out)[0] = h1;
|
||||
((uint32_t*)out)[1] = h2;
|
||||
((uint32_t*)out)[2] = h3;
|
||||
((uint32_t*)out)[3] = h4;
|
||||
}
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
|
||||
void MurmurHash3_x64_128 ( const void * key, const int len,
|
||||
const uint32_t seed, void * out )
|
||||
{
|
||||
const uint8_t * data = (const uint8_t*)key;
|
||||
const int nblocks = len / 16;
|
||||
int i;
|
||||
|
||||
uint64_t h1 = seed;
|
||||
uint64_t h2 = seed;
|
||||
|
||||
uint64_t c1 = BIG_CONSTANT(0x87c37b91114253d5);
|
||||
uint64_t c2 = BIG_CONSTANT(0x4cf5ad432745937f);
|
||||
|
||||
//----------
|
||||
// body
|
||||
|
||||
const uint64_t * blocks = (const uint64_t *)(data);
|
||||
|
||||
for(i = 0; i < nblocks; i++)
|
||||
{
|
||||
uint64_t k1 = getblock(blocks,i*2+0);
|
||||
uint64_t k2 = getblock(blocks,i*2+1);
|
||||
|
||||
k1 *= c1; k1 = ROTL64(k1,31); k1 *= c2; h1 ^= k1;
|
||||
|
||||
h1 = ROTL64(h1,27); h1 += h2; h1 = h1*5+0x52dce729;
|
||||
|
||||
k2 *= c2; k2 = ROTL64(k2,33); k2 *= c1; h2 ^= k2;
|
||||
|
||||
h2 = ROTL64(h2,31); h2 += h1; h2 = h2*5+0x38495ab5;
|
||||
}
|
||||
|
||||
//----------
|
||||
// tail
|
||||
|
||||
const uint8_t * tail = (const uint8_t*)(data + nblocks*16);
|
||||
|
||||
uint64_t k1 = 0;
|
||||
uint64_t k2 = 0;
|
||||
|
||||
switch(len & 15)
|
||||
{
|
||||
case 15: k2 ^= (uint64_t)(tail[14]) << 48;
|
||||
case 14: k2 ^= (uint64_t)(tail[13]) << 40;
|
||||
case 13: k2 ^= (uint64_t)(tail[12]) << 32;
|
||||
case 12: k2 ^= (uint64_t)(tail[11]) << 24;
|
||||
case 11: k2 ^= (uint64_t)(tail[10]) << 16;
|
||||
case 10: k2 ^= (uint64_t)(tail[ 9]) << 8;
|
||||
case 9: k2 ^= (uint64_t)(tail[ 8]) << 0;
|
||||
k2 *= c2; k2 = ROTL64(k2,33); k2 *= c1; h2 ^= k2;
|
||||
|
||||
case 8: k1 ^= (uint64_t)(tail[ 7]) << 56;
|
||||
case 7: k1 ^= (uint64_t)(tail[ 6]) << 48;
|
||||
case 6: k1 ^= (uint64_t)(tail[ 5]) << 40;
|
||||
case 5: k1 ^= (uint64_t)(tail[ 4]) << 32;
|
||||
case 4: k1 ^= (uint64_t)(tail[ 3]) << 24;
|
||||
case 3: k1 ^= (uint64_t)(tail[ 2]) << 16;
|
||||
case 2: k1 ^= (uint64_t)(tail[ 1]) << 8;
|
||||
case 1: k1 ^= (uint64_t)(tail[ 0]) << 0;
|
||||
k1 *= c1; k1 = ROTL64(k1,31); k1 *= c2; h1 ^= k1;
|
||||
};
|
||||
|
||||
//----------
|
||||
// finalization
|
||||
|
||||
h1 ^= len; h2 ^= len;
|
||||
|
||||
h1 += h2;
|
||||
h2 += h1;
|
||||
|
||||
h1 = fmix64(h1);
|
||||
h2 = fmix64(h2);
|
||||
|
||||
h1 += h2;
|
||||
h2 += h1;
|
||||
|
||||
((uint64_t*)out)[0] = h1;
|
||||
((uint64_t*)out)[1] = h2;
|
||||
}
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
21
nim-bloom/src/murmur3.h
Normal file
21
nim-bloom/src/murmur3.h
Normal file
@ -0,0 +1,21 @@
|
||||
//-----------------------------------------------------------------------------
|
||||
// MurmurHash3 was written by Austin Appleby, and is placed in the
|
||||
// public domain. The author hereby disclaims copyright to this source
|
||||
// code.
