Encode ratchet sate for serialization (#20)

* feat: costom encode for double ratchet

* chore: correct capacity

* chore: refactor reference

* chore: reader for parse bytes

* chore: extract reader

* chore: example with persist state.

* chore: update example

* chore: implement serde compatibility.

* chore: as_bytes

* chore: zerorize the secrec material

* chore: use as_types to return reference for static key.

* chore: extract example from basic demo
This commit is contained in:
kaichao 2026-01-29 09:19:52 +08:00 committed by GitHub
parent 1f0354f8e2
commit 10940321ff
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
8 changed files with 523 additions and 4 deletions

1
Cargo.lock generated
View File

@ -223,6 +223,7 @@ dependencies = [
"rand_core",
"rusqlite",
"safer-ffi",
"serde",
"thiserror",
"x25519-dalek",
"zeroize",

View File

@ -20,6 +20,7 @@ thiserror = "2"
blake2 = "0.10.6"
safer-ffi = "0.1.13"
zeroize = "1.8.2"
serde = "1.0"
rusqlite = { version = "0.35", optional = true, features = ["bundled"] }
[features]

View File

@ -0,0 +1,75 @@
use double_ratchets::{InstallationKeyPair, RatchetState, hkdf::PrivateV1Domain};
fn main() {
// === Initial shared secret (X3DH / prekey result in real systems) ===
let shared_secret = [42u8; 32];
let bob_dh = InstallationKeyPair::generate();
let mut alice: RatchetState<PrivateV1Domain> =
RatchetState::init_sender(shared_secret, bob_dh.public().clone());
let mut bob: RatchetState<PrivateV1Domain> = RatchetState::init_receiver(shared_secret, bob_dh);
let (ciphertext, header) = alice.encrypt_message(b"Hello Bob!");
// === Bob receives ===
let plaintext = bob.decrypt_message(&ciphertext, header);
println!(
"Bob received: {}",
String::from_utf8_lossy(&plaintext.unwrap())
);
// === Bob replies (triggers DH ratchet) ===
let (ciphertext, header) = bob.encrypt_message(b"Hi Alice!");
let plaintext = alice.decrypt_message(&ciphertext, header);
println!(
"Alice received: {}",
String::from_utf8_lossy(&plaintext.unwrap())
);
// === Serialize the state of alice and bob ===
println!("Before restart, persist the state");
let alice_state = alice.as_bytes();
let bob_state = bob.as_bytes();
// === Deserialize alice and bob state from bytes ===
println!("Restart alice and bob");
let mut alice_new: RatchetState<PrivateV1Domain> =
RatchetState::from_bytes(&alice_state).unwrap();
let mut bob_new: RatchetState<PrivateV1Domain> = RatchetState::from_bytes(&bob_state).unwrap();
// === Alice sends a message ===
let (ciphertext, header) = alice_new.encrypt_message(b"Hello Bob!");
// === Bob receives ===
let plaintext = bob_new.decrypt_message(&ciphertext, header);
println!(
"New Bob received: {}",
String::from_utf8_lossy(&plaintext.unwrap())
);
// === Bob replies (triggers DH ratchet) ===
let (ciphertext, header) = bob_new.encrypt_message(b"Hi Alice!");
let plaintext = alice_new.decrypt_message(&ciphertext, header);
println!(
"New Alice received: {}",
String::from_utf8_lossy(&plaintext.unwrap())
);
let (skipped_ciphertext, skipped_header) = bob_new.encrypt_message(b"Hi Alice skipped!");
let (resumed_ciphertext, resumed_header) = bob_new.encrypt_message(b"Hi Alice resumed!");
let plaintext = alice_new.decrypt_message(&resumed_ciphertext, resumed_header);
println!(
"New Alice received: {}",
String::from_utf8_lossy(&plaintext.unwrap())
);
let plaintext = alice_new.decrypt_message(&skipped_ciphertext, skipped_header);
println!(
"New Alice received: {}",
String::from_utf8_lossy(&plaintext.unwrap())
);
}

View File

@ -23,4 +23,7 @@ pub enum RatchetError {
#[error("missing receiving chain")]
MissingReceivingChain,
#[error("deserialization failed")]
DeserializationFailed,
}

