feat: abstract dr

This commit is contained in:
kaichaosun 2026-01-30 12:54:57 +08:00
parent 9513b24f20
commit 719e7db03c
No known key found for this signature in database
GPG Key ID: 223E0F992F4F03BF
12 changed files with 924 additions and 725 deletions

View File

@ -2,12 +2,13 @@
//!
//! Run with: cargo run --example out_of_order_demo -p double-ratchets
use double_ratchets::{InstallationKeyPair, RatchetSession, RatchetStorage, hkdf::DefaultDomain};
use double_ratchets::{
InstallationKeyPair, RatchetSession, SqliteRatchetStore, hkdf::DefaultDomain,
};
fn main() {
println!("=== Out-of-Order Message Handling Demo ===\n");
// Setup
ensure_tmp_directory();
let alice_db_path = "./tmp/out_of_order_demo_alice.db";
let bob_db_path = "./tmp/out_of_order_demo_bob.db";
@ -20,28 +21,27 @@ fn main() {
let bob_public = bob_keypair.public().clone();
let conv_id = "out_of_order_conv";
// Collect messages for out-of-order delivery
let mut messages: Vec<(Vec<u8>, double_ratchets::Header)> = Vec::new();
// Phase 1: Alice sends 5 messages, Bob receives 1, 3, 5 (skipping 2, 4)
{
let mut alice_storage = RatchetStorage::new(alice_db_path, encryption_key)
let alice_storage = SqliteRatchetStore::new(alice_db_path, encryption_key)
.expect("Failed to create Alice storage");
let mut bob_storage =
RatchetStorage::new(bob_db_path, encryption_key).expect("Failed to create Bob storage");
let bob_storage = SqliteRatchetStore::new(bob_db_path, encryption_key)
.expect("Failed to create Bob storage");
let mut alice_session: RatchetSession<DefaultDomain> =
let mut alice_session: RatchetSession<SqliteRatchetStore, DefaultDomain> =
RatchetSession::create_sender_session(
&mut alice_storage,
alice_storage,
conv_id,
shared_secret,
bob_public,
)
.unwrap();
let mut bob_session: RatchetSession<DefaultDomain> =
let mut bob_session: RatchetSession<SqliteRatchetStore, DefaultDomain> =
RatchetSession::create_receiver_session(
&mut bob_storage,
bob_storage,
conv_id,
shared_secret,
bob_keypair,
@ -73,11 +73,11 @@ fn main() {
// Phase 2: Simulate app restart by reopening storage
println!("\n Simulating app restart...");
{
let mut bob_storage =
RatchetStorage::new(bob_db_path, encryption_key).expect("Failed to reopen Bob storage");
let bob_storage = SqliteRatchetStore::new(bob_db_path, encryption_key)
.expect("Failed to reopen Bob storage");
let bob_session: RatchetSession<DefaultDomain> =
RatchetSession::open(&mut bob_storage, conv_id).unwrap();
let bob_session: RatchetSession<SqliteRatchetStore, DefaultDomain> =
RatchetSession::open(bob_storage, conv_id).unwrap();
println!(
" After restart, Bob's skipped_keys: {}",
bob_session.state().skipped_keys.len()
@ -86,13 +86,13 @@ fn main() {
// Phase 3: Bob receives the delayed messages
println!("\nBob receives delayed message 2...");
let (ct4, header4) = messages[3].clone(); // Save for replay test
let (ct4, header4) = messages[3].clone();
{
let mut bob_storage =
RatchetStorage::new(bob_db_path, encryption_key).expect("Failed to open Bob storage");
let bob_storage = SqliteRatchetStore::new(bob_db_path, encryption_key)
.expect("Failed to open Bob storage");
let mut bob_session: RatchetSession<DefaultDomain> =
RatchetSession::open(&mut bob_storage, conv_id).unwrap();
let mut bob_session: RatchetSession<SqliteRatchetStore, DefaultDomain> =
RatchetSession::open(bob_storage, conv_id).unwrap();
let (ct, header) = &messages[1];
let pt = bob_session.decrypt_message(ct, header.clone()).unwrap();
@ -105,11 +105,11 @@ fn main() {
println!("\nBob receives delayed message 4...");
{
let mut bob_storage =
RatchetStorage::new(bob_db_path, encryption_key).expect("Failed to open Bob storage");
let bob_storage = SqliteRatchetStore::new(bob_db_path, encryption_key)
.expect("Failed to open Bob storage");
let mut bob_session: RatchetSession<DefaultDomain> =
RatchetSession::open(&mut bob_storage, conv_id).unwrap();
let mut bob_session: RatchetSession<SqliteRatchetStore, DefaultDomain> =
RatchetSession::open(bob_storage, conv_id).unwrap();
let pt = bob_session.decrypt_message(&ct4, header4.clone()).unwrap();
println!(" Received: \"{}\"", String::from_utf8_lossy(&pt));
@ -123,11 +123,11 @@ fn main() {
println!("\n--- Replay Protection Demo ---");
println!("Trying to decrypt message 4 again (should fail)...");
{
let mut bob_storage =
RatchetStorage::new(bob_db_path, encryption_key).expect("Failed to open Bob storage");
let bob_storage = SqliteRatchetStore::new(bob_db_path, encryption_key)
.expect("Failed to open Bob storage");
let mut bob_session: RatchetSession<DefaultDomain> =
RatchetSession::open(&mut bob_storage, conv_id).unwrap();
let mut bob_session: RatchetSession<SqliteRatchetStore, DefaultDomain> =
RatchetSession::open(bob_storage, conv_id).unwrap();
match bob_session.decrypt_message(&ct4, header4) {
Ok(_) => println!(" ERROR: Replay attack succeeded!"),
@ -135,7 +135,6 @@ fn main() {
}
}
// Cleanup
let _ = std::fs::remove_file(alice_db_path);
let _ = std::fs::remove_file(bob_db_path);