|
||||
|
||||
#ifndef _MURMURHASH3_H_
|
||||
#define _MURMURHASH3_H_
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
|
||||
void MurmurHash3_x86_32 (const void *key, int len, uint32_t seed, void *out);
|
||||
|
||||
void MurmurHash3_x86_128(const void *key, int len, uint32_t seed, void *out);
|
||||
|
||||
void MurmurHash3_x64_128(const void *key, int len, uint32_t seed, void *out);
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
|
||||
#endif // _MURMURHASH3_H_
|
||||
103
nim-bloom/src/private/probabilities.nim
Normal file
103
nim-bloom/src/private/probabilities.nim
Normal file
@ -0,0 +1,103 @@
|
||||
#
|
||||
# ### Probability table declaration, in private/ for readability ###
|
||||
# Table for k hashes from 1..12 from http://pages.cs.wisc.edu/~cao/papers/summary-cache/node8.html
|
||||
# Iterate along the sequence at position [k] until the error rate is < specified, otherwise
|
||||
# raise an error.
|
||||
#
|
||||
|
||||
type
|
||||
TErrorForK = seq[float]
|
||||
TAllErrorRates* = array[0..12, TErrorForK]
|
||||
|
||||
var kErrors*: TAllErrorRates
|
||||
|
||||
kErrors[0] = @[1.0]
|
||||
kErrors[1] = @[1.0, 1.0,
|
||||
0.3930000000, 0.2830000000, 0.2210000000, 0.1810000000, 0.1540000000,
|
||||
0.1330000000, 0.1180000000, 0.1050000000, 0.0952000000, 0.0869000000,
|
||||
0.0800000000, 0.0740000000, 0.0689000000, 0.0645000000, 0.0606000000,
|
||||
0.0571000000, 0.0540000000, 0.0513000000, 0.0488000000, 0.0465000000,
|
||||
0.0444000000, 0.0425000000, 0.0408000000, 0.0392000000, 0.0377000000,
|
||||
0.0364000000, 0.0351000000, 0.0339000000, 0.0328000000, 0.0317000000,
|
||||
0.0308000000 ]
|
||||
|
||||
kErrors[2] = @[1.0, 1.0,
|
||||
0.4000000000, 0.2370000000, 0.1550000000, 0.1090000000, 0.0804000000,
|
||||
0.0618000000, 0.0489000000, 0.0397000000, 0.0329000000, 0.0276000000,
|
||||
0.0236000000, 0.0203000000, 0.0177000000, 0.0156000000, 0.0138000000,
|
||||
0.0123000000, 0.0111000000, 0.0099800000, 0.0090600000, 0.0082500000,
|
||||
0.0075500000, 0.0069400000, 0.0063900000, 0.0059100000, 0.0054800000,
|
||||
0.0051000000, 0.0047500000, 0.0044400000, 0.0041600000, 0.0039000000,
|
||||
0.0036700000 ]
|
||||
|
||||
kErrors[3] = @[1.0, 1.0, 1.0,
|
||||
0.2530000000, 0.1470000000, 0.0920000000, 0.0609000000, 0.0423000000,
|
||||
0.0306000000, 0.0228000000, 0.0174000000, 0.0136000000, 0.0108000000,
|
||||
0.0087500000, 0.0071800000, 0.0059600000, 0.0050000000, 0.0042300000,
|
||||
0.0036200000, 0.0031200000, 0.0027000000, 0.0023600000, 0.0020700000,
|
||||
0.0018300000, 0.0016200000, 0.0014500000, 0.0012900000, 0.0011600000,
|
||||
0.0010500000, 0.0009490000, 0.0008620000, 0.0007850000, 0.0007170000 ]
|
||||
|
||||
kErrors[4] = @[1.0, 1.0, 1.0, 1.0,
|
||||
0.1600000000, 0.0920000000, 0.0561000000, 0.0359000000, 0.0240000000,
|
||||
0.0166000000, 0.0118000000, 0.0086400000, 0.0064600000, 0.0049200000,
|
||||
0.0038100000, 0.0030000000, 0.0023900000, 0.0019300000, 0.0015800000,
|
||||
0.0013000000, 0.0010800000, 0.0009050000, 0.0007640000, 0.0006490000,
|
||||
0.0005550000, 0.0004780000, 0.0004130000, 0.0003590000, 0.0003140000,
|
||||
0.0002760000, 0.0002430000, 0.0002150000, 0.0001910000 ]
|
||||
|
||||
kErrors[5] = @[1.0, 1.0, 1.0, 1.0, 1.0,
|
||||
0.1010000000, 0.0578000000, 0.0347000000, 0.0217000000, 0.0141000000,
|
||||
0.0094300000, 0.0065000000, 0.0045900000, 0.0033200000, 0.0024400000,
|
||||
0.0018300000, 0.0013900000, 0.0010700000, 0.0008390000, 0.0006630000,
|
