565 lines
18 KiB
Rust
Raw Normal View History

2026-01-15 08:47:02 +08:00
use std::{collections::HashMap, marker::PhantomData};
use x25519_dalek::PublicKey;
use crate::{
aead::{decrypt, encrypt},
errors::RatchetError,
hkdf::{DefaultDomain, HkdfInfo, kdf_chain, kdf_root},
keypair::InstallationKeyPair,
types::{ChainKey, MessageKey, Nonce, RootKey, SharedSecret},
};
/// Represents the local state of the Double Ratchet algorithm for one conversation.
///
/// This struct maintains all keys and counters required to perform the Double Ratchet
/// as specified in the Signal protocol, providing end-to-end encryption with forward
/// secrecy and post-compromise security.
#[derive(Clone)]
pub struct RatchetState<D: HkdfInfo = DefaultDomain> {
pub root_key: RootKey,
pub sending_chain: Option<ChainKey>,
pub receiving_chain: Option<ChainKey>,
pub dh_self: InstallationKeyPair,
pub dh_remote: Option<PublicKey>,
pub msg_send: u32,
pub msg_recv: u32,
pub prev_chain_len: u32,
pub skipped_keys: HashMap<(PublicKey, u32), MessageKey>,
pub(crate) _domain: PhantomData<D>,
}
/// Represents a skipped message key for storage or inspection.
#[derive(Debug, Clone)]
pub struct SkippedKey {
pub public_key: [u8; 32],
pub msg_num: u32,
pub message_key: MessageKey,
2026-01-15 08:47:02 +08:00
}
/// Public header attached to every encrypted message (unencrypted but authenticated).
#[derive(Clone, Debug)]
2026-01-15 08:47:02 +08:00
pub struct Header {
pub dh_pub: PublicKey,
pub msg_num: u32,
pub prev_chain_len: u32,
}
impl Header {
/// Serializes the full header for use as Associated Authenticated Data (AAD).
/// Format: DH public key (32 bytes) || message number (4 bytes, big-endian) || previous chain length (4 bytes, big-endian)
///
/// # Returns
///
/// A 40-byte slice containing the serialized header.
pub fn serialized(&self) -> [u8; 40] {
let mut aad = [0u8; 40];
aad[0..32].copy_from_slice(self.dh_pub.as_bytes());
aad[32..36].copy_from_slice(&self.msg_num.to_be_bytes());
aad[36..40].copy_from_slice(&self.prev_chain_len.to_be_bytes());
aad
}
}
impl<D: HkdfInfo> RatchetState<D> {
/// Initializes the party that sends the first message.
///
/// Performs the initial Diffie-Hellman computation with the remote public key
/// and derives the initial root and sending chain keys.
///
/// # Arguments
///
/// * `shared_secret` - Pre-shared secret (e.g., from X3DH).
/// * `remote_pub` - Remote party's public key for the initial DH.
///
/// # Returns
///
/// A new `RatchetState` ready to send the first message.
pub fn init_sender(shared_secret: SharedSecret, remote_pub: PublicKey) -> Self {
let dh_self = InstallationKeyPair::generate();
// Initial DH
let dh_out = dh_self.dh(&remote_pub);
let (root_key, sending_chain) = kdf_root::<D>(&shared_secret, &dh_out);
Self {
root_key,
sending_chain: Some(sending_chain),
receiving_chain: None,
dh_self,
dh_remote: Some(remote_pub),
msg_send: 0,
msg_recv: 0,
prev_chain_len: 0,
skipped_keys: HashMap::new(),
_domain: PhantomData,
}
}
/// Initializes the party that receives the first message.
///
/// No chain keys are derived yet — they will be created upon receiving the first message.
///
/// # Arguments
///
/// * `shared_secret` - Pre-shared secret (e.g., from X3DH).
/// * `dh_self` - Our long-term or initial DH key pair.
///
/// # Returns
///
/// A new `RatchetState` ready to receive the first message.
pub fn init_receiver(shared_secret: SharedSecret, dh_self: InstallationKeyPair) -> Self {
Self {
root_key: shared_secret,
sending_chain: None,
receiving_chain: None, // derived on first receive
dh_self,
dh_remote: None,
msg_send: 0,
msg_recv: 0,
prev_chain_len: 0,
skipped_keys: HashMap::new(),
_domain: PhantomData,
}
}
/// Performs a receiving-side DH ratchet when a new remote DH public key is observed.
///
/// # Arguments
///
/// * `remote_pub` - The new DH public key from the sender.
pub fn dh_ratchet_receive(&mut self, remote_pub: PublicKey) {
let dh_out = self.dh_self.dh(&remote_pub);
let (new_root, recv_chain) = kdf_root::<D>(&self.root_key, &dh_out);
self.root_key = new_root;
self.receiving_chain = Some(recv_chain);
self.sending_chain = None; // 🔥 important
self.dh_remote = Some(remote_pub);
self.msg_recv = 0;
}
/// Performs a sending-side DH ratchet (generates new key pair and advances root key).