View File

@ -2,7 +2,9 @@
//!
//! Run with: cargo run --example storage_demo -p double-ratchets
use double_ratchets::{InstallationKeyPair, RatchetSession, RatchetStorage, hkdf::PrivateV1Domain};
use double_ratchets::{
InstallationKeyPair, RatchetSession, SqliteRatchetStore, hkdf::PrivateV1Domain,
};
fn main() {
println!("=== Double Ratchet Storage Demo ===\n");
@ -16,25 +18,25 @@ fn main() {
// Initial conversation with encryption
{
let mut alice_storage = RatchetStorage::new(alice_db_path, encryption_key)
let alice_storage = SqliteRatchetStore::new(alice_db_path, encryption_key)
.expect("Failed to create alice encrypted storage");
let mut bob_storage = RatchetStorage::new(bob_db_path, encryption_key)
let bob_storage = SqliteRatchetStore::new(bob_db_path, encryption_key)
.expect("Failed to create bob encrypted storage");
println!(
" Encrypted database created at: {}, {}",
alice_db_path, bob_db_path
);
run_conversation(&mut alice_storage, &mut bob_storage);
run_conversation(alice_storage, bob_storage);
}
// Restart with correct key
println!("\n Simulating restart with encryption key...");
{
let mut alice_storage = RatchetStorage::new(alice_db_path, encryption_key)
let alice_storage = SqliteRatchetStore::new(alice_db_path, encryption_key)
.expect("Failed to create alice encrypted storage");
let mut bob_storage = RatchetStorage::new(bob_db_path, encryption_key)
let bob_storage = SqliteRatchetStore::new(bob_db_path, encryption_key)
.expect("Failed to create bob encrypted storage");
continue_after_restart(&mut alice_storage, &mut bob_storage);
continue_after_restart(alice_storage, bob_storage);
}
let _ = std::fs::remove_file(alice_db_path);
@ -48,72 +50,53 @@ fn ensure_tmp_directory() {
}
}
/// Simulates a conversation between Alice and Bob.
/// Each party saves/loads state from storage for each operation.
fn run_conversation(alice_storage: &mut RatchetStorage, bob_storage: &mut RatchetStorage) {
// === Setup: Simulate X3DH key exchange ===
let shared_secret = [0x42u8; 32]; // In reality, this comes from X3DH
fn run_conversation(alice_storage: SqliteRatchetStore, bob_storage: SqliteRatchetStore) {
let shared_secret = [0x42u8; 32];
let bob_keypair = InstallationKeyPair::generate();
let conv_id = "conv1";
let mut alice_session: RatchetSession<PrivateV1Domain> = RatchetSession::create_sender_session(
alice_storage,
conv_id,
shared_secret,
bob_keypair.public().clone(),
)
.unwrap();
let mut alice_session: RatchetSession<SqliteRatchetStore, PrivateV1Domain> =
RatchetSession::create_sender_session(
alice_storage,
conv_id,
shared_secret,
bob_keypair.public().clone(),
)
.unwrap();
let mut bob_session: RatchetSession<PrivateV1Domain> =
let mut bob_session: RatchetSession<SqliteRatchetStore, PrivateV1Domain> =
RatchetSession::create_receiver_session(bob_storage, conv_id, shared_secret, bob_keypair)
.unwrap();
println!(" Sessions created for Alice and Bob");
// === Message 1: Alice -> Bob ===
let (ct1, h1) = {
let result = alice_session
.encrypt_message(b"Hello Bob! This is message 1.")
.unwrap();
println!(" Alice sent: \"Hello Bob! This is message 1.\"");
result
};
// Message 1: Alice -> Bob
let (ct1, h1) = alice_session
.encrypt_message(b"Hello Bob! This is message 1.")
.unwrap();
println!(" Alice sent: \"Hello Bob! This is message 1.\"");
{
let pt = bob_session.decrypt_message(&ct1, h1).unwrap();
println!(" Bob received: \"{}\"", String::from_utf8_lossy(&pt));
}
let pt = bob_session.decrypt_message(&ct1, h1).unwrap();
println!(" Bob received: \"{}\"", String::from_utf8_lossy(&pt));
// === Message 2: Bob -> Alice (triggers DH ratchet) ===
let (ct2, h2) = {
let result = bob_session
.encrypt_message(b"Hi Alice! Got your message.")
.unwrap();
println!(" Bob sent: \"Hi Alice! Got your message.\"");
result
};
// Message 2: Bob -> Alice
let (ct2, h2) = bob_session
.encrypt_message(b"Hi Alice! Got your message.")
.unwrap();
println!(" Bob sent: \"Hi Alice! Got your message.\"");
{
let pt = alice_session.decrypt_message(&ct2, h2).unwrap();
println!(" Alice received: \"{}\"", String::from_utf8_lossy(&pt));
}
let pt = alice_session.decrypt_message(&ct2, h2).unwrap();
println!(" Alice received: \"{}\"", String::from_utf8_lossy(&pt));
// === Message 3: Alice -> Bob ===
let (ct3, h3) = {
let result = alice_session
.encrypt_message(b"Great! Let's keep chatting.")
.unwrap();
println!(" Alice sent: \"Great! Let's keep chatting.\"");
result
};
// Message 3: Alice -> Bob
let (ct3, h3) = alice_session
.encrypt_message(b"Great! Let's keep chatting.")
.unwrap();
println!(" Alice sent: \"Great! Let's keep chatting.\"");
{
let pt = bob_session.decrypt_message(&ct3, h3).unwrap();
println!(" Bob received: \"{}\"", String::from_utf8_lossy(&pt));
}
let pt = bob_session.decrypt_message(&ct3, h3).unwrap();
println!(" Bob received: \"{}\"", String::from_utf8_lossy(&pt));
// Print final state
println!(
" State after conversation: Alice msg_send={}, Bob msg_recv={}",
alice_session.msg_send(),
@ -121,29 +104,22 @@ fn run_conversation(alice_storage: &mut RatchetStorage, bob_storage: &mut Ratche
);
}
fn continue_after_restart(alice_storage: &mut RatchetStorage, bob_storage: &mut RatchetStorage) {
// Load persisted states
fn continue_after_restart(alice_storage: SqliteRatchetStore, bob_storage: SqliteRatchetStore) {
let conv_id = "conv1";
let mut alice_session: RatchetSession<PrivateV1Domain> =
let mut alice_session: RatchetSession<SqliteRatchetStore, PrivateV1Domain> =
RatchetSession::open(alice_storage, conv_id).unwrap();
let mut bob_session: RatchetSession<PrivateV1Domain> =
let mut bob_session: RatchetSession<SqliteRatchetStore, PrivateV1Domain> =
RatchetSession::open(bob_storage, conv_id).unwrap();
println!(" Sessions restored for Alice and Bob",);
println!(" Sessions restored for Alice and Bob");
// Continue conversation
let (ct, header) = {
let result = alice_session
.encrypt_message(b"Message after restart!")
.unwrap();
println!(" Alice sent: \"Message after restart!\"");
result
};
let (ct, header) = alice_session
.encrypt_message(b"Message after restart!")
.unwrap();
println!(" Alice sent: \"Message after restart!\"");
{
let pt = bob_session.decrypt_message(&ct, header).unwrap();
println!(" Bob received: \"{}\"", String::from_utf8_lossy(&pt));
}
let pt = bob_session.decrypt_message(&ct, header).unwrap();
println!(" Bob received: \"{}\"", String::from_utf8_lossy(&pt));
println!(
" Final state: Alice msg_send={}, Bob msg_recv={}",

View File

@ -1,3 +1,5 @@
use std::fmt::Debug;
use rand_core::OsRng;
use x25519_dalek::{PublicKey, StaticSecret};
use zeroize::{Zeroize, ZeroizeOnDrop};
@ -10,6 +12,15 @@ pub struct InstallationKeyPair {
public: PublicKey,
}
impl Debug for InstallationKeyPair {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("InstallationKeyPair")
.field("public", &self.public.as_bytes())
.field("secret", &"[REDACTED]")
.finish()
}
}
impl InstallationKeyPair {
pub fn generate() -> Self {
let secret = StaticSecret::random_from_rng(OsRng);
@ -36,4 +47,12 @@ impl InstallationKeyPair {
let public = PublicKey::from(&secret);
Self { secret, public }
}
/// Import the key pair from both secret and public bytes.
pub fn from_bytes(secret: [u8; 32], public: [u8; 32]) -> Self {
Self {
secret: StaticSecret::from(secret),
public: PublicKey::from(public),
}
}
}

View File

@ -10,5 +10,7 @@ pub mod types;
pub use keypair::InstallationKeyPair;
pub use state::{Header, RatchetState, SkippedKey};
pub use storage::StorageConfig;
pub use storage::{RatchetSession, RatchetStorage, SessionError};
pub use storage::{
EphemeralStore, RatchetSession, RatchetStateData, RatchetStore, SessionError, SkippedKeyId,
SkippedMessageKey, SqliteRatchetStore, StoreError,
};