View File

@ -25,12 +25,12 @@ impl InstallationKeyPair {
&self.public
}
/// Export the secret key as raw bytes for storage.
pub fn secret_bytes(&self) -> [u8; 32] {
self.secret.to_bytes()
/// Export the secret key as raw bytes for serialization/storage.
pub fn secret_bytes(&self) -> &[u8; 32] {
self.secret.as_bytes()
}
/// Reconstruct from secret key bytes.
/// Import the secret key from raw bytes.
pub fn from_secret_bytes(bytes: [u8; 32]) -> Self {
let secret = StaticSecret::from(bytes);
let public = PublicKey::from(&secret);

View File

@ -3,6 +3,7 @@ pub mod errors;
pub mod ffi;
pub mod hkdf;
pub mod keypair;
pub mod reader;
pub mod state;
#[cfg(feature = "storage")]
pub mod storage;

View File

@ -0,0 +1,135 @@
use crate::errors::RatchetError;
pub struct Reader<'a> {
data: &'a [u8],
pos: usize,
}
impl<'a> Reader<'a> {
pub fn new(data: &'a [u8]) -> Self {
Self { data, pos: 0 }
}
pub fn read_bytes(&mut self, n: usize) -> Result<&[u8], RatchetError> {
if self.pos + n > self.data.len() {
return Err(RatchetError::DeserializationFailed);
}
let slice = &self.data[self.pos..self.pos + n];
self.pos += n;
Ok(slice)
}
pub fn read_array<const N: usize>(&mut self) -> Result<[u8; N], RatchetError> {
self.read_bytes(N)?
.try_into()
.map_err(|_| RatchetError::DeserializationFailed)
}
pub fn read_u8(&mut self) -> Result<u8, RatchetError> {
Ok(self.read_bytes(1)?[0])
}
pub fn read_u32(&mut self) -> Result<u32, RatchetError> {
Ok(u32::from_be_bytes(self.read_array()?))
}
pub fn read_option(&mut self) -> Result<Option<[u8; 32]>, RatchetError> {
match self.read_u8()? {
0x00 => Ok(None),
0x01 => Ok(Some(self.read_array()?)),
_ => Err(RatchetError::DeserializationFailed),
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_read_bytes() {
let data = [1, 2, 3, 4, 5];
let mut reader = Reader::new(&data);
assert_eq!(reader.read_bytes(2).unwrap(), &[1, 2]);
assert_eq!(reader.read_bytes(3).unwrap(), &[3, 4, 5]);
}
#[test]
fn test_read_bytes_overflow() {
let data = [1, 2, 3];
let mut reader = Reader::new(&data);
assert!(matches!(
reader.read_bytes(4),
Err(RatchetError::DeserializationFailed)
));
}
#[test]
fn test_read_array() {
let data = [1, 2, 3, 4];
let mut reader = Reader::new(&data);
let arr: [u8; 4] = reader.read_array().unwrap();
assert_eq!(arr, [1, 2, 3, 4]);
}
#[test]
fn test_read_u8() {
let data = [0x42, 0xFF];
let mut reader = Reader::new(&data);
assert_eq!(reader.read_u8().unwrap(), 0x42);
assert_eq!(reader.read_u8().unwrap(), 0xFF);
}
#[test]
fn test_read_u32() {
let data = [0x00, 0x01, 0x02, 0x03];
let mut reader = Reader::new(&data);
assert_eq!(reader.read_u32().unwrap(), 0x00010203);
}
#[test]
fn test_read_option_none() {
let data = [0x00];
let mut reader = Reader::new(&data);
assert_eq!(reader.read_option().unwrap(), None);
}
#[test]
fn test_read_option_some() {
let mut data = vec![0x01];
data.extend_from_slice(&[0x42; 32]);
let mut reader = Reader::new(&data);
assert_eq!(reader.read_option().unwrap(), Some([0x42; 32]));
}
#[test]
fn test_read_option_invalid_flag() {
let data = [0x02];
let mut reader = Reader::new(&data);
assert!(matches!(
reader.read_option(),
Err(RatchetError::DeserializationFailed)
));
}
#[test]
fn test_sequential_reads() {
let mut data = vec![0x01]; // version
data.extend_from_slice(&[0xAA; 32]); // 32-byte array
data.extend_from_slice(&[0x00, 0x00, 0x00, 0x10]); // u32 = 16
let mut reader = Reader::new(&data);
assert_eq!(reader.read_u8().unwrap(), 0x01);
assert_eq!(reader.read_array::<32>().unwrap(), [0xAA; 32]);
assert_eq!(reader.read_u32().unwrap(), 16);
}
}

