2022-12-07 20:24:38 +05:30

47493 lines
1.5 MiB

var commonjsGlobal = typeof globalThis !== 'undefined' ? globalThis : typeof window !== 'undefined' ? window : typeof global !== 'undefined' ? global : typeof self !== 'undefined' ? self : {};
function getDefaultExportFromCjs (x) {
return x && x.__esModule && Object.prototype.hasOwnProperty.call(x, 'default') ? x['default'] : x;
}
function getAugmentedNamespace(n) {
var f = n.default;
if (typeof f == "function") {
var a = function () {
return f.apply(this, arguments);
};
a.prototype = f.prototype;
} else a = {};
Object.defineProperty(a, '__esModule', {value: true});
Object.keys(n).forEach(function (k) {
var d = Object.getOwnPropertyDescriptor(n, k);
Object.defineProperty(a, k, d.get ? d : {
enumerable: true,
get: function () {
return n[k];
}
});
});
return a;
}
var browser = {exports: {}};
/**
* Helpers.
*/
var ms;
var hasRequiredMs;
function requireMs () {
if (hasRequiredMs) return ms;
hasRequiredMs = 1;
var s = 1000;
var m = s * 60;
var h = m * 60;
var d = h * 24;
var w = d * 7;
var y = d * 365.25;
/**
* Parse or format the given `val`.
*
* Options:
*
* - `long` verbose formatting [false]
*
* @param {String|Number} val
* @param {Object} [options]
* @throws {Error} throw an error if val is not a non-empty string or a number
* @return {String|Number}
* @api public
*/
ms = function(val, options) {
options = options || {};
var type = typeof val;
if (type === 'string' && val.length > 0) {
return parse(val);
} else if (type === 'number' && isFinite(val)) {
return options.long ? fmtLong(val) : fmtShort(val);
}
throw new Error(
'val is not a non-empty string or a valid number. val=' +
JSON.stringify(val)
);
};
/**
* Parse the given `str` and return milliseconds.
*
* @param {String} str
* @return {Number}
* @api private
*/
function parse(str) {
str = String(str);
if (str.length > 100) {
return;
}
var match = /^(-?(?:\d+)?\.?\d+) *(milliseconds?|msecs?|ms|seconds?|secs?|s|minutes?|mins?|m|hours?|hrs?|h|days?|d|weeks?|w|years?|yrs?|y)?$/i.exec(
str
);
if (!match) {
return;
}
var n = parseFloat(match[1]);
var type = (match[2] || 'ms').toLowerCase();
switch (type) {
case 'years':
case 'year':
case 'yrs':
case 'yr':
case 'y':
return n * y;
case 'weeks':
case 'week':
case 'w':
return n * w;
case 'days':
case 'day':
case 'd':
return n * d;
case 'hours':
case 'hour':
case 'hrs':
case 'hr':
case 'h':
return n * h;
case 'minutes':
case 'minute':
case 'mins':
case 'min':
case 'm':
return n * m;
case 'seconds':
case 'second':
case 'secs':
case 'sec':
case 's':
return n * s;
case 'milliseconds':
case 'millisecond':
case 'msecs':
case 'msec':
case 'ms':
return n;
default:
return undefined;
}
}
/**
* Short format for `ms`.
*
* @param {Number} ms
* @return {String}
* @api private
*/
function fmtShort(ms) {
var msAbs = Math.abs(ms);
if (msAbs >= d) {
return Math.round(ms / d) + 'd';
}
if (msAbs >= h) {
return Math.round(ms / h) + 'h';
}
if (msAbs >= m) {
return Math.round(ms / m) + 'm';
}
if (msAbs >= s) {
return Math.round(ms / s) + 's';
}
return ms + 'ms';
}
/**
* Long format for `ms`.
*
* @param {Number} ms
* @return {String}
* @api private
*/
function fmtLong(ms) {
var msAbs = Math.abs(ms);
if (msAbs >= d) {
return plural(ms, msAbs, d, 'day');
}
if (msAbs >= h) {
return plural(ms, msAbs, h, 'hour');
}
if (msAbs >= m) {
return plural(ms, msAbs, m, 'minute');
}
if (msAbs >= s) {
return plural(ms, msAbs, s, 'second');
}
return ms + ' ms';
}
/**
* Pluralization helper.