View File

@ -1,320 +0,0 @@
//! Ratchet-specific storage implementation.
use std::collections::HashSet;
use storage::{SqliteDb, StorageError, params};
use super::types::RatchetStateRecord;
use crate::{
hkdf::HkdfInfo,
state::{RatchetState, SkippedKey},
};
/// Schema for ratchet state tables.
const RATCHET_SCHEMA: &str = "
CREATE TABLE IF NOT EXISTS ratchet_state (
conversation_id TEXT PRIMARY KEY,
root_key BLOB NOT NULL,
sending_chain BLOB,
receiving_chain BLOB,
dh_self_secret BLOB NOT NULL,
dh_remote BLOB,
msg_send INTEGER NOT NULL,
msg_recv INTEGER NOT NULL,
prev_chain_len INTEGER NOT NULL
);
CREATE TABLE IF NOT EXISTS skipped_keys (
conversation_id TEXT NOT NULL,
public_key BLOB NOT NULL,
msg_num INTEGER NOT NULL,
message_key BLOB NOT NULL,
created_at INTEGER NOT NULL DEFAULT (strftime('%s', 'now')),
PRIMARY KEY (conversation_id, public_key, msg_num),
FOREIGN KEY (conversation_id) REFERENCES ratchet_state(conversation_id) ON DELETE CASCADE
);
CREATE INDEX IF NOT EXISTS idx_skipped_keys_conversation
ON skipped_keys(conversation_id);
";
/// Ratchet-specific storage operations.
///
/// This struct wraps a `SqliteDb` and provides domain-specific
/// storage operations for ratchet state.
pub struct RatchetStorage {
db: SqliteDb,
}
impl RatchetStorage {
/// Opens an existing encrypted database file.
pub fn new(path: &str, key: &str) -> Result<Self, StorageError> {
let db = SqliteDb::sqlcipher(path.to_string(), key.to_string())?;
Self::run_migration(db)
}
/// Creates an in-memory storage (useful for testing).
pub fn in_memory() -> Result<Self, StorageError> {
let db = SqliteDb::in_memory()?;
Self::run_migration(db)
}
/// Creates a new ratchet storage with the given database.
fn run_migration(db: SqliteDb) -> Result<Self, StorageError> {
// Initialize schema
db.connection().execute_batch(RATCHET_SCHEMA)?;
Ok(Self { db })
}
/// Saves the ratchet state for a conversation.
pub fn save<D: HkdfInfo>(
&mut self,
conversation_id: &str,
state: &RatchetState<D>,
) -> Result<(), StorageError> {
let tx = self.db.transaction()?;
let data = RatchetStateRecord::from(state);
let skipped_keys: Vec<SkippedKey> = state.skipped_keys();
// Upsert main state
tx.execute(
"
INSERT INTO ratchet_state (
conversation_id, root_key, sending_chain, receiving_chain,
dh_self_secret, dh_remote, msg_send, msg_recv, prev_chain_len
) VALUES (?1, ?2, ?3, ?4, ?5, ?6, ?7, ?8, ?9)
ON CONFLICT(conversation_id) DO UPDATE SET
root_key = excluded.root_key,
sending_chain = excluded.sending_chain,
receiving_chain = excluded.receiving_chain,
dh_self_secret = excluded.dh_self_secret,
dh_remote = excluded.dh_remote,
msg_send = excluded.msg_send,
msg_recv = excluded.msg_recv,
prev_chain_len = excluded.prev_chain_len
",
params![
conversation_id,
data.root_key.as_slice(),
data.sending_chain.as_ref().map(|c| c.as_slice()),
data.receiving_chain.as_ref().map(|c| c.as_slice()),
data.dh_self_secret.as_slice(),
data.dh_remote.as_ref().map(|c| c.as_slice()),
data.msg_send,
data.msg_recv,
data.prev_chain_len,
],
)?;
// Sync skipped keys
sync_skipped_keys(&tx, conversation_id, skipped_keys)?;
tx.commit()?;
Ok(())
}
/// Loads the ratchet state for a conversation.
pub fn load<D: HkdfInfo>(
&self,
conversation_id: &str,
) -> Result<RatchetState<D>, StorageError> {
let data = self.load_state_data(conversation_id)?;
let skipped_keys = self.load_skipped_keys(conversation_id)?;
Ok(data.into_ratchet_state(skipped_keys))
}
fn load_state_data(&self, conversation_id: &str) -> Result<RatchetStateRecord, StorageError> {
let conn = self.db.connection();
let mut stmt = conn.prepare(
"
SELECT root_key, sending_chain, receiving_chain, dh_self_secret,
dh_remote, msg_send, msg_recv, prev_chain_len
FROM ratchet_state
WHERE conversation_id = ?1
",
)?;
stmt.query_row(params![conversation_id], |row| {
Ok(RatchetStateRecord {
root_key: blob_to_array(row.get::<_, Vec<u8>>(0)?),
sending_chain: row.get::<_, Option<Vec<u8>>>(1)?.map(blob_to_array),
receiving_chain: row.get::<_, Option<Vec<u8>>>(2)?.map(blob_to_array),
dh_self_secret: blob_to_array(row.get::<_, Vec<u8>>(3)?),
dh_remote: row.get::<_, Option<Vec<u8>>>(4)?.map(blob_to_array),
msg_send: row.get(5)?,
msg_recv: row.get(6)?,
prev_chain_len: row.get(7)?,
})
})
.map_err(|e| match e {
storage::RusqliteError::QueryReturnedNoRows => {
StorageError::NotFound(conversation_id.to_string())
}
e => StorageError::Database(e.to_string()),
})
}
fn load_skipped_keys(&self, conversation_id: &str) -> Result<Vec<SkippedKey>, StorageError> {
let conn = self.db.connection();
let mut stmt = conn.prepare(
"
SELECT public_key, msg_num, message_key
FROM skipped_keys
WHERE conversation_id = ?1
",
)?;
let rows = stmt.query_map(params![conversation_id], |row| {
Ok(SkippedKey {
public_key: blob_to_array(row.get::<_, Vec<u8>>(0)?),
msg_num: row.get(1)?,
message_key: blob_to_array(row.get::<_, Vec<u8>>(2)?),
})
})?;
rows.collect::<Result<Vec<_>, _>>()
.map_err(|e| StorageError::Database(e.to_string()))
}
/// Checks if a conversation exists.
pub fn exists(&self, conversation_id: &str) -> Result<bool, StorageError> {
let conn = self.db.connection();
let count: i64 = conn.query_row(
"SELECT COUNT(*) FROM ratchet_state WHERE conversation_id = ?1",
params![conversation_id],
|row| row.get(0),
)?;
Ok(count > 0)
}
/// Deletes a conversation and its skipped keys.
pub fn delete(&mut self, conversation_id: &str) -> Result<(), StorageError> {
let tx = self.db.transaction()?;
tx.execute(
"DELETE FROM skipped_keys WHERE conversation_id = ?1",
params![conversation_id],
)?;
tx.execute(
"DELETE FROM ratchet_state WHERE conversation_id = ?1",
params![conversation_id],
)?;
tx.commit()?;
Ok(())
}
/// Cleans up old skipped keys older than the given age in seconds.
pub fn cleanup_old_skipped_keys(&mut self, max_age_secs: i64) -> Result<usize, StorageError> {
let conn = self.db.connection();
let deleted = conn.execute(
"DELETE FROM skipped_keys WHERE created_at < strftime('%s', 'now') - ?1",
params![max_age_secs],
)?;
Ok(deleted)
}
}
/// Syncs skipped keys efficiently by computing diff and only inserting/deleting changes.
fn sync_skipped_keys(
tx: &storage::Transaction,
conversation_id: &str,
current_keys: Vec<SkippedKey>,
) -> Result<(), StorageError> {
// Get existing keys from DB (just the identifiers)
let mut stmt =
tx.prepare("SELECT public_key, msg_num FROM skipped_keys WHERE conversation_id = ?1")?;
let existing: HashSet<([u8; 32], u32)> = stmt
.query_map(params![conversation_id], |row| {
Ok((
blob_to_array(row.get::<_, Vec<u8>>(0)?),
row.get::<_, u32>(1)?,
))
})?
.filter_map(|r| r.ok())
.collect();
// Build set of current keys
let current_set: HashSet<([u8; 32], u32)> = current_keys
.iter()
.map(|sk| (sk.public_key, sk.msg_num))
.collect();
// Delete keys that were removed (used for decryption)
for (pk, msg_num) in existing.difference(&current_set) {
tx.execute(
"DELETE FROM skipped_keys WHERE conversation_id = ?1 AND public_key = ?2 AND msg_num = ?3",
params![conversation_id, pk.as_slice(), msg_num],
)?;
}
// Insert new keys
for sk in &current_keys {
let key = (sk.public_key, sk.msg_num);
if !existing.contains(&key) {
tx.execute(
"INSERT INTO skipped_keys (conversation_id, public_key, msg_num, message_key)
VALUES (?1, ?2, ?3, ?4)",
params![
conversation_id,
sk.public_key.as_slice(),
sk.msg_num,
sk.message_key.as_slice(),
],
)?;
}
}
Ok(())
}
fn blob_to_array<const N: usize>(blob: Vec<u8>) -> [u8; N] {
blob.try_into()
.unwrap_or_else(|v: Vec<u8>| panic!("Expected {} bytes, got {}", N, v.len()))
}
#[cfg(test)]
mod tests {
use super::*;
use crate::{keypair::InstallationKeyPair, state::RatchetState, types::SharedSecret};
fn create_test_state() -> (RatchetState, SharedSecret) {
let shared_secret = [0x42u8; 32];
let bob_keypair = InstallationKeyPair::generate();
let state = RatchetState::init_sender(shared_secret, bob_keypair.public().clone());
(state, shared_secret)
}
#[test]
fn test_save_and_load() {
let mut storage = RatchetStorage::in_memory().unwrap();
let (state, _) = create_test_state();
storage.save("conv1", &state).unwrap();
let loaded: RatchetState = storage.load("conv1").unwrap();
assert_eq!(state.root_key, loaded.root_key);
assert_eq!(state.msg_send, loaded.msg_send);
}
#[test]
fn test_exists() {
let mut storage = RatchetStorage::in_memory().unwrap();
let (state, _) = create_test_state();
assert!(!storage.exists("conv1").unwrap());
storage.save("conv1", &state).unwrap();
assert!(storage.exists("conv1").unwrap());
}
#[test]
fn test_delete() {
let mut storage = RatchetStorage::in_memory().unwrap();
let (state, _) = create_test_state();
storage.save("conv1", &state).unwrap();
assert!(storage.exists("conv1").unwrap());
storage.delete("conv1").unwrap();
assert!(!storage.exists("conv1").unwrap());
}
}