/// Called automatically when sending but no active sending chain exists.
pub fn dh_ratchet_send(&mut self) {
let remote = self.dh_remote.expect("no remote DH key");
self.dh_self = InstallationKeyPair::generate();
let dh_out = self.dh_self.dh(&remote);
let (new_root, send_chain) = kdf_root::<D>(&self.root_key, &dh_out);
self.root_key = new_root;
self.sending_chain = Some(send_chain);
}
/// Encrypts a plaintext message.
///
/// Automatically performs a DH ratchet if the sending direction has changed.
///
/// # Arguments
///
/// * `plaintext` - The message to encrypt.
///
/// # Returns
///
/// A tuple containing:
/// * The ciphertext prefixed with the nonce.
/// * The `Header` that must be sent alongside the ciphertext.
pub fn encrypt_message(&mut self, plaintext: &[u8]) -> (Vec<u8>, Header) {
if self.sending_chain.is_none() {
self.dh_ratchet_send();
self.prev_chain_len = self.msg_send;
self.msg_send = 0;
}
let chain = self.sending_chain.as_mut().unwrap();
let (next_chain, message_key) = kdf_chain(chain);
*chain = next_chain;
let header = Header {
dh_pub: self.dh_self.public().clone(),
msg_num: self.msg_send,
prev_chain_len: self.prev_chain_len,
};
self.msg_send += 1;
let (ciphertext, nonce) = encrypt(&message_key, plaintext, &header.serialized());
let mut ciphertext_with_nonce = Vec::with_capacity(nonce.len() + ciphertext.len());
ciphertext_with_nonce.extend_from_slice(&nonce);
ciphertext_with_nonce.extend_from_slice(&ciphertext);
(ciphertext_with_nonce, header)
}
/// Decrypts a received message.
///
/// Handles DH ratcheting, skipped messages, and replay protection.
///
/// # Arguments
///
/// * `ciphertext_with_nonce` - Ciphertext prefixed with 12-byte nonce.
/// * `header` - The header received with the message.
///
/// # Returns
///
/// * `Ok(plaintext)` on success.
/// * `Err(String)` on failure (e.g., authentication error, replay, too many skipped).
pub fn decrypt_message(
&mut self,
ciphertext_with_nonce: &[u8],
header: Header,
) -> Result<Vec<u8>, RatchetError> {
if ciphertext_with_nonce.len() < 12 {
return Err(RatchetError::CiphertextTooShort);
}
let (nonce_slice, ciphertext) = ciphertext_with_nonce.split_at(12);
let nonce: &Nonce = nonce_slice
.try_into()
.map_err(|_| RatchetError::InvalidNonce)?;
let key_id = (header.dh_pub, header.msg_num);
if let Some(msg_key) = self.skipped_keys.remove(&key_id) {
return decrypt(&msg_key, ciphertext, nonce, &header.serialized())
.map_err(|_| RatchetError::DecryptionFailed);
}
if self.dh_remote.as_ref() == Some(&header.dh_pub) && header.msg_num < self.msg_recv {
return Err(RatchetError::MessageReplay);
}
if self.dh_remote.as_ref() != Some(&header.dh_pub) {
self.skip_message_keys(header.prev_chain_len)?;
self.dh_ratchet_receive(header.dh_pub);
self.prev_chain_len = header.msg_num; // Important: update prev_chain_len after ratchet
}
self.skip_message_keys(header.msg_num)?;
let chain = self
.receiving_chain
.as_mut()
.ok_or(RatchetError::MissingReceivingChain)?;
let (next_chain, message_key) = kdf_chain(chain);
*chain = next_chain;
self.msg_recv += 1;
decrypt(&message_key, ciphertext, nonce, &header.serialized())
.map_err(|_| RatchetError::DecryptionFailed)
}
/// Advances the receiving chain and stores skipped message keys.
///
/// # Arguments
///
/// * `until` - The message number to skip up to (exclusive).
///
/// # Returns
///
/// * `Ok(())` on success.
/// * `Err(&'static str)` if too many messages would be skipped (DoS protection).
pub fn skip_message_keys(&mut self, until: u32) -> Result<(), RatchetError> {
const MAX_SKIP: u32 = 10;
if self.msg_recv + MAX_SKIP < until {
return Err(RatchetError::TooManySkippedMessages);
}
while self.msg_recv < until {
let chain = self
.receiving_chain
.as_mut()
.ok_or(RatchetError::MissingReceivingChain)?;
let (next_chain, msg_key) = kdf_chain(chain);
*chain = next_chain;
let remote = self.dh_remote.ok_or(RatchetError::MissingRemoteDhKey)?;
let key_id = (remote, self.msg_recv);
self.skipped_keys.insert(key_id, msg_key);
self.msg_recv += 1;
}
Ok(())
}
/// Exports the skipped keys for storage or inspection.