*/
function plural(ms, msAbs, n, name) {
var isPlural = msAbs >= n * 1.5;
return Math.round(ms / n) + ' ' + name + (isPlural ? 's' : '');
}
return ms;
}
/**
* This is the common logic for both the Node.js and web browser
* implementations of `debug()`.
*/
function setup(env) {
createDebug.debug = createDebug;
createDebug.default = createDebug;
createDebug.coerce = coerce;
createDebug.disable = disable;
createDebug.enable = enable;
createDebug.enabled = enabled;
createDebug.humanize = requireMs();
createDebug.destroy = destroy;
Object.keys(env).forEach(key => {
createDebug[key] = env[key];
});
/**
* The currently active debug mode names, and names to skip.
*/
createDebug.names = [];
createDebug.skips = [];
/**
* Map of special "%n" handling functions, for the debug "format" argument.
*
* Valid key names are a single, lower or upper-case letter, i.e. "n" and "N".
*/
createDebug.formatters = {};
/**
* Selects a color for a debug namespace
* @param {String} namespace The namespace string for the debug instance to be colored
* @return {Number|String} An ANSI color code for the given namespace
* @api private
*/
function selectColor(namespace) {
let hash = 0;
for (let i = 0; i < namespace.length; i++) {
hash = ((hash << 5) - hash) + namespace.charCodeAt(i);
hash |= 0; // Convert to 32bit integer
}
return createDebug.colors[Math.abs(hash) % createDebug.colors.length];
}
createDebug.selectColor = selectColor;
/**
* Create a debugger with the given `namespace`.
*
* @param {String} namespace
* @return {Function}
* @api public
*/
function createDebug(namespace) {
let prevTime;
let enableOverride = null;
let namespacesCache;
let enabledCache;
function debug(...args) {
// Disabled?
if (!debug.enabled) {
return;
}
const self = debug;
// Set `diff` timestamp
const curr = Number(new Date());
const ms = curr - (prevTime || curr);
self.diff = ms;
self.prev = prevTime;
self.curr = curr;
prevTime = curr;
args[0] = createDebug.coerce(args[0]);
if (typeof args[0] !== 'string') {
// Anything else let's inspect with %O
args.unshift('%O');
}
// Apply any `formatters` transformations
let index = 0;
args[0] = args[0].replace(/%([a-zA-Z%])/g, (match, format) => {
// If we encounter an escaped % then don't increase the array index
if (match === '%%') {
return '%';
}
index++;
const formatter = createDebug.formatters[format];
if (typeof formatter === 'function') {
const val = args[index];
match = formatter.call(self, val);
// Now we need to remove `args[index]` since it's inlined in the `format`
args.splice(index, 1);
index--;
}
return match;
});
// Apply env-specific formatting (colors, etc.)
createDebug.formatArgs.call(self, args);
const logFn = self.log || createDebug.log;
logFn.apply(self, args);
}
debug.namespace = namespace;
debug.useColors = createDebug.useColors();
debug.color = createDebug.selectColor(namespace);
debug.extend = extend;
debug.destroy = createDebug.destroy; // XXX Temporary. Will be removed in the next major release.
Object.defineProperty(debug, 'enabled', {
enumerable: true,
configurable: false,
get: () => {
if (enableOverride !== null) {
return enableOverride;
}
if (namespacesCache !== createDebug.namespaces) {
namespacesCache = createDebug.namespaces;
enabledCache = createDebug.enabled(namespace);
}
return enabledCache;
},
set: v => {
enableOverride = v;
}
});
// Env-specific initialization logic for debug instances
if (typeof createDebug.init === 'function') {
createDebug.init(debug);
}
return debug;
}
function extend(namespace, delimiter) {
const newDebug = createDebug(this.namespace + (typeof delimiter === 'undefined' ? ':' : delimiter) + namespace);
newDebug.log = this.log;
return newDebug;
}
/**
* Enables a debug mode by namespaces. This can include modes
* separated by a colon and wildcards.
*
* @param {String} namespaces
* @api public
*/
function enable(namespaces) {
createDebug.save(namespaces);
createDebug.namespaces = namespaces;
createDebug.names = [];
createDebug.skips = [];
let i;
const split = (typeof namespaces === 'string' ? namespaces : '').split(/[\s,]+/);
const len = split.length;
for (i = 0; i < len; i++) {
if (!split[i]) {
// ignore empty strings
continue;
}
namespaces = split[i].replace(/\*/g, '.*?');
if (namespaces[0] === '-') {
createDebug.skips.push(new RegExp('^' + namespaces.slice(1) + '$'));
} else {
createDebug.names.push(new RegExp('^' + namespaces + '$'));
}
}
}
/**
* Disable debug output.