View File

@ -0,0 +1,171 @@
//! In-memory ephemeral storage for testing.
//!
//! This store keeps all data in memory and is useful for testing
//! or scenarios where persistence is not needed.
use std::collections::HashMap;
use super::store::{RatchetStateData, RatchetStore, SkippedKeyId, SkippedMessageKey, StoreError};
/// In-memory storage implementation.
///
/// All data is lost when the store is dropped.
#[derive(Debug, Default)]
pub struct EphemeralStore {
states: HashMap<String, RatchetStateData>,
skipped_keys: HashMap<String, HashMap<SkippedKeyId, SkippedMessageKey>>,
}
impl EphemeralStore {
/// Creates a new empty ephemeral store.
pub fn new() -> Self {
Self::default()
}
}
impl RatchetStore for EphemeralStore {
fn save_state(
&mut self,
conversation_id: &str,
state: &RatchetStateData,
) -> Result<(), StoreError> {
self.states.insert(conversation_id.to_string(), state.clone());
Ok(())
}
fn load_state(&self, conversation_id: &str) -> Result<RatchetStateData, StoreError> {
self.states
.get(conversation_id)
.cloned()
.ok_or_else(|| StoreError::NotFound(conversation_id.to_string()))
}
fn exists(&self, conversation_id: &str) -> Result<bool, StoreError> {
Ok(self.states.contains_key(conversation_id))
}
fn delete(&mut self, conversation_id: &str) -> Result<(), StoreError> {
self.states.remove(conversation_id);
self.skipped_keys.remove(conversation_id);
Ok(())
}
fn get_skipped_key(
&self,
conversation_id: &str,
id: &SkippedKeyId,
) -> Result<Option<crate::types::MessageKey>, StoreError> {
Ok(self
.skipped_keys
.get(conversation_id)
.and_then(|keys| keys.get(id))
.map(|sk| sk.message_key))
}
fn add_skipped_key(
&mut self,
conversation_id: &str,
key: SkippedMessageKey,
) -> Result<(), StoreError> {
self.skipped_keys
.entry(conversation_id.to_string())
.or_default()
.insert(key.id.clone(), key);
Ok(())
}
fn remove_skipped_key(
&mut self,
conversation_id: &str,
id: &SkippedKeyId,
) -> Result<(), StoreError> {
if let Some(keys) = self.skipped_keys.get_mut(conversation_id) {
keys.remove(id);
}
Ok(())
}
fn get_all_skipped_keys(
&self,
conversation_id: &str,
) -> Result<Vec<SkippedMessageKey>, StoreError> {
Ok(self
.skipped_keys
.get(conversation_id)
.map(|keys| keys.values().cloned().collect())
.unwrap_or_default())
}
fn clear_skipped_keys(&mut self, conversation_id: &str) -> Result<(), StoreError> {
self.skipped_keys.remove(conversation_id);
Ok(())
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::keypair::InstallationKeyPair;
fn create_test_state() -> RatchetStateData {
RatchetStateData {
root_key: [0x42; 32],
sending_chain: Some([0x01; 32]),
receiving_chain: None,
dh_self: InstallationKeyPair::generate(),
dh_remote: Some([0x02; 32]),
msg_send: 0,
msg_recv: 0,
prev_chain_len: 0,
}
}
#[test]
fn test_save_and_load() {
let mut store = EphemeralStore::new();
let state = create_test_state();
store.save_state("conv1", &state).unwrap();
let loaded = store.load_state("conv1").unwrap();
assert_eq!(state.root_key, loaded.root_key);
assert_eq!(state.msg_send, loaded.msg_send);
}
#[test]
fn test_exists() {
let mut store = EphemeralStore::new();
let state = create_test_state();
assert!(!store.exists("conv1").unwrap());
store.save_state("conv1", &state).unwrap();
assert!(store.exists("conv1").unwrap());
}
#[test]
fn test_skipped_keys() {
let mut store = EphemeralStore::new();
let state = create_test_state();
store.save_state("conv1", &state).unwrap();
let id = SkippedKeyId {
public_key: [0x01; 32],
msg_num: 5,
};
let key = SkippedMessageKey {
id: id.clone(),
message_key: [0xAB; 32],
};
// Add key
store.add_skipped_key("conv1", key.clone()).unwrap();
assert_eq!(
store.get_skipped_key("conv1", &id).unwrap(),
Some([0xAB; 32])
);
// Remove key
store.remove_skipped_key("conv1", &id).unwrap();
assert_eq!(store.get_skipped_key("conv1", &id).unwrap(), None);
}
}

View File

@ -13,4 +13,13 @@ pub enum SessionError {
#[error("conversation already exists: {0}")]
ConvAlreadyExists(String),
#[error("conversation not found: {0}")]
ConvNotFound(String),
#[error("storage backend error: {0}")]
StorageError(String),
#[error("deserialization failed: {0}")]
DeserializationFailed(String),
}

View File

@ -1,15 +1,23 @@
//! Storage module for persisting ratchet state.
//!
//! This module provides storage implementations for the double ratchet state,
//! built on top of the shared `storage` crate.
//! This module provides a trait-based abstraction for storage, allowing
//! the double ratchet to be agnostic to how data is persisted.
//!
//! # Architecture
//!
//! - [`RatchetStore`] - Trait defining storage needs for double ratchet state
//! - [`RatchetSession`] - High-level wrapper with automatic persistence
//! - [`EphemeralStore`] - In-memory implementation for testing
//! - [`SqliteRatchetStore`] - SQLite/SQLCipher implementation for production
mod db;
mod ephemeral;
mod errors;
mod session;
mod types;
mod sqlite;
mod store;
pub use db::RatchetStorage;
pub use ephemeral::EphemeralStore;
pub use errors::SessionError;
pub use session::RatchetSession;
pub use storage::{SqliteDb, StorageConfig, StorageError};
pub use types::RatchetStateRecord;
pub use sqlite::SqliteRatchetStore;
pub use store::{RatchetStateData, RatchetStore, SkippedKeyId, SkippedMessageKey, StoreError};

