feat: noise public keys serialization

This commit is contained in:
Richard Ramos 2022-11-16 11:22:56 -04:00
parent 031c9e073b
commit af283927a4
No known key found for this signature in database
GPG Key ID: BD36D48BC9FFC88C
4 changed files with 212 additions and 22 deletions

View File

@ -393,7 +393,7 @@ export class HandshakeState {
}
// We add the ephemeral public key to the Waku payload
outHandshakeMessage.push(NoisePublicKey.to(this.e.publicKey));
outHandshakeMessage.push(NoisePublicKey.fromPublicKey(this.e.publicKey));
}
break;

View File

@ -5,11 +5,11 @@ import { equals as uint8ArrayEquals } from "uint8arrays/equals";
import { chaCha20Poly1305Encrypt, dh, generateX25519KeyPair } from "./crypto";
import { Handshake, HandshakeStepResult } from "./handshake";
import { CipherState, SymmetricState } from "./noise";
import { CipherState, createEmptyKey, SymmetricState } from "./noise";
import { MAX_NONCE, Nonce } from "./nonce";
import { NoiseHandshakePatterns } from "./patterns";
import { MessageNametagBuffer } from "./payload";
import { NoisePublicKey } from "./publickey";
import { ChaChaPolyCipherState, NoisePublicKey } from "./publickey";
function randomCipherState(rng: HMACDRBG, nonce: number = 0): CipherState {
const randomCipherState = new CipherState();
@ -22,9 +22,103 @@ function c(input: Uint8Array): Uint8Array {
return new Uint8Array(input);
}
function randomChaChaPolyCipherState(rng: HMACDRBG): ChaChaPolyCipherState {
const k = rng.randomBytes(32);
const n = rng.randomBytes(16);
const ad = rng.randomBytes(32);
return new ChaChaPolyCipherState(k, n, ad);
}
function randomNoisePublicKey(): NoisePublicKey {
const keypair = generateX25519KeyPair();
return new NoisePublicKey(0, keypair.publicKey);
}
describe("js-noise", () => {
const rng = new HMACDRBG();
it("ChaChaPoly Encryption/Decryption: random byte sequences", function () {
const cipherState = randomChaChaPolyCipherState(rng);
// We encrypt/decrypt random byte sequences
const plaintext = rng.randomBytes(128);
const ciphertext = cipherState.encrypt(plaintext);
const decrypted = cipherState.decrypt(ciphertext);
expect(uint8ArrayEquals(decrypted, plaintext)).to.be.true;
});
it("ChaChaPoly Encryption/Decryption: random byte sequences", function () {
const cipherState = randomChaChaPolyCipherState(rng);
// We encrypt/decrypt random byte sequences
const plaintext = rng.randomBytes(128);
const ciphertext = cipherState.encrypt(plaintext);
const decrypted = cipherState.decrypt(ciphertext);
expect(uint8ArrayEquals(decrypted, plaintext)).to.be.true;
});
it("Noise public keys: encrypt and decrypt a public key", function () {
const noisePublicKey = randomNoisePublicKey();
const cipherState = randomChaChaPolyCipherState(rng);
const encryptedPK = NoisePublicKey.encrypt(noisePublicKey, cipherState);
const decryptedPK = NoisePublicKey.decrypt(encryptedPK, cipherState);
expect(noisePublicKey.equals(decryptedPK)).to.be.true;
});
it("Noise public keys: decrypt an unencrypted public key", function () {
const noisePublicKey = randomNoisePublicKey();
const cipherState = randomChaChaPolyCipherState(rng);
const decryptedPK = NoisePublicKey.decrypt(noisePublicKey, cipherState);
expect(noisePublicKey.equals(decryptedPK)).to.be.true;
});
it("Noise public keys: encrypt an encrypted public key", function () {
const noisePublicKey = randomNoisePublicKey();
const cipherState = randomChaChaPolyCipherState(rng);
const encryptedPK = NoisePublicKey.encrypt(noisePublicKey, cipherState);
const encryptedPK2 = NoisePublicKey.encrypt(encryptedPK, cipherState);
expect(encryptedPK.equals(encryptedPK2)).to.be.true;
});
it("Noise public keys: encrypt, decrypt and decrypt a public key", function () {
const noisePublicKey = randomNoisePublicKey();
const cipherState = randomChaChaPolyCipherState(rng);
const encryptedPK = NoisePublicKey.encrypt(noisePublicKey, cipherState);
const decryptedPK = NoisePublicKey.decrypt(encryptedPK, cipherState);
const decryptedPK2 = NoisePublicKey.decrypt(decryptedPK, cipherState);