///
/// # Returns
///
/// A vector of `SkippedKey` representing the currently stored skipped message keys.
pub fn skipped_keys(&self) -> Vec<SkippedKey> {
self.skipped_keys
.iter()
.map(|((pk, msg_num), mk)| SkippedKey {
public_key: pk.to_bytes(),
msg_num: *msg_num,
message_key: *mk,
})
.collect()
}
2026-01-15 08:47:02 +08:00
}
#[cfg(test)]
mod tests {
use super::*;
fn setup_alice_bob() -> (RatchetState, RatchetState, SharedSecret) {
// Simulate pre-shared secret (e.g., from X3DH)
let shared_secret = [0x42; 32];
// Bob generates his long-term keypair
let bob_keypair = InstallationKeyPair::generate();
// Alice initializes as sender, knowing Bob's public key
let alice = RatchetState::init_sender(shared_secret, bob_keypair.public().clone());
// Bob initializes as receiver with his private key
let bob = RatchetState::init_receiver(shared_secret, bob_keypair);
(alice, bob, shared_secret)
}
#[test]
fn test_basic_roundtrip_one_message() {
let (mut alice, mut bob, _) = setup_alice_bob();
let plaintext = b"Hello Bob, this is Alice!";
let (ciphertext_with_nonce, header) = alice.encrypt_message(plaintext);
let decrypted = bob.decrypt_message(&ciphertext_with_nonce, header).unwrap();
assert_eq!(decrypted, plaintext);
assert_eq!(alice.msg_send, 1);
assert_eq!(bob.msg_recv, 1);
}
#[test]
fn test_multiple_messages_in_order() {
let (mut alice, mut bob, _) = setup_alice_bob();
let messages = [b"Message 1", b"Message 2", b"message 3"];
for msg in messages {
let (ct, header) = alice.encrypt_message(msg);
let pt = bob.decrypt_message(&ct, header).unwrap();
assert_eq!(pt, msg);
}
assert_eq!(alice.msg_send, 3);
assert_eq!(bob.msg_recv, 3);
}
#[test]
fn test_out_of_order_messages_with_skipped_keys() {
let (mut alice, mut bob, _) = setup_alice_bob();
// Alice sends 3 messages
let mut sent = vec![];
for i in 0..3 {
let plaintext = format!("Message {}", i + 1).into_bytes();
let (ct, header) = alice.encrypt_message(&plaintext);
sent.push((ct, header, plaintext));
}
// Bob receives them out of order: 0, 2, 1
let decrypted0 = bob.decrypt_message(&sent[0].0, sent[0].1.clone()).unwrap();
assert_eq!(decrypted0, sent[0].2);
let decrypted2 = bob.decrypt_message(&sent[2].0, sent[2].1.clone()).unwrap();
assert_eq!(decrypted2, sent[2].2);
let decrypted1 = bob.decrypt_message(&sent[1].0, sent[1].1.clone()).unwrap();
assert_eq!(decrypted1, sent[1].2);
assert_eq!(bob.msg_recv, 3);
}
#[test]
fn test_sender_ratchets_after_receiving_from_other_side() {
let (mut alice, mut bob, _) = setup_alice_bob();
// Alice sends one message
let (ct, header) = alice.encrypt_message(b"first");
bob.decrypt_message(&ct, header).unwrap();
// Bob performs DH ratchet by trying to send
let old_bob_pub = bob.dh_self.public().clone();
let (bob_ct, bob_header) = {
let mut b = bob.clone();
b.encrypt_message(b"reply")
};
assert_ne!(bob_header.dh_pub, old_bob_pub);
// Alice receives Bob's message with new DH pub → ratchets
let old_alice_pub = alice.dh_self.public().clone();
let old_root = alice.root_key;
// Even if decrypt fails (wrong key), ratchet should happen
alice.decrypt_message(&bob_ct, bob_header).unwrap();
// Now Alice sends → should do DH ratchet
let (_, final_header) = alice.encrypt_message(b"after both ratcheted");
assert_ne!(final_header.dh_pub, old_alice_pub);
assert_ne!(alice.root_key, old_root);
}
#[test]
fn test_max_skip_limit_enforced() {
let (mut alice, mut bob, _) = setup_alice_bob();
// Alice sends message 0
let (_, _) = alice.encrypt_message(b"First");
// Now Alice skips many messages (simulate lost packets)
for _ in 0..15 {
alice.encrypt_message(b"lost");
}
// Alice sends final message
let (ct_final, header_final) = alice.encrypt_message(b"Final");