View File

@ -1,15 +1,21 @@
use std::{collections::HashMap, marker::PhantomData};
use serde::{Deserialize, Deserializer, Serialize, Serializer, de::Error as DeError};
use x25519_dalek::PublicKey;
use zeroize::{Zeroize, Zeroizing};
use crate::{
aead::{decrypt, encrypt},
errors::RatchetError,
hkdf::{DefaultDomain, HkdfInfo, kdf_chain, kdf_root},
keypair::InstallationKeyPair,
reader::Reader,
types::{ChainKey, MessageKey, Nonce, RootKey, SharedSecret},
};
/// Current binary format version.
const SERIALIZATION_VERSION: u8 = 1;
/// Represents the local state of the Double Ratchet algorithm for one conversation.
///
/// This struct maintains all keys and counters required to perform the Double Ratchet
@ -42,6 +48,153 @@ pub struct SkippedKey {
pub message_key: MessageKey,
}
impl<D: HkdfInfo> RatchetState<D> {
/// Serializes the ratchet state to a binary format.
///
/// # Binary Format (Version 1)
///
/// ```text
/// | Field | Size (bytes) | Description |
/// |--------------------|--------------|--------------------------------------|
/// | version | 1 | Format version (0x01) |
/// | root_key | 32 | Root key |
/// | sending_chain_flag | 1 | 0x00 = None, 0x01 = Some |
/// | sending_chain | 0 or 32 | Chain key if flag is 0x01 |
/// | receiving_chain_flag| 1 | 0x00 = None, 0x01 = Some |
/// | receiving_chain | 0 or 32 | Chain key if flag is 0x01 |
/// | dh_self_secret | 32 | DH secret key |
/// | dh_remote_flag | 1 | 0x00 = None, 0x01 = Some |
/// | dh_remote | 0 or 32 | DH public key if flag is 0x01 |
/// | msg_send | 4 | Send counter (big-endian) |
/// | msg_recv | 4 | Receive counter (big-endian) |
/// | prev_chain_len | 4 | Previous chain length (big-endian) |
/// | skipped_count | 4 | Number of skipped keys (big-endian) |
/// | skipped_keys | 68 * count | Each: pubkey(32) + msg_num(4) + key(32) |
/// ```
pub fn as_bytes(&self) -> Zeroizing<Vec<u8>> {
fn option_size(opt: Option<[u8; 32]>) -> usize {
1 + opt.map_or(0, |_| 32)
}
fn write_option(buf: &mut Vec<u8>, opt: Option<[u8; 32]>) {
match opt {
Some(data) => {
buf.push(0x01);
buf.extend_from_slice(&data);
}
None => buf.push(0x00),
}
}
let skipped_count = self.skipped_keys.len();
let dh_remote = self.dh_remote.map(|pk| pk.to_bytes());
let capacity = 1 + 32 // version + root_key
+ option_size(self.sending_chain)
+ option_size(self.receiving_chain)
+ 32 // dh_self
+ option_size(dh_remote)
+ 12 // counters
+ 4 + (skipped_count * 68); // skipped keys
let mut buf = Zeroizing::new(Vec::with_capacity(capacity));
buf.push(SERIALIZATION_VERSION);
buf.extend_from_slice(&self.root_key);
write_option(&mut buf, self.sending_chain);
write_option(&mut buf, self.receiving_chain);
let dh_secret = self.dh_self.secret_bytes();
buf.extend_from_slice(dh_secret);
write_option(&mut buf, dh_remote);
buf.extend_from_slice(&self.msg_send.to_be_bytes());
buf.extend_from_slice(&self.msg_recv.to_be_bytes());
buf.extend_from_slice(&self.prev_chain_len.to_be_bytes());
buf.extend_from_slice(&(skipped_count as u32).to_be_bytes());
for ((pk, msg_num), mk) in &self.skipped_keys {
buf.extend_from_slice(pk.as_bytes());
buf.extend_from_slice(&msg_num.to_be_bytes());
buf.extend_from_slice(mk);
}
buf
}
/// Deserializes a ratchet state from binary data.
///
/// # Errors
///