expect(decryptedPK.equals(decryptedPK2)).to.be.true;
});
it("Noise public keys: serialize and deserialize an unencrypted public key", function () {
const noisePublicKey = randomNoisePublicKey();
const serializedNoisePublicKey = noisePublicKey.serialize();
const deserializedNoisePublicKey = NoisePublicKey.deserialize(serializedNoisePublicKey);
expect(noisePublicKey.equals(deserializedNoisePublicKey)).to.be.true;
});
it("Noise public keys: encrypt, serialize, deserialize and decrypt a public key", function () {
const noisePublicKey = randomNoisePublicKey();
const cipherState = randomChaChaPolyCipherState(rng);
const encryptedPK = NoisePublicKey.encrypt(noisePublicKey, cipherState);
const serializedNoisePublicKey = encryptedPK.serialize();
const deserializedNoisePublicKey = NoisePublicKey.deserialize(serializedNoisePublicKey);
const decryptedPK = NoisePublicKey.decrypt(deserializedNoisePublicKey, cipherState);
expect(noisePublicKey.equals(decryptedPK)).to.be.true;
});
it("Noise State Machine: Diffie-Hellman operation", function () {
const aliceKey = generateX25519KeyPair();
const bobKey = generateX25519KeyPair();
@ -65,7 +159,7 @@ describe("js-noise", () => {
expect(uint8ArrayEquals(plaintext, decrypted)).to.be.true;
// If a Cipher State has no key set, encryptWithAd should return the plaintext without increasing the nonce
cipherState.setCipherStateKey(CipherState.createEmptyKey());
cipherState.setCipherStateKey(createEmptyKey());
nonce = cipherState.getNonce();
nonceValue = nonce.getUint64();
plaintext = randomBytes(128, rng);
@ -75,7 +169,7 @@ describe("js-noise", () => {
expect(cipherState.getNonce().getUint64()).to.be.equals(nonceValue);
// If a Cipher State has no key set, decryptWithAd should return the ciphertext without increasing the nonce
cipherState.setCipherStateKey(CipherState.createEmptyKey());
cipherState.setCipherStateKey(createEmptyKey());
nonce = cipherState.getNonce();
nonceValue = nonce.getUint64();
ciphertext = randomBytes(128, rng);
@ -230,13 +324,13 @@ describe("js-noise", () => {
// ==========
// If at least one mixKey is executed (as above), ck is non-empty
expect(uint8ArrayEquals(symmetricState.getChainingKey(), CipherState.createEmptyKey())).to.be.false;
expect(uint8ArrayEquals(symmetricState.getChainingKey(), createEmptyKey())).to.be.false;
// When a Symmetric State's ck is non-empty, we can execute split, which creates two distinct Cipher States cs1 and cs2
// with non-empty encryption keys and nonce set to 0
const { cs1, cs2 } = symmetricState.split();
expect(uint8ArrayEquals(cs1.getKey(), CipherState.createEmptyKey())).to.be.false;
expect(uint8ArrayEquals(cs2.getKey(), CipherState.createEmptyKey())).to.be.false;
expect(uint8ArrayEquals(cs1.getKey(), createEmptyKey())).to.be.false;
expect(uint8ArrayEquals(cs2.getKey(), createEmptyKey())).to.be.false;
expect(cs1.getNonce().getUint64()).to.be.equals(0);
expect(cs2.getNonce().getUint64()).to.be.equals(0);
expect(uint8ArrayEquals(cs1.getKey(), cs2.getKey())).to.be.false;
@ -453,7 +547,10 @@ describe("js-noise", () => {
// <- s
// ...
// So we define accordingly the sequence of the pre-message public keys
const preMessagePKs = [NoisePublicKey.to(aliceStaticKey.publicKey), NoisePublicKey.to(bobStaticKey.publicKey)];
const preMessagePKs = [
NoisePublicKey.fromPublicKey(aliceStaticKey.publicKey),
NoisePublicKey.fromPublicKey(bobStaticKey.publicKey),
];
const aliceHS = new Handshake({ hsPattern, staticKey: aliceStaticKey, preMessagePKs, initiator: true });
const bobHS = new Handshake({ hsPattern, staticKey: bobStaticKey, preMessagePKs });
@ -546,7 +643,7 @@ describe("js-noise", () => {
// <- s
// ...
// So we define accordingly the sequence of the pre-message public keys
const preMessagePKs = [NoisePublicKey.to(bobStaticKey.publicKey)];
const preMessagePKs = [NoisePublicKey.fromPublicKey(bobStaticKey.publicKey)];
const aliceHS = new Handshake({ hsPattern, staticKey: aliceStaticKey, preMessagePKs, initiator: true });
const bobHS = new Handshake({ hsPattern, staticKey: bobStaticKey, preMessagePKs });