||||
0.0005300000, 0.0004270000, 0.0003470000, 0.0002850000, 0.0002350000,
|
||||
0.0001960000, 0.0001640000, 0.0001380000, 0.0001170000, 0.0000996000,
|
||||
0.0000853000, 0.0000733000, 0.0000633000 ]
|
||||
|
||||
kErrors[6] = @[1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
|
||||
0.0638000000, 0.0364000000, 0.0216000000, 0.0133000000, 0.0084400000,
|
||||
0.0055200000, 0.0037100000, 0.0025500000, 0.0017900000, 0.0012800000,
|
||||
0.0009350000, 0.0006920000, 0.0005190000, 0.0003940000, 0.0003030000,
|
||||
0.0002360000, 0.0001850000, 0.0001470000, 0.0001170000, 0.0000944000,
|
||||
0.0000766000, 0.0000626000, 0.0000515000, 0.0000426000, 0.0000355000,
|
||||
0.0000297000, 0.0000250000 ]
|
||||
|
||||
kErrors[7] = @[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
|
||||
0.0229000000, 0.0135000000, 0.0081900000, 0.0051300000, 0.0032900000,
|
||||
0.0021700000, 0.0014600000, 0.0010000000, 0.0007020000, 0.0004990000,
|
||||
0.0003600000, 0.0002640000, 0.0001960000, 0.0001470000, 0.0001120000,
|
||||
0.0000856000, 0.0000663000, 0.0000518000, 0.0000408000, 0.0000324000,
|
||||
0.0000259000, 0.0000209000, 0.0000169000, 0.0000138000, 0.0000113000 ]
|
||||
|
||||
kErrors[8] = @[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
|
||||
0.0145000000, 0.0084600000, 0.0050900000, 0.0031400000, 0.0019900000,
|
||||
0.0012900000, 0.0008520000, 0.0005740000, 0.0003940000, 0.0002750000,
|
||||
0.0001940000, 0.0001400000, 0.0001010000, 0.0000746000, 0.0000555000,
|
||||
0.0000417000, 0.0000316000, 0.0000242000, 0.0000187000, 0.0000146000,
|
||||
0.0000114000, 0.0000090100, 0.0000071600, 0.0000057300 ]
|
||||
|
||||
kErrors[9] = @[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
|
||||
0.0053100000, 0.0031700000, 0.0019400000, 0.0012100000, 0.0007750000,
|
||||
0.0005050000, 0.0003350000, 0.0002260000, 0.0001550000, 0.0001080000,
|
||||
0.0000759000, 0.0000542000, 0.0000392000, 0.0000286000, 0.0000211000,
|
||||
0.0000157000, 0.0000118000, 0.0000089600, 0.0000068500, 0.0000052800,
|
||||
0.0000041000, 0.0000032000]
|
||||
|
||||
kErrors[10] = @[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
|
||||
0.0033400000, 0.0019800000, 0.0012000000, 0.0007440000, 0.0004700000,
|
||||
0.0003020000, 0.0001980000, 0.0001320000, 0.0000889000, 0.0000609000,
|
||||
0.0000423000, 0.0000297000, 0.0000211000, 0.0000152000, 0.0000110000,
|
||||
0.0000080700, 0.0000059700, 0.0000044500, 0.0000033500, 0.0000025400,
|
||||
0.0000019400]
|
||||
|
||||
kErrors[11] = @[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
|
||||
0.0021000000, 0.0012400000, 0.0007470000, 0.0004590000, 0.0002870000,
|
||||
0.0001830000, 0.0001180000, 0.0000777000, 0.0000518000, 0.0000350000,
|
||||
0.0000240000, 0.0000166000, 0.0000116000, 0.0000082300, 0.0000058900,
|
||||
0.0000042500, 0.0000031000, 0.0000022800, 0.0000016900, 0.0000012600]
|
||||
|
||||
kErrors[12] = @[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
|
||||
0.0007780000, 0.0004660000, 0.0002840000, 0.0001760000, 0.0001110000,
|
||||
0.0000712000, 0.0000463000, 0.0000305000, 0.0000204000, 0.0000138000,
|
||||
0.0000094200, 0.0000065200, 0.0000045600, 0.0000032200, 0.0000022900,
|
||||
0.0000016500, 0.0000012000, 0.0000008740]
|
||||
1
nim-bloom/tests/config.nims
Normal file
1
nim-bloom/tests/config.nims
Normal file
@ -0,0 +1 @@
|
||||
switch("path", "$projectDir/../src")
|
||||
102
nim-bloom/tests/test.nim
Normal file
102
nim-bloom/tests/test.nim
Normal file
@ -0,0 +1,102 @@
|
||||
import unittest
|
||||
include bloom
|
||||
from random import rand, randomize
|
||||
import times
|
||||
|
||||
suite "murmur":
|
||||
# Test murmurhash 3
|
||||
setup:
|
||||
var hashOutputs: MurmurHashes
|
||||
hashOutputs = [0, 0]
|
||||
rawMurmurHash("hello", 5, 0, hashOutputs)
|
||||
|
||||
test "raw":
|
||||
check int(hashOutputs[0]) == -3758069500696749310 # Correct murmur outputs (cast to int64)
|
||||
check int(hashOutputs[1]) == 6565844092913065241
|
||||
|
||||
test "wrapped":
|
||||
let hashOutputs2 = murmurHash("hello", 0)
|
||||
check hashOutputs2[0] == hashOutputs[0]
|
||||
check hashOutputs2[1] == hashOutputs[1]
|
||||
|
||||
test "seed":
|
||||
let hashOutputs3 = murmurHash("hello", 10)
|
||||
check hashOutputs3[0] != hashOutputs[0]
|
||||
check hashOutputs3[1] != hashOutputs[1]
|
||||
|
||||
|
||||
suite "bloom":
|
||||
|
||||
setup:
|
||||
let nElementsToTest = 100000
|
||||
var bf = initializeBloomFilter(capacity = nElementsToTest, errorRate = 0.001)
|
||||
randomize(2882) # Seed the RNG
|
||||
var
|
||||
sampleChars = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"
|
||||
kTestElements, sampleLetters: seq[string]
|
||||
kTestElements = newSeq[string](nElementsToTest)
|
||||
sampleLetters = newSeq[string](62)
|
||||
|
||||
for i in 0..<nElementsToTest:
|
||||
var newString = ""
|
||||
for j in 0..7:
|
||||
newString.add(sampleChars[rand(51)])
|
||||
kTestElements[i] = newString
|
||||
|
||||
for i in 0..<nElementsToTest:
|
||||
bf.insert(kTestElements[i])
|
||||
|
||||
test "params":
|
||||
check(bf.capacity == nElementsToTest)
|
||||
check(bf.errorRate == 0.001)
|
||||
check(bf.kHashes == 10)
|
||||
check(bf.nBitsPerElem == 15)
|
||||
check(bf.mBits == 15 * nElementsToTest)
|
||||
check(bf.useMurmurHash == true)
|
||||
|
||||
test "not hit":
|
||||
check(bf.lookup("nothing") == false)
|
||||
|
||||
test "hit":
|
||||
bf.insert("hit")
|
||||
check(bf.lookup("hit") == true)
|
||||
|
||||
test "force params":
|
||||
var bf2 = initializeBloomFilter(10000, 0.001, k = 4, forceNBitsPerElem = 20)
|
||||
check(bf2.capacity == 10000)
|
||||
check(bf2.errorRate == 0.001)
|
||||
check(bf2.kHashes == 4)
|
||||
check(bf2.nBitsPerElem == 20)
|
||||
check(bf2.mBits == 200000)
|
||||
check(bf2.useMurmurHash == true)
|
||||
|
||||
test "error rate":
|
||||
var falsePositives = 0
|
||||
for i in 0..<nElementsToTest:
|
||||
var falsePositiveString = ""
|
||||
for j in 0..8: # By definition not in bf as 9 chars not 8
|
||||
falsePositiveString.add(sampleChars[rand(51)])
|
||||
if bf.lookup(falsePositiveString):
|
||||
falsePositives += 1
|
||||
|
||||
check falsePositives / nElementsToTest < bf.errorRate
|
||||
|
||||
test "lookup errors":
|
||||
var lookupErrors = 0
|
||||
for i in 0..<nElementsToTest:
|
||||
if not bf.lookup(kTestElements[i]):
|
||||
lookupErrors += 1
|
||||
|
||||
check lookupErrors == 0
|
||||
|
||||
# Finally test correct k / mOverN specification,
|
||||
test "k/(m/n) spec":
|
||||
expect(BloomFilterError):
|
||||
discard getMOverNBitsForK(k = 2, targetError = 0.00001)
|
||||
|
||||
check getMOverNBitsForK(k = 2, targetError = 0.1) == 6
|
||||
check getMOverNBitsForK(k = 7, targetError = 0.01) == 10
|
||||
check getMOverNBitsForK(k = 7, targetError = 0.001) == 16
|
||||
|
||||
var bf3 = initializeBloomFilter(1000, 0.01, k = 4)
|
||||
check bf3.nBitsPerElem == 11
|
||||
Loading…
x
Reference in New Issue
Block a user