*
* @return {String} namespaces
* @api public
*/
function disable() {
const namespaces = [
...createDebug.names.map(toNamespace),
...createDebug.skips.map(toNamespace).map(namespace => '-' + namespace)
].join(',');
createDebug.enable('');
return namespaces;
}
/**
* Returns true if the given mode name is enabled, false otherwise.
*
* @param {String} name
* @return {Boolean}
* @api public
*/
function enabled(name) {
if (name[name.length - 1] === '*') {
return true;
}
let i;
let len;
for (i = 0, len = createDebug.skips.length; i < len; i++) {
if (createDebug.skips[i].test(name)) {
return false;
}
}
for (i = 0, len = createDebug.names.length; i < len; i++) {
if (createDebug.names[i].test(name)) {
return true;
}
}
return false;
}
/**
* Convert regexp to namespace
*
* @param {RegExp} regxep
* @return {String} namespace
* @api private
*/
function toNamespace(regexp) {
return regexp.toString()
.substring(2, regexp.toString().length - 2)
.replace(/\.\*\?$/, '*');
}
/**
* Coerce `val`.
*
* @param {Mixed} val
* @return {Mixed}
* @api private
*/
function coerce(val) {
if (val instanceof Error) {
return val.stack || val.message;
}
return val;
}
/**
* XXX DO NOT USE. This is a temporary stub function.
* XXX It WILL be removed in the next major release.
*/
function destroy() {
console.warn('Instance method `debug.destroy()` is deprecated and no longer does anything. It will be removed in the next major version of `debug`.');
}
createDebug.enable(createDebug.load());
return createDebug;
}
var common$1 = setup;
/* eslint-env browser */
(function (module, exports) {
/**
* This is the web browser implementation of `debug()`.
*/
exports.formatArgs = formatArgs;
exports.save = save;
exports.load = load;
exports.useColors = useColors;
exports.storage = localstorage();
exports.destroy = (() => {
let warned = false;
return () => {
if (!warned) {
warned = true;
console.warn('Instance method `debug.destroy()` is deprecated and no longer does anything. It will be removed in the next major version of `debug`.');
}
};
})();
/**
* Colors.
*/
exports.colors = [
'#0000CC',
'#0000FF',
'#0033CC',
'#0033FF',
'#0066CC',
'#0066FF',
'#0099CC',
'#0099FF',
'#00CC00',
'#00CC33',
'#00CC66',
'#00CC99',
'#00CCCC',
'#00CCFF',
'#3300CC',
'#3300FF',
'#3333CC',
'#3333FF',
'#3366CC',
'#3366FF',
'#3399CC',
'#3399FF',
'#33CC00',
'#33CC33',
'#33CC66',
'#33CC99',
'#33CCCC',
'#33CCFF',
'#6600CC',
'#6600FF',
'#6633CC',
'#6633FF',
'#66CC00',
'#66CC33',
'#9900CC',
'#9900FF',
'#9933CC',
'#9933FF',
'#99CC00',
'#99CC33',
'#CC0000',
'#CC0033',
'#CC0066',
'#CC0099',
'#CC00CC',
'#CC00FF',
'#CC3300',
'#CC3333',
'#CC3366',
'#CC3399',
'#CC33CC',
'#CC33FF',
'#CC6600',
'#CC6633',
'#CC9900',
'#CC9933',
'#CCCC00',
'#CCCC33',
'#FF0000',
'#FF0033',
'#FF0066',
'#FF0099',
'#FF00CC',
'#FF00FF',
'#FF3300',
'#FF3333',
'#FF3366',
'#FF3399',
'#FF33CC',
'#FF33FF',
'#FF6600',
'#FF6633',
'#FF9900',
'#FF9933',
'#FFCC00',
'#FFCC33'
];
/**
* Currently only WebKit-based Web Inspectors, Firefox >= v31,
* and the Firebug extension (any Firefox version) are known
* to support "%c" CSS customizations.