View File

@ -1,147 +1,166 @@
//! Session wrapper for automatic state persistence.
use std::{collections::HashMap, marker::PhantomData};
use x25519_dalek::PublicKey;
use crate::{
InstallationKeyPair, SessionError,
InstallationKeyPair,
hkdf::HkdfInfo,
state::{Header, RatchetState},
types::SharedSecret,
};
use super::RatchetStorage;
use super::{
SessionError,
store::{RatchetStateData, RatchetStore, SkippedKeyId, SkippedMessageKey, StoreError},
};
/// A session wrapper that automatically persists ratchet state after operations.
/// Provides rollback semantics - state is only saved if the operation succeeds.
pub struct RatchetSession<'a, D: HkdfInfo + Clone> {
storage: &'a mut RatchetStorage,
/// Session wrapper with automatic persistence.
pub struct RatchetSession<S: RatchetStore, D: HkdfInfo + Clone> {
store: S,
conversation_id: String,
state: RatchetState<D>,
}
impl<'a, D: HkdfInfo + Clone> RatchetSession<'a, D> {
impl<S: RatchetStore, D: HkdfInfo + Clone> RatchetSession<S, D> {
/// Opens an existing session from storage.
pub fn open(
storage: &'a mut RatchetStorage,
conversation_id: impl Into<String>,
) -> Result<Self, SessionError> {
pub fn open(store: S, conversation_id: impl Into<String>) -> Result<Self, SessionError> {
let conversation_id = conversation_id.into();
let state = storage.load(&conversation_id)?;
let data = store
.load_state(&conversation_id)
.map_err(|e| map_store_error(e, &conversation_id))?;
let skipped_keys = store
.get_all_skipped_keys(&conversation_id)
.map_err(|e| map_store_error(e, &conversation_id))?;
let state = state_from_data(data, skipped_keys);
Ok(Self {
storage,
store,
conversation_id,
state,
})
}
/// Creates a new session and persists the initial state.
/// Creates a new session with the given state.
pub fn create(
storage: &'a mut RatchetStorage,
mut store: S,
conversation_id: impl Into<String>,
state: RatchetState<D>,
) -> Result<Self, SessionError> {
let conversation_id = conversation_id.into();
storage.save(&conversation_id, &state)?;
let data = state_to_data(&state);
store
.save_state(&conversation_id, &data)
.map_err(|e| map_store_error(e, &conversation_id))?;
for key in get_skipped_keys(&state) {
store
.add_skipped_key(&conversation_id, key)
.map_err(|e| map_store_error(e, &conversation_id))?;
}
Ok(Self {
storage,
store,
conversation_id,
state,
})
}
/// Initializes a new session as a sender and persists the initial state.
/// Creates sender session.
pub fn create_sender_session(
storage: &'a mut RatchetStorage,
store: S,
conversation_id: &str,
shared_secret: SharedSecret,
remote_pub: PublicKey,
) -> Result<Self, SessionError> {
if storage.exists(conversation_id)? {
let temp_store = store;
if temp_store
.exists(conversation_id)
.map_err(|e| map_store_error(e, conversation_id))?
{
return Err(SessionError::ConvAlreadyExists(conversation_id.to_string()));
}
let state = RatchetState::<D>::init_sender(shared_secret, remote_pub);
Ok(Self::create(storage, conversation_id, state)?)
Self::create(temp_store, conversation_id, state)
}
/// Initializes a new session as a receiver and persists the initial state.
/// Creates receiver session.
pub fn create_receiver_session(
storage: &'a mut RatchetStorage,
store: S,
conversation_id: &str,
shared_secret: SharedSecret,
dh_self: InstallationKeyPair,
) -> Result<Self, SessionError> {
if storage.exists(conversation_id)? {
let temp_store = store;
if temp_store
.exists(conversation_id)
.map_err(|e| map_store_error(e, conversation_id))?
{
return Err(SessionError::ConvAlreadyExists(conversation_id.to_string()));
}
let state = RatchetState::<D>::init_receiver(shared_secret, dh_self);
Ok(Self::create(storage, conversation_id, state)?)
Self::create(temp_store, conversation_id, state)
}
/// Encrypts a message and persists the updated state.
/// If persistence fails, the in-memory state is NOT modified.
/// Encrypts a message.
pub fn encrypt_message(&mut self, plaintext: &[u8]) -> Result<(Vec<u8>, Header), SessionError> {
// Clone state for rollback
let state_backup = self.state.clone();
// Perform encryption (modifies state)
let result = self.state.encrypt_message(plaintext);
// Try to persist
if let Err(e) = self.storage.save(&self.conversation_id, &self.state) {
// Rollback
if let Err(e) = self.persist_state() {
self.state = state_backup;
return Err(e.into());
return Err(e);
}
Ok(result)
}
/// Decrypts a message and persists the updated state.
/// If decryption or persistence fails, the in-memory state is NOT modified.
/// Decrypts a message.
pub fn decrypt_message(
&mut self,
ciphertext_with_nonce: &[u8],
header: Header,
) -> Result<Vec<u8>, SessionError> {
// Clone state for rollback
let state_backup = self.state.clone();
// Perform decryption (modifies state)
let plaintext = match self.state.decrypt_message(ciphertext_with_nonce, header) {
Ok(pt) => pt,
Err(e) => {
// Rollback on decrypt failure
self.state = state_backup;
return Err(e.into());
}
};
// Try to persist
if let Err(e) = self.storage.save(&self.conversation_id, &self.state) {
// Rollback
if let Err(e) = self.persist_state() {
self.state = state_backup;
return Err(e.into());
return Err(e);
}
Ok(plaintext)
}
/// Returns a reference to the current state (read-only).
fn persist_state(&mut self) -> Result<(), SessionError> {
let data = state_to_data(&self.state);
self.store
.save_state(&self.conversation_id, &data)
.map_err(|e| map_store_error(e, &self.conversation_id))?;
self.store
.clear_skipped_keys(&self.conversation_id)
.map_err(|e| map_store_error(e, &self.conversation_id))?;
for key in get_skipped_keys(&self.state) {
self.store
.add_skipped_key(&self.conversation_id, key)
.map_err(|e| map_store_error(e, &self.conversation_id))?;
}
Ok(())
}
pub fn state(&self) -> &RatchetState<D> {
&self.state
}
/// Returns the conversation ID.
pub fn conversation_id(&self) -> &str {
&self.conversation_id
}
/// Manually saves the current state.
pub fn save(&mut self) -> Result<(), SessionError> {
self.storage
.save(&self.conversation_id, &self.state)
.map_err(|error| error.into())
self.persist_state()
}
pub fn msg_send(&self) -> u32 {
@ -151,202 +170,113 @@ impl<'a, D: HkdfInfo + Clone> RatchetSession<'a, D> {
pub fn msg_recv(&self) -> u32 {
self.state.msg_recv
}
pub fn into_store(self) -> S {
self.store
}
}
fn state_to_data<D: HkdfInfo>(state: &RatchetState<D>) -> RatchetStateData {
RatchetStateData {
root_key: state.root_key,
sending_chain: state.sending_chain,
receiving_chain: state.receiving_chain,
dh_self: state.dh_self.clone(),
dh_remote: state.dh_remote.map(|pk| pk.to_bytes()),
msg_send: state.msg_send,
msg_recv: state.msg_recv,
prev_chain_len: state.prev_chain_len,
}
}
fn state_from_data<D: HkdfInfo + Clone>(
data: RatchetStateData,
skipped_keys: Vec<SkippedMessageKey>,