View File

@ -35,6 +35,15 @@ import { HandshakePattern } from "./patterns.js";
#################################
*/
export function createEmptyKey(): bytes32 {
return new Uint8Array(32);
}
export function isEmptyKey(k: bytes32): boolean {
const emptyKey = createEmptyKey();
return uint8ArrayEquals(emptyKey, k);
}
// The Cipher State as in https://noiseprotocol.org/noise.html#the-cipherstate-object
// Contains an encryption key k and a nonce n (used in Noise as a counter)
export class CipherState {
@ -43,7 +52,7 @@ export class CipherState {
// The nonce is treated as a uint64, even though the underlying `number` only has 52 safely-available bits.
n: Nonce;
constructor(k: bytes32 = CipherState.createEmptyKey(), n = new Nonce()) {
constructor(k: bytes32 = createEmptyKey(), n = new Nonce()) {
this.k = k;
this.n = n;
}
@ -58,16 +67,7 @@ export class CipherState {
// Checks if a Cipher State has an encryption key set
protected hasKey(): boolean {
return !this.isEmptyKey(this.k);
}
static createEmptyKey(): bytes32 {
return new Uint8Array(32);
}
protected isEmptyKey(k: bytes32): boolean {
const emptyKey = CipherState.createEmptyKey();
return uint8ArrayEquals(emptyKey, k);
return !isEmptyKey(this.k);
}
// Encrypts a plaintext using key material in a Noise Cipher State

View File

@ -1,6 +1,48 @@
import { concat as uint8ArrayConcat } from "uint8arrays/concat";
import { equals as uint8ArrayEquals } from "uint8arrays/equals";
import { bytes32 } from "./@types/basic";
import { chaCha20Poly1305Decrypt, chaCha20Poly1305Encrypt } from "./crypto";
import { isEmptyKey } from "./noise";
// A ChaChaPoly Cipher State containing key (k), nonce (nonce) and associated data (ad)
export class ChaChaPolyCipherState {
k: bytes32;
nonce: bytes32;
ad: Uint8Array;
constructor(k: bytes32 = new Uint8Array(), nonce: bytes32 = new Uint8Array(), ad: Uint8Array = new Uint8Array()) {
this.k = k;
this.nonce = nonce;
this.ad = ad;
}
// It takes a Cipher State (with key, nonce, and associated data) and encrypts a plaintext
// The cipher state in not changed
encrypt(plaintext: Uint8Array): Uint8Array {
// If plaintext is empty, we raise an error
if (plaintext.length == 0) {
throw new Error("tried to encrypt empty plaintext");
}
return chaCha20Poly1305Encrypt(plaintext, this.nonce, this.ad, this.k);
}
// ChaChaPoly decryption
// It takes a Cipher State (with key, nonce, and associated data) and decrypts a ciphertext
// The cipher state is not changed
decrypt(ciphertext: Uint8Array): Uint8Array {
// If ciphertext is empty, we raise an error
if (ciphertext.length == 0) {
throw new Error("tried to decrypt empty ciphertext");
}
const plaintext = chaCha20Poly1305Decrypt(ciphertext, this.nonce, this.ad, this.k);
if (!plaintext) {
throw new Error("decryptWithAd failed");
}
return plaintext;
}
}
// A Noise public key is a public key exchanged during Noise handshakes (no private part)
// This follows https://rfc.vac.dev/spec/35/#public-keys-serialization
@ -26,7 +68,58 @@ export class NoisePublicKey {
}
// Converts a public Elliptic Curve key to an unencrypted Noise public key
static to(publicKey: bytes32): NoisePublicKey {
static fromPublicKey(publicKey: bytes32): NoisePublicKey {
return new NoisePublicKey(0, publicKey);
}
// Converts a Noise public key to a stream of bytes as in
// https://rfc.vac.dev/spec/35/#public-keys-serialization
serialize(): Uint8Array {
// Public key is serialized as (flag || pk)
// Note that pk contains the X coordinate of the public key if unencrypted
// or the encryption concatenated with the authorization tag if encrypted
const serializedNoisePublicKey = new Uint8Array(uint8ArrayConcat([new Uint8Array([this.flag ? 1 : 0]), this.pk]));
return serializedNoisePublicKey;
}
// Converts a serialized Noise public key to a NoisePublicKey object as in
// https://rfc.vac.dev/spec/35/#public-keys-serialization
static deserialize(serializedPK: Uint8Array): NoisePublicKey {
if (serializedPK.length == 0) throw new Error("invalid serialized key");
// We retrieve the encryption flag
const flag = serializedPK[0];
if (!(flag == 0 || flag == 1)) throw new Error("invalid flag in serialized public key");
const pk = serializedPK.subarray(1);
return new NoisePublicKey(flag, pk);
}
static encrypt(ns: NoisePublicKey, cs: ChaChaPolyCipherState): NoisePublicKey {
// We proceed with encryption only if
// - a key is set in the cipher state
// - the public key is unencrypted
if (!isEmptyKey(cs.k) && ns.flag == 0) {
const encPk = cs.encrypt(ns.pk);
return new NoisePublicKey(1, encPk);
}
// Otherwise we return the public key as it is
return ns.clone();
}
// Decrypts a Noise public key using a ChaChaPoly Cipher State
static decrypt(ns: NoisePublicKey, cs: ChaChaPolyCipherState): NoisePublicKey {
// We proceed with decryption only if
// - a key is set in the cipher state
// - the public key is encrypted
if (!isEmptyKey(cs.k) && ns.flag == 1) {
const decrypted = cs.decrypt(ns.pk);
return new NoisePublicKey(0, decrypted);
}
// Otherwise we return the public key as it is
return ns.clone();
}
}