*
* TODO: add a `localStorage` variable to explicitly enable/disable colors
*/
// eslint-disable-next-line complexity
function useColors() {
// NB: In an Electron preload script, document will be defined but not fully
// initialized. Since we know we're in Chrome, we'll just detect this case
// explicitly
if (typeof window !== 'undefined' && window.process && (window.process.type === 'renderer' || window.process.__nwjs)) {
return true;
}
// Internet Explorer and Edge do not support colors.
if (typeof navigator !== 'undefined' && navigator.userAgent && navigator.userAgent.toLowerCase().match(/(edge|trident)\/(\d+)/)) {
return false;
}
// Is webkit? http://stackoverflow.com/a/16459606/376773
// document is undefined in react-native: https://github.com/facebook/react-native/pull/1632
return (typeof document !== 'undefined' && document.documentElement && document.documentElement.style && document.documentElement.style.WebkitAppearance) ||
// Is firebug? http://stackoverflow.com/a/398120/376773
(typeof window !== 'undefined' && window.console && (window.console.firebug || (window.console.exception && window.console.table))) ||
// Is firefox >= v31?
// https://developer.mozilla.org/en-US/docs/Tools/Web_Console#Styling_messages
(typeof navigator !== 'undefined' && navigator.userAgent && navigator.userAgent.toLowerCase().match(/firefox\/(\d+)/) && parseInt(RegExp.$1, 10) >= 31) ||
// Double check webkit in userAgent just in case we are in a worker
(typeof navigator !== 'undefined' && navigator.userAgent && navigator.userAgent.toLowerCase().match(/applewebkit\/(\d+)/));
}
/**
* Colorize log arguments if enabled.
*
* @api public
*/
function formatArgs(args) {
args[0] = (this.useColors ? '%c' : '') +
this.namespace +
(this.useColors ? ' %c' : ' ') +
args[0] +
(this.useColors ? '%c ' : ' ') +
'+' + module.exports.humanize(this.diff);
if (!this.useColors) {
return;
}
const c = 'color: ' + this.color;
args.splice(1, 0, c, 'color: inherit');
// The final "%c" is somewhat tricky, because there could be other
// arguments passed either before or after the %c, so we need to
// figure out the correct index to insert the CSS into
let index = 0;
let lastC = 0;
args[0].replace(/%[a-zA-Z%]/g, match => {
if (match === '%%') {
return;
}
index++;
if (match === '%c') {
// We only are interested in the *last* %c
// (the user may have provided their own)
lastC = index;
}
});
args.splice(lastC, 0, c);
}
/**
* Invokes `console.debug()` when available.
* No-op when `console.debug` is not a "function".
* If `console.debug` is not available, falls back
* to `console.log`.
*
* @api public
*/
exports.log = console.debug || console.log || (() => {});
/**
* Save `namespaces`.
*
* @param {String} namespaces
* @api private
*/
function save(namespaces) {
try {
if (namespaces) {
exports.storage.setItem('debug', namespaces);
} else {
exports.storage.removeItem('debug');
}
} catch (error) {
// Swallow
// XXX (@Qix-) should we be logging these?
}
}
/**
* Load `namespaces`.
*
* @return {String} returns the previously persisted debug modes
* @api private
*/
function load() {
let r;
try {
r = exports.storage.getItem('debug');
} catch (error) {
// Swallow
// XXX (@Qix-) should we be logging these?
}
// If debug isn't set in LS, and we're in Electron, try to load $DEBUG
if (!r && typeof process !== 'undefined' && 'env' in process) {
r = process.env.DEBUG;
}
return r;
}
/**
* Localstorage attempts to return the localstorage.
*
* This is necessary because safari throws
* when a user disables cookies/localstorage
* and you attempt to access it.
*
* @return {LocalStorage}
* @api private
*/
function localstorage() {
try {
// TVMLKit (Apple TV JS Runtime) does not have a window object, just localStorage in the global context
// The Browser also has localStorage in the global context.
return localStorage;
} catch (error) {
// Swallow
// XXX (@Qix-) should we be logging these?
}
}
module.exports = common$1(exports);
const {formatters} = module.exports;
/**
* Map %j to `JSON.stringify()`, since no Web Inspectors do that by default.
*/
formatters.j = function (v) {
try {
return JSON.stringify(v);
} catch (error) {
return '[UnexpectedJSONParseError]: ' + error.message;
}
};
} (browser, browser.exports));
var debug = browser.exports;
/**
* DefaultPubSubTopic is the default gossipsub topic to use for Waku.