) -> RatchetState<D> {
let skipped_map = skipped_keys
.into_iter()
.map(|sk| {
let pk = PublicKey::from(sk.id.public_key);
((pk, sk.id.msg_num), sk.message_key)
})
.collect::<HashMap<_, _>>();
RatchetState {
root_key: data.root_key,
sending_chain: data.sending_chain,
receiving_chain: data.receiving_chain,
dh_self: data.dh_self,
dh_remote: data.dh_remote.map(PublicKey::from),
msg_send: data.msg_send,
msg_recv: data.msg_recv,
prev_chain_len: data.prev_chain_len,
skipped_keys: skipped_map,
_domain: PhantomData,
}
}
fn get_skipped_keys<D: HkdfInfo>(state: &RatchetState<D>) -> Vec<SkippedMessageKey> {
state
.skipped_keys
.iter()
.map(|((pk, msg_num), mk)| SkippedMessageKey {
id: SkippedKeyId {
public_key: pk.to_bytes(),
msg_num: *msg_num,
},
message_key: *mk,
})
.collect()
}
fn map_store_error(e: StoreError, conversation_id: &str) -> SessionError {
match e {
StoreError::NotFound(_) => SessionError::ConvNotFound(conversation_id.to_string()),
StoreError::AlreadyExists(_) => {
SessionError::ConvAlreadyExists(conversation_id.to_string())
}
StoreError::Storage(s) => SessionError::StorageError(s),
StoreError::Serialization(s) => SessionError::DeserializationFailed(s),
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::hkdf::DefaultDomain;
fn create_test_storage() -> RatchetStorage {
RatchetStorage::in_memory().unwrap()
}
use crate::{hkdf::DefaultDomain, storage::EphemeralStore};
#[test]
fn test_session_create_and_open() {
let mut storage = create_test_storage();
let store = EphemeralStore::new();
let shared_secret = [0x42; 32];
let bob_keypair = InstallationKeyPair::generate();
let alice: RatchetState<DefaultDomain> =
RatchetState::init_sender(shared_secret, bob_keypair.public().clone());
// Create session
{
let session = RatchetSession::create(&mut storage, "conv1", alice).unwrap();
assert_eq!(session.conversation_id(), "conv1");
}
let session = RatchetSession::create(store, "conv1", alice).unwrap();
assert_eq!(session.conversation_id(), "conv1");
// Open existing session
{
let session: RatchetSession<DefaultDomain> =
RatchetSession::open(&mut storage, "conv1").unwrap();
assert_eq!(session.state().msg_send, 0);
}
let store = session.into_store();
let session: RatchetSession<_, DefaultDomain> =
RatchetSession::open(store, "conv1").unwrap();
assert_eq!(session.state().msg_send, 0);
}
#[test]
fn test_session_encrypt_persists() {
let mut storage = create_test_storage();
let store = EphemeralStore::new();
let shared_secret = [0x42; 32];
let bob_keypair = InstallationKeyPair::generate();
let alice: RatchetState<DefaultDomain> =
RatchetState::init_sender(shared_secret, bob_keypair.public().clone());
// Create and encrypt
{
let mut session = RatchetSession::create(&mut storage, "conv1", alice).unwrap();
session.encrypt_message(b"Hello").unwrap();
assert_eq!(session.state().msg_send, 1);
}
let mut session = RatchetSession::create(store, "conv1", alice).unwrap();
session.encrypt_message(b"Hello").unwrap();
assert_eq!(session.state().msg_send, 1);
// Reopen - state should be persisted
{
let session: RatchetSession<DefaultDomain> =
RatchetSession::open(&mut storage, "conv1").unwrap();
assert_eq!(session.state().msg_send, 1);
}
}
#[test]
fn test_session_full_conversation() {
let mut storage = create_test_storage();
let shared_secret = [0x42; 32];
let bob_keypair = InstallationKeyPair::generate();
let alice: RatchetState<DefaultDomain> =
RatchetState::init_sender(shared_secret, bob_keypair.public().clone());
let bob: RatchetState<DefaultDomain> =
RatchetState::init_receiver(shared_secret, bob_keypair);
// Alice sends
let (ct, header) = {
let mut session = RatchetSession::create(&mut storage, "alice", alice).unwrap();
session.encrypt_message(b"Hello Bob").unwrap()
};
// Bob receives
let plaintext = {
let mut session = RatchetSession::create(&mut storage, "bob", bob).unwrap();
session.decrypt_message(&ct, header).unwrap()
};
assert_eq!(plaintext, b"Hello Bob");
// Bob replies
let (ct2, header2) = {
let mut session: RatchetSession<DefaultDomain> =
RatchetSession::open(&mut storage, "bob").unwrap();
session.encrypt_message(b"Hi Alice").unwrap()
};
// Alice receives
let plaintext2 = {
let mut session: RatchetSession<DefaultDomain> =
RatchetSession::open(&mut storage, "alice").unwrap();
session.decrypt_message(&ct2, header2).unwrap()
};
assert_eq!(plaintext2, b"Hi Alice");
}
#[test]
fn test_session_open_or_create() {
let mut storage = create_test_storage();
let shared_secret = [0x42; 32];
let bob_keypair = InstallationKeyPair::generate();
let bob_pub = bob_keypair.public().clone();
// First call creates
{
let session: RatchetSession<DefaultDomain> = RatchetSession::create_sender_session(
&mut storage,
"conv1",
shared_secret,
bob_pub.clone(),
)
.unwrap();
assert_eq!(session.state().msg_send, 0);
}
// Second call opens existing
{
let mut session: RatchetSession<DefaultDomain> =
RatchetSession::open(&mut storage, "conv1").unwrap();
session.encrypt_message(b"test").unwrap();
}
// Verify persistence
{
let session: RatchetSession<DefaultDomain> =
RatchetSession::open(&mut storage, "conv1").unwrap();
assert_eq!(session.state().msg_send, 1);
}
}
#[test]
fn test_create_sender_session_fails_when_conversation_exists() {
let mut storage = create_test_storage();
let shared_secret = [0x42; 32];
let bob_keypair = InstallationKeyPair::generate();
let bob_pub = bob_keypair.public().clone();
// First creation succeeds
{
let _session: RatchetSession<DefaultDomain> = RatchetSession::create_sender_session(
&mut storage,
"conv1",
shared_secret,
bob_pub.clone(),
)
.unwrap();
}
// Second creation should fail with ConversationAlreadyExists
{
let result: Result<RatchetSession<DefaultDomain>, _> =
RatchetSession::create_sender_session(
&mut storage,
"conv1",
shared_secret,
bob_pub.clone(),
);
assert!(matches!(result, Err(SessionError::ConvAlreadyExists(_))));
}
}
#[test]
fn test_create_receiver_session_fails_when_conversation_exists() {
let mut storage = create_test_storage();
let shared_secret = [0x42; 32];
let bob_keypair = InstallationKeyPair::generate();
// First creation succeeds
{
let _session: RatchetSession<DefaultDomain> = RatchetSession::create_receiver_session(
&mut storage,
"conv1",
shared_secret,
bob_keypair,
)
.unwrap();
}
// Second creation should fail with ConversationAlreadyExists
{
let another_keypair = InstallationKeyPair::generate();
let result: Result<RatchetSession<DefaultDomain>, _> =
RatchetSession::create_receiver_session(
&mut storage,
"conv1",
shared_secret,
another_keypair,
);
assert!(matches!(result, Err(SessionError::ConvAlreadyExists(_))));
}
let store = session.into_store();
let session: RatchetSession<_, DefaultDomain> =
RatchetSession::open(store, "conv1").unwrap();
assert_eq!(session.state().msg_send, 1);
}
}