/// Returns `RatchetError::DeserializationFailed` if the data is invalid or truncated.
pub fn from_bytes(data: &[u8]) -> Result<Self, RatchetError> {
let mut reader = Reader::new(data);
let version = reader.read_u8()?;
if version != SERIALIZATION_VERSION {
return Err(RatchetError::DeserializationFailed);
}
let root_key: RootKey = reader.read_array()?;
let sending_chain = reader.read_option()?;
let receiving_chain = reader.read_option()?;
let mut dh_self_bytes: [u8; 32] = reader.read_array()?;
let dh_self = InstallationKeyPair::from_secret_bytes(dh_self_bytes);
dh_self_bytes.zeroize();
let dh_remote = reader.read_option()?.map(PublicKey::from);
let msg_send = reader.read_u32()?;
let msg_recv = reader.read_u32()?;
let prev_chain_len = reader.read_u32()?;
let skipped_count = reader.read_u32()? as usize;
let mut skipped_keys = HashMap::with_capacity(skipped_count);
for _ in 0..skipped_count {
let pk = PublicKey::from(reader.read_array::<32>()?);
let msg_num = reader.read_u32()?;
let mk: MessageKey = reader.read_array()?;
skipped_keys.insert((pk, msg_num), mk);
}
Ok(Self {
root_key,
sending_chain,
receiving_chain,
dh_self,
dh_remote,
msg_send,
msg_recv,
prev_chain_len,
skipped_keys,
_domain: PhantomData,
})
}
}
/// Custom serde Serialize implementation that uses our binary format.
impl<D: HkdfInfo> Serialize for RatchetState<D> {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
serializer.serialize_bytes(&self.as_bytes())
}
}
/// Custom serde Deserialize implementation that uses our binary format.
impl<'de, D: HkdfInfo> Deserialize<'de> for RatchetState<D> {
fn deserialize<De>(deserializer: De) -> Result<Self, De::Error>
where
De: Deserializer<'de>,
{
let bytes = <Vec<u8>>::deserialize(deserializer)?;
Self::from_bytes(&bytes).map_err(DeError::custom)
}
}
/// Public header attached to every encrypted message (unencrypted but authenticated).
#[derive(Clone, Debug)]
pub struct Header {
@ -513,6 +666,156 @@ mod tests {
assert_eq!(result.unwrap_err(), RatchetError::MessageReplay);
}
#[test]
fn test_serialize_deserialize_sender_state() {
let (alice, _, _) = setup_alice_bob();
// Serialize to binary
let bytes = alice.as_bytes();
// Deserialize back
let restored: RatchetState = RatchetState::from_bytes(&bytes).unwrap();
// Verify key fields match
assert_eq!(alice.root_key, restored.root_key);
assert_eq!(alice.sending_chain, restored.sending_chain);
assert_eq!(alice.receiving_chain, restored.receiving_chain);
assert_eq!(alice.msg_send, restored.msg_send);
assert_eq!(alice.msg_recv, restored.msg_recv);
assert_eq!(alice.prev_chain_len, restored.prev_chain_len);
assert_eq!(
alice.dh_remote.map(|pk| pk.to_bytes()),
restored.dh_remote.map(|pk| pk.to_bytes())
);
assert_eq!(
alice.dh_self.public().to_bytes(),
restored.dh_self.public().to_bytes()
);
}
#[test]
fn test_serialize_deserialize_receiver_state() {
let (_, bob, _) = setup_alice_bob();
// Serialize to binary
let bytes = bob.as_bytes();
// Deserialize back
let restored: RatchetState = RatchetState::from_bytes(&bytes).unwrap();
// Verify key fields match
assert_eq!(bob.root_key, restored.root_key);
assert_eq!(bob.sending_chain, restored.sending_chain);
assert_eq!(bob.receiving_chain, restored.receiving_chain);
assert_eq!(bob.msg_send, restored.msg_send);
assert_eq!(bob.msg_recv, restored.msg_recv);