*/
const DefaultPubSubTopic = "/waku/2/default-waku/proto";
var StoreCodecs$1;
(function (StoreCodecs) {
StoreCodecs["V2Beta3"] = "/vac/waku/store/2.0.0-beta3";
StoreCodecs["V2Beta4"] = "/vac/waku/store/2.0.0-beta4";
})(StoreCodecs$1 || (StoreCodecs$1 = {}));
var nodeCrypto = {};
var nodeCrypto$1 = /*#__PURE__*/Object.freeze({
__proto__: null,
'default': nodeCrypto
});
/*! noble-secp256k1 - MIT License (c) 2019 Paul Miller (paulmillr.com) */
const _0n$1 = BigInt(0);
const _1n$1 = BigInt(1);
const _2n$1 = BigInt(2);
const _3n = BigInt(3);
const _8n = BigInt(8);
const CURVE$1 = Object.freeze({
a: _0n$1,
b: BigInt(7),
P: BigInt('0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f'),
n: BigInt('0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141'),
h: _1n$1,
Gx: BigInt('55066263022277343669578718895168534326250603453777594175500187360389116729240'),
Gy: BigInt('32670510020758816978083085130507043184471273380659243275938904335757337482424'),
beta: BigInt('0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee'),
});
function weistrass(x) {
const { a, b } = CURVE$1;
const x2 = mod$1(x * x);
const x3 = mod$1(x2 * x);
return mod$1(x3 + a * x + b);
}
const USE_ENDOMORPHISM = CURVE$1.a === _0n$1;
class ShaError extends Error {
constructor(message) {
super(message);
}
}
class JacobianPoint {
constructor(x, y, z) {
this.x = x;
this.y = y;
this.z = z;
}
static fromAffine(p) {
if (!(p instanceof Point$1)) {
throw new TypeError('JacobianPoint#fromAffine: expected Point');
}
return new JacobianPoint(p.x, p.y, _1n$1);
}
static toAffineBatch(points) {
const toInv = invertBatch$1(points.map((p) => p.z));
return points.map((p, i) => p.toAffine(toInv[i]));
}
static normalizeZ(points) {
return JacobianPoint.toAffineBatch(points).map(JacobianPoint.fromAffine);
}
equals(other) {
if (!(other instanceof JacobianPoint))
throw new TypeError('JacobianPoint expected');
const { x: X1, y: Y1, z: Z1 } = this;
const { x: X2, y: Y2, z: Z2 } = other;
const Z1Z1 = mod$1(Z1 * Z1);
const Z2Z2 = mod$1(Z2 * Z2);
const U1 = mod$1(X1 * Z2Z2);
const U2 = mod$1(X2 * Z1Z1);
const S1 = mod$1(mod$1(Y1 * Z2) * Z2Z2);
const S2 = mod$1(mod$1(Y2 * Z1) * Z1Z1);
return U1 === U2 && S1 === S2;
}
negate() {
return new JacobianPoint(this.x, mod$1(-this.y), this.z);
}
double() {
const { x: X1, y: Y1, z: Z1 } = this;
const A = mod$1(X1 * X1);
const B = mod$1(Y1 * Y1);
const C = mod$1(B * B);
const x1b = X1 + B;
const D = mod$1(_2n$1 * (mod$1(x1b * x1b) - A - C));
const E = mod$1(_3n * A);
const F = mod$1(E * E);
const X3 = mod$1(F - _2n$1 * D);
const Y3 = mod$1(E * (D - X3) - _8n * C);
const Z3 = mod$1(_2n$1 * Y1 * Z1);
return new JacobianPoint(X3, Y3, Z3);
}
add(other) {
if (!(other instanceof JacobianPoint))
throw new TypeError('JacobianPoint expected');
const { x: X1, y: Y1, z: Z1 } = this;
const { x: X2, y: Y2, z: Z2 } = other;
if (X2 === _0n$1 || Y2 === _0n$1)
return this;
if (X1 === _0n$1 || Y1 === _0n$1)
return other;
const Z1Z1 = mod$1(Z1 * Z1);
const Z2Z2 = mod$1(Z2 * Z2);
const U1 = mod$1(X1 * Z2Z2);
const U2 = mod$1(X2 * Z1Z1);
const S1 = mod$1(mod$1(Y1 * Z2) * Z2Z2);
const S2 = mod$1(mod$1(Y2 * Z1) * Z1Z1);
const H = mod$1(U2 - U1);
const r = mod$1(S2 - S1);
if (H === _0n$1) {
if (r === _0n$1) {
return this.double();
}
else {
return JacobianPoint.ZERO;
}
}
const HH = mod$1(H * H);
const HHH = mod$1(H * HH);
const V