View File

@ -0,0 +1,355 @@
//! SQLite/SQLCipher implementation of RatchetStore.
use storage::{params, RusqliteError, SqliteDb};
use super::store::{RatchetStateData, RatchetStore, SkippedKeyId, SkippedMessageKey, StoreError};
use crate::keypair::InstallationKeyPair;
use crate::types::MessageKey;
/// Schema for ratchet state tables.
const RATCHET_SCHEMA: &str = "
CREATE TABLE IF NOT EXISTS ratchet_state (
conversation_id TEXT PRIMARY KEY,
root_key BLOB NOT NULL,
sending_chain BLOB,
receiving_chain BLOB,
dh_self_secret BLOB NOT NULL,
dh_self_public BLOB NOT NULL,
dh_remote BLOB,
msg_send INTEGER NOT NULL,
msg_recv INTEGER NOT NULL,
prev_chain_len INTEGER NOT NULL
);
CREATE TABLE IF NOT EXISTS skipped_keys (
conversation_id TEXT NOT NULL,
public_key BLOB NOT NULL,
msg_num INTEGER NOT NULL,
message_key BLOB NOT NULL,
created_at INTEGER NOT NULL DEFAULT (strftime('%s', 'now')),
PRIMARY KEY (conversation_id, public_key, msg_num),
FOREIGN KEY (conversation_id) REFERENCES ratchet_state(conversation_id) ON DELETE CASCADE
);
CREATE INDEX IF NOT EXISTS idx_skipped_keys_conversation
ON skipped_keys(conversation_id);
";
/// SQLite/SQLCipher backed ratchet store.
pub struct SqliteRatchetStore {
db: SqliteDb,
}
impl SqliteRatchetStore {
/// Creates a new encrypted SQLite store.
pub fn new(path: &str, key: &str) -> Result<Self, StoreError> {
let db = SqliteDb::sqlcipher(path.to_string(), key.to_string())
.map_err(|e| StoreError::Storage(e.to_string()))?;
Self::init(db)
}
/// Creates an in-memory store (useful for testing).
pub fn in_memory() -> Result<Self, StoreError> {
let db = SqliteDb::in_memory().map_err(|e| StoreError::Storage(e.to_string()))?;
Self::init(db)
}
fn init(db: SqliteDb) -> Result<Self, StoreError> {
db.connection()
.execute_batch(RATCHET_SCHEMA)
.map_err(|e| StoreError::Storage(e.to_string()))?;
Ok(Self { db })
}
}
impl RatchetStore for SqliteRatchetStore {
fn save_state(
&mut self,
conversation_id: &str,
state: &RatchetStateData,
) -> Result<(), StoreError> {
let conn = self.db.connection();
conn.execute(
"
INSERT INTO ratchet_state (
conversation_id, root_key, sending_chain, receiving_chain,
dh_self_secret, dh_self_public, dh_remote, msg_send, msg_recv, prev_chain_len
) VALUES (?1, ?2, ?3, ?4, ?5, ?6, ?7, ?8, ?9, ?10)
ON CONFLICT(conversation_id) DO UPDATE SET
root_key = excluded.root_key,
sending_chain = excluded.sending_chain,
receiving_chain = excluded.receiving_chain,
dh_self_secret = excluded.dh_self_secret,
dh_self_public = excluded.dh_self_public,
dh_remote = excluded.dh_remote,
msg_send = excluded.msg_send,
msg_recv = excluded.msg_recv,
prev_chain_len = excluded.prev_chain_len
",
params![
conversation_id,
state.root_key.as_slice(),
state.sending_chain.as_ref().map(|c| c.as_slice()),
state.receiving_chain.as_ref().map(|c| c.as_slice()),
state.dh_self.secret_bytes().as_slice(),
state.dh_self.public().as_bytes().as_slice(),
state.dh_remote.as_ref().map(|c| c.as_slice()),
state.msg_send,
state.msg_recv,
state.prev_chain_len,
],
)
.map_err(|e| StoreError::Storage(e.to_string()))?;
Ok(())
}
fn load_state(&self, conversation_id: &str) -> Result<RatchetStateData, StoreError> {
let conn = self.db.connection();
let mut stmt = conn
.prepare(
"
SELECT root_key, sending_chain, receiving_chain, dh_self_secret, dh_self_public,
dh_remote, msg_send, msg_recv, prev_chain_len
FROM ratchet_state
WHERE conversation_id = ?1
",
)
.map_err(|e| StoreError::Storage(e.to_string()))?;
stmt.query_row(params![conversation_id], |row| {
let secret_bytes: Vec<u8> = row.get(3)?;
let public_bytes: Vec<u8> = row.get(4)?;
Ok(RatchetStateData {
root_key: blob_to_array(row.get::<_, Vec<u8>>(0)?),
sending_chain: row.get::<_, Option<Vec<u8>>>(1)?.map(blob_to_array),
receiving_chain: row.get::<_, Option<Vec<u8>>>(2)?.map(blob_to_array),
dh_self: InstallationKeyPair::from_bytes(
blob_to_array(secret_bytes),
blob_to_array(public_bytes),
),
dh_remote: row.get::<_, Option<Vec<u8>>>(5)?.map(blob_to_array),
msg_send: row.get(6)?,
msg_recv: row.get(7)?,
prev_chain_len: row.get(8)?,
})
})
.map_err(|e| match e {
RusqliteError::QueryReturnedNoRows => {
StoreError::NotFound(conversation_id.to_string())
}
e => StoreError::Storage(e.to_string()),
})
}
fn exists(&self, conversation_id: &str) -> Result<bool, StoreError> {
let conn = self.db.connection();
let count: i64 = conn
.query_row(
"SELECT COUNT(*) FROM ratchet_state WHERE conversation_id = ?1",
params![conversation_id],
|row| row.get(0),
)
.map_err(|e| StoreError::Storage(e.to_string()))?;
Ok(count > 0)
}
fn delete(&mut self, conversation_id: &str) -> Result<(), StoreError> {
let conn = self.db.connection();
// Skipped keys are deleted via CASCADE
conn.execute(
"DELETE FROM ratchet_state WHERE conversation_id = ?1",
params![conversation_id],
)
.map_err(|e| StoreError::Storage(e.to_string()))?;
Ok(())
}
fn get_skipped_key(
&self,
conversation_id: &str,
id: &SkippedKeyId,
) -> Result<Option<MessageKey>, StoreError> {
let conn = self.db.connection();
let result: Result<Vec<u8>, _> = conn.query_row(
"SELECT message_key FROM skipped_keys
WHERE conversation_id = ?1 AND public_key = ?2 AND msg_num = ?3",
params![conversation_id, id.public_key.as_slice(), id.msg_num],
|row| row.get(0),
);
match result {
Ok(bytes) => Ok(Some(blob_to_array(bytes))),
Err(RusqliteError::QueryReturnedNoRows) => Ok(None),
Err(e) => Err(StoreError::Storage(e.to_string())),
}
}
fn add_skipped_key(
&mut self,
conversation_id: &str,
key: SkippedMessageKey,
) -> Result<(), StoreError> {
let conn = self.db.connection();
conn.execute(
"INSERT OR REPLACE INTO skipped_keys (conversation_id, public_key, msg_num, message_key)
VALUES (?1, ?2, ?3, ?4)",
params![
conversation_id,
key.id.public_key.as_slice(),
key.id.msg_num,
key.message_key.as_slice(),
],
)
.map_err(|e| StoreError::Storage(e.to_string()))?;
Ok(())
}
fn remove_skipped_key(
&mut self,
conversation_id: &str,
id: &SkippedKeyId,
) -> Result<(), StoreError> {
let conn = self.db.connection();
conn.execute(
"DELETE FROM skipped_keys WHERE conversation_id = ?1 AND public_key = ?2 AND msg_num = ?3",
params![conversation_id, id.public_key.as_slice(), id.msg_num],
)
.map_err(|e| StoreError::Storage(e.to_string()))?;
Ok(())
}
fn get_all_skipped_keys(
&self,
conversation_id: &str,
) -> Result<Vec<SkippedMessageKey>, StoreError> {
let conn = self.db.connection();
let mut stmt = conn
.prepare(
"SELECT public_key, msg_num, message_key FROM skipped_keys WHERE conversation_id = ?1",
)
.map_err(|e| StoreError::Storage(e.to_string()))?;
let rows = stmt
.query_map(params![conversation_id], |row| {
Ok(SkippedMessageKey {
id: SkippedKeyId {
public_key: blob_to_array(row.get::<_, Vec<u8>>(0)?),
msg_num: row.get(1)?,
},
message_key: blob_to_array(row.get::<_, Vec<u8>>(2)?),
})
})
.map_err(|e| StoreError::Storage(e.to_string()))?;
rows.collect::<Result<Vec<_>, _>>()
.map_err(|e| StoreError::Storage(e.to_string()))
}
fn clear_skipped_keys(&mut self, conversation_id: &str) -> Result<(), StoreError> {
let conn = self.db.connection();
conn.execute(
"DELETE FROM skipped_keys WHERE conversation_id = ?1",
params![conversation_id],
)
.map_err(|e| StoreError::Storage(e.to_string()))?;
Ok(())
}
}
fn blob_to_array<const N: usize>(blob: Vec<u8>) -> [u8; N] {
blob.try_into()
.unwrap_or_else(|v: Vec<u8>| panic!("Expected {} bytes, got {}", N, v.len()))
}
#[cfg(test)]
mod tests {
use super::*;
fn create_test_state() -> RatchetStateData {
RatchetStateData {
root_key: [0x42; 32],
sending_chain: Some([0x01; 32]),
receiving_chain: None,
dh_self: InstallationKeyPair::generate(),
dh_remote: Some([0x02; 32]),
msg_send: 0,
msg_recv: 0,
prev_chain_len: 0,
}
}
#[test]
fn test_save_and_load() {
let mut store = SqliteRatchetStore::in_memory().unwrap();
let state = create_test_state();
store.save_state("conv1", &state).unwrap();
let loaded = store.load_state("conv1").unwrap();
assert_eq!(state.root_key, loaded.root_key);
assert_eq!(state.msg_send, loaded.msg_send);
}
#[test]
fn test_exists() {
let mut store = SqliteRatchetStore::in_memory().unwrap();
let state = create_test_state();
assert!(!store.exists("conv1").unwrap());
store.save_state("conv1", &state).unwrap();
assert!(store.exists("conv1").unwrap());
}
#[test]
fn test_skipped_keys() {
let mut store = SqliteRatchetStore::in_memory().unwrap();
let state = create_test_state();
store.save_state("conv1", &state).unwrap();
let id = SkippedKeyId {
public_key: [0x01; 32],
msg_num: 5,
};
let key = SkippedMessageKey {
id: id.clone(),
message_key: [0xAB; 32],
};
// Add key
store.add_skipped_key("conv1", key.clone()).unwrap();
assert_eq!(
store.get_skipped_key("conv1", &id).unwrap(),
Some([0xAB; 32])
);
// Get all
let all = store.get_all_skipped_keys("conv1").unwrap();
assert_eq!(all.len(), 1);
// Remove key
store.remove_skipped_key("conv1", &id).unwrap();
assert_eq!(store.get_skipped_key("conv1", &id).unwrap(), None);
}
#[test]
fn test_delete_cascades() {
let mut store = SqliteRatchetStore::in_memory().unwrap();
let state = create_test_state();
store.save_state("conv1", &state).unwrap();
let id = SkippedKeyId {
public_key: [0x01; 32],
msg_num: 5,
};
let key = SkippedMessageKey {
id: id.clone(),
message_key: [0xAB; 32],
};
store.add_skipped_key("conv1", key).unwrap();
// Delete conversation - skipped keys should be deleted too
store.delete("conv1").unwrap();
assert!(!store.exists("conv1").unwrap());
}
}