assert_eq!(bob.prev_chain_len, restored.prev_chain_len);
assert!(bob.dh_remote.is_none());
assert!(restored.dh_remote.is_none());
}
#[test]
fn test_serialize_deserialize_with_skipped_keys() {
let (mut alice, mut bob, _) = setup_alice_bob();
// Alice sends 3 messages
let mut sent = vec![];
for i in 0..3 {
let plaintext = format!("Message {}", i + 1).into_bytes();
let (ct, header) = alice.encrypt_message(&plaintext);
sent.push((ct, header, plaintext));
}
// Bob receives only msg0 and msg2, skipping msg1
bob.decrypt_message(&sent[0].0, sent[0].1.clone()).unwrap();
bob.decrypt_message(&sent[2].0, sent[2].1.clone()).unwrap();
// Bob should have one skipped key
assert_eq!(bob.skipped_keys.len(), 1);
// Serialize Bob's state
let bytes = bob.as_bytes();
// Deserialize
let mut restored: RatchetState = RatchetState::from_bytes(&bytes).unwrap();
// Restored state should have the skipped key
assert_eq!(restored.skipped_keys.len(), 1);
// The restored state should be able to decrypt the skipped message
let pt1 = restored
.decrypt_message(&sent[1].0, sent[1].1.clone())
.unwrap();
assert_eq!(pt1, sent[1].2);
}
#[test]
fn test_serialize_deserialize_continue_conversation() {
let (mut alice, mut bob, _) = setup_alice_bob();
// Exchange some messages
let (ct1, h1) = alice.encrypt_message(b"Hello Bob");
bob.decrypt_message(&ct1, h1).unwrap();
let (ct2, h2) = bob.encrypt_message(b"Hello Alice");
alice.decrypt_message(&ct2, h2).unwrap();
// Serialize both states
let alice_bytes = alice.as_bytes();
let bob_bytes = bob.as_bytes();
// Deserialize
let mut alice_restored: RatchetState = RatchetState::from_bytes(&alice_bytes).unwrap();
let mut bob_restored: RatchetState = RatchetState::from_bytes(&bob_bytes).unwrap();
// Continue the conversation with restored states
let (ct3, h3) = alice_restored.encrypt_message(b"Message after restore");
let pt3 = bob_restored.decrypt_message(&ct3, h3).unwrap();
assert_eq!(pt3, b"Message after restore");
let (ct4, h4) = bob_restored.encrypt_message(b"Reply after restore");
let pt4 = alice_restored.decrypt_message(&ct4, h4).unwrap();
assert_eq!(pt4, b"Reply after restore");
}
#[test]
fn test_serialization_version_check() {
let (alice, _, _) = setup_alice_bob();
let mut bytes = alice.as_bytes();
// Tamper with version byte
bytes[0] = 0xFF;
let result = RatchetState::<DefaultDomain>::from_bytes(&bytes);
assert!(matches!(result, Err(RatchetError::DeserializationFailed)));
}
#[test]
fn test_serialization_truncated_data() {
let (alice, _, _) = setup_alice_bob();
let bytes = alice.as_bytes();
// Truncate the data
let truncated = &bytes[..10];
let result = RatchetState::<DefaultDomain>::from_bytes(truncated);
assert!(matches!(result, Err(RatchetError::DeserializationFailed)));
}
#[test]
fn test_serialization_size_efficiency() {
let (alice, _, _) = setup_alice_bob();
let bytes = alice.as_bytes();
// Minimum size: version(1) + root_key(32) + sending_flag(1) + sending(32) +
// receiving_flag(1) + dh_self(32) + dh_remote_flag(1) + dh_remote(32) +
// counters(12) + skipped_count(4) = 148 bytes for sender with no skipped keys
assert!(bytes.len() < 200, "Serialized size should be compact");
// Verify version byte
assert_eq!(bytes[0], 1, "Version should be 1");
}
#[test]
fn test_skipped_keys_export() {
let (mut alice, mut bob, _) = setup_alice_bob();