// Bob tries to decrypt final — should fail because too many skipped
let result = bob.decrypt_message(&ct_final, header_final);
assert!(result.is_err());
assert_eq!(result.unwrap_err(), RatchetError::TooManySkippedMessages);
}
#[test]
fn test_aad_authenticates_header() {
let (mut alice, mut bob, _) = setup_alice_bob();
let (ct, mut header) = alice.encrypt_message(b"Sensitive data");
// Tamper with header (change DH pub byte)
let mut tampered_pub_bytes = header.dh_pub.to_bytes();
tampered_pub_bytes[0] ^= 0xff;
header.dh_pub = PublicKey::from(tampered_pub_bytes);
let result = bob.decrypt_message(&ct, header);
assert!(result.is_err());
assert_eq!(result.unwrap_err(), RatchetError::DecryptionFailed);
}
#[test]
fn test_full_asymmetric_ratchet_conversation() {
let (mut alice, mut bob, _) = setup_alice_bob();
// Alice sends first few
for i in 0..3 {
let msg = format!("A -> B {}", i).into_bytes();
let (ct, h) = alice.encrypt_message(&msg);
let pt = bob.decrypt_message(&ct, h).unwrap();
assert_eq!(pt, msg);
}
// Bob now responds — this should trigger his first DH ratchet
let (ct_b, h_b) = bob.encrypt_message(b"B -> A response");
// Alice receives Bob's message
let pt_a = alice.decrypt_message(&ct_b, h_b).unwrap();
assert_eq!(pt_a, b"B -> A response");
// Both should now have performed a DH ratchet
assert!(alice.receiving_chain.is_some());
assert!(bob.sending_chain.is_some());
}
#[test]
fn test_skipped_keys_are_one_time_use() {
let (mut alice, mut bob, _) = setup_alice_bob();
let msgs = vec![b"msg0", b"msg1", b"msg2", b"msg3"];
let mut encrypted = vec![];
for msg in msgs {
let (ct, h) = alice.encrypt_message(msg);
encrypted.push((ct, h));
}
// Receive msg0 and msg2 → msg1 goes to skipped
bob.decrypt_message(&encrypted[0].0, encrypted[0].1.clone())
.unwrap();
bob.decrypt_message(&encrypted[2].0, encrypted[2].1.clone())
.unwrap();
// Now receive msg1 — should use skipped key and remove it
let pt1 = bob
.decrypt_message(&encrypted[1].0, encrypted[1].1.clone())
.unwrap();
assert_eq!(pt1, b"msg1");
// Try to decrypt msg1 again → should fail (key was removed)
let result = bob.decrypt_message(&encrypted[1].0, encrypted[1].1.clone());
assert!(result.is_err());
assert_eq!(result.unwrap_err(), RatchetError::MessageReplay);
}
#[test]
fn test_skipped_keys_export() {
let (mut alice, mut bob, _) = setup_alice_bob();
// Initially no skipped keys
assert!(bob.skipped_keys().is_empty());
// Alice sends 4 messages
let mut encrypted = vec![];
for i in 0..4 {
let msg = format!("Message {}", i).into_bytes();
let (ct, h) = alice.encrypt_message(&msg);
encrypted.push((ct, h, msg));
}
// Bob receives message 0 first
bob.decrypt_message(&encrypted[0].0, encrypted[0].1.clone())
.unwrap();
assert!(bob.skipped_keys().is_empty());
// Bob receives message 3, skipping 1 and 2
bob.decrypt_message(&encrypted[3].0, encrypted[3].1.clone())
.unwrap();
// Now we should have 2 skipped keys (for messages 1 and 2)
let skipped = bob.skipped_keys();
assert_eq!(skipped.len(), 2);
// Verify the skipped keys have the expected message numbers
let msg_nums: Vec<u32> = skipped.iter().map(|sk| sk.msg_num).collect();
assert!(msg_nums.contains(&1));
assert!(msg_nums.contains(&2));
// Verify each skipped key has valid data
for sk in &skipped {
assert_eq!(sk.public_key.len(), 32);
assert_eq!(sk.message_key.len(), 32);
}
// Now decrypt message 1 using the skipped key
bob.decrypt_message(&encrypted[1].0, encrypted[1].1.clone())
.unwrap();
// Should only have 1 skipped key left (for message 2)
let skipped_after = bob.skipped_keys();
assert_eq!(skipped_after.len(), 1);
assert_eq!(skipped_after[0].msg_num, 2);
}
2026-01-15 08:47:02 +08:00
}