View File

@ -0,0 +1,115 @@
//! Storage trait for double ratchet persistence.
//!
//! This module defines the `RatchetStore` trait that abstracts storage needs
//! for the double ratchet algorithm. Implementations can be backed by SQLite,
//! PostgreSQL, in-memory storage, or any other backend.
use crate::{
keypair::InstallationKeyPair,
types::{ChainKey, MessageKey, RootKey},
};
/// Identifier for a skipped message key.
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub struct SkippedKeyId {
pub public_key: [u8; 32],
pub msg_num: u32,
}
/// A skipped message key with its identifier.
#[derive(Debug, Clone)]
pub struct SkippedMessageKey {
pub id: SkippedKeyId,
pub message_key: MessageKey,
}
/// The core ratchet state that needs to be persisted.
#[derive(Debug, Clone)]
pub struct RatchetStateData {
pub root_key: RootKey,
pub sending_chain: Option<ChainKey>,
pub receiving_chain: Option<ChainKey>,
pub dh_self: InstallationKeyPair,
pub dh_remote: Option<[u8; 32]>,
pub msg_send: u32,
pub msg_recv: u32,
pub prev_chain_len: u32,
}
/// Error type for store operations.
#[derive(Debug, thiserror::Error)]
pub enum StoreError {
#[error("not found: {0}")]
NotFound(String),
#[error("already exists: {0}")]
AlreadyExists(String),
#[error("storage error: {0}")]
Storage(String),
#[error("serialization error: {0}")]
Serialization(String),
}
/// Trait defining storage requirements for the double ratchet algorithm.
///
/// This trait abstracts the storage layer, allowing the double ratchet
/// implementation to be agnostic to the underlying storage mechanism.
///
/// # Example Implementations
///
/// - `SqliteRatchetStore` - SQLite/SQLCipher backed storage
/// - `EphemeralStore` - In-memory storage for testing
/// - `PostgresRatchetStore` - PostgreSQL backed storage (external)
pub trait RatchetStore {
// === Ratchet State Operations ===
/// Saves the ratchet state for a conversation.
fn save_state(
&mut self,
conversation_id: &str,
state: &RatchetStateData,
) -> Result<(), StoreError>;
/// Loads the ratchet state for a conversation.
fn load_state(&self, conversation_id: &str) -> Result<RatchetStateData, StoreError>;
/// Checks if a conversation exists.
fn exists(&self, conversation_id: &str) -> Result<bool, StoreError>;
/// Deletes a conversation and all its associated data.
fn delete(&mut self, conversation_id: &str) -> Result<(), StoreError>;
// === Skipped Message Key Operations ===
/// Gets a skipped message key if it exists.
fn get_skipped_key(
&self,
conversation_id: &str,
id: &SkippedKeyId,
) -> Result<Option<MessageKey>, StoreError>;
/// Adds a skipped message key.
fn add_skipped_key(
&mut self,
conversation_id: &str,
key: SkippedMessageKey,
) -> Result<(), StoreError>;
/// Removes a skipped message key (after successful decryption).
fn remove_skipped_key(
&mut self,
conversation_id: &str,
id: &SkippedKeyId,
) -> Result<(), StoreError>;
/// Gets all skipped keys for a conversation.
fn get_all_skipped_keys(
&self,
conversation_id: &str,
) -> Result<Vec<SkippedMessageKey>, StoreError>;
/// Clears all skipped keys for a conversation.
fn clear_skipped_keys(&mut self, conversation_id: &str) -> Result<(), StoreError>;
}

View File

@ -1,65 +0,0 @@
//! Storage types for ratchet state.
use crate::{
hkdf::HkdfInfo,
state::{RatchetState, SkippedKey},
types::MessageKey,
};
use x25519_dalek::PublicKey;
/// Raw state data for storage (without generic parameter).
#[derive(Debug, Clone)]
pub struct RatchetStateRecord {
pub root_key: [u8; 32],
pub sending_chain: Option<[u8; 32]>,
pub receiving_chain: Option<[u8; 32]>,
pub dh_self_secret: [u8; 32],
pub dh_remote: Option<[u8; 32]>,
pub msg_send: u32,
pub msg_recv: u32,
pub prev_chain_len: u32,
}
impl<D: HkdfInfo> From<&RatchetState<D>> for RatchetStateRecord {
fn from(state: &RatchetState<D>) -> Self {
Self {
root_key: state.root_key,
sending_chain: state.sending_chain,
receiving_chain: state.receiving_chain,
dh_self_secret: *state.dh_self.secret_bytes(),
dh_remote: state.dh_remote.map(|pk| pk.to_bytes()),
msg_send: state.msg_send,
msg_recv: state.msg_recv,
prev_chain_len: state.prev_chain_len,
}
}
}
impl RatchetStateRecord {
pub fn into_ratchet_state<D: HkdfInfo>(self, skipped_keys: Vec<SkippedKey>) -> RatchetState<D> {
use crate::keypair::InstallationKeyPair;
use std::collections::HashMap;
use std::marker::PhantomData;
let dh_self = InstallationKeyPair::from_secret_bytes(self.dh_self_secret);
let dh_remote = self.dh_remote.map(PublicKey::from);
let skipped: HashMap<(PublicKey, u32), MessageKey> = skipped_keys
.into_iter()
.map(|sk| ((PublicKey::from(sk.public_key), sk.msg_num), sk.message_key))
.collect();
RatchetState {
root_key: self.root_key,
sending_chain: self.sending_chain,
receiving_chain: self.receiving_chain,
dh_self,
dh_remote,
msg_send: self.msg_send,
msg_recv: self.msg_recv,
prev_chain_len: self.prev_chain_len,
skipped_keys: skipped,
_domain: PhantomData,
}
}
}