#include #include "negentropy.h" #include "negentropy/storage/BTreeMem.h" #include "negentropy_wrapper.h" //This is a C-wrapper for the C++ library that helps in integrating negentropy with nim code. //TODO: Do error handling by catching exceptions using namespace std; void* storage_new(const char* db_path, const char* name){ negentropy::storage::BTreeMem* storage; /* auto env = lmdb::env::create(); env.set_max_dbs(64); env.open(db_path, 0); lmdb::dbi btreeDbi; { auto txn = lmdb::txn::begin(env); btreeDbi = negentropy::storage::BTreeMem::setupDB(txn, name); txn.commit(); } */ //TODO: Finish constructor storage = new negentropy::storage::BTreeMem(); return storage; } void* negentropy_new(void* storage, uint64_t frameSizeLimit){ //TODO: Make these typecasts into macros?? negentropy::storage::BTreeMem* lmdbStorage; //TODO: reinterpret cast is risky, need to use more safe type conversion. lmdbStorage = reinterpret_cast(storage); Negentropy* ne; try{ ne = new Negentropy(*lmdbStorage, frameSizeLimit); }catch(negentropy::err e){ //TODO:Find a way to return this error return NULL; } return ne; } const char* negentropy_initiate(void* negentropy){ Negentropy* ngn_inst; ngn_inst = reinterpret_cast*>(negentropy); std::string* output = new std::string(); try { *output = ngn_inst->initiate(); } catch(negentropy::err e){ //TODO:Find a way to return this error return NULL; } return output->c_str(); } void negentropy_setinitiator(void* negentropy){ Negentropy *ngn_inst; ngn_inst = reinterpret_cast*>(negentropy); ngn_inst->setInitiator(); } bool storage_insert(void* storage, uint64_t createdAt, buffer* id){ negentropy::storage::BTreeMem* lmdbStorage; lmdbStorage = reinterpret_cast(storage); std::cout << "inserting entry in storage, createdAt:" << createdAt << ",id:" << std::string_view(id->data, id->len) << "length is:"<< id->len << std::endl; //TODO: Error handling. Is it required? //How does out of memory get handled? return lmdbStorage->insert(createdAt, std::string_view(id->data, id->len)); } bool storage_erase(void* storage, uint64_t createdAt, buffer* id){ negentropy::storage::BTreeMem* lmdbStorage; lmdbStorage = reinterpret_cast(storage); //TODO: Error handling return lmdbStorage->erase(createdAt, std::string_view(id->data, id->len)); } const char* reconcile(void* negentropy, buffer* query){ Negentropy *ngn_inst; ngn_inst = reinterpret_cast*>(negentropy); std::string* output = new std::string(); try { *output = ngn_inst->reconcile(std::string_view(query->data, query->len)); } catch(negentropy::err e){ //TODO:Find a way to return this error return NULL; } return output->c_str(); } char *convert(const std::string & s) { char *pc = new char[s.size()+1]; std::strcpy(pc, s.c_str()); return pc; } const char* reconcile_with_ids(void* negentropy, buffer* query, char* have_ids[], uint64_t *have_ids_len, char* need_ids[], uint64_t *need_ids_len){ Negentropy *ngn_inst; ngn_inst = reinterpret_cast*>(negentropy); std::optional* output; std::vector haveIds; std::vector needIds; try { *output = ngn_inst->reconcile(std::string_view(query->data, query->len), haveIds, needIds); *have_ids_len = haveIds.size(); *need_ids_len = needIds.size(); //TODO: Optimize to not copy and rather return memory reference. std::transform(haveIds.begin(), haveIds.end(), have_ids, convert); std::transform(needIds.begin(), needIds.end(), need_ids, convert); } catch(negentropy::err e){ //TODO:Find a way to return this error return NULL; } if (output->has_value()) { //TODO: Figure out diff between error and this. return NULL; }else { return output->value().c_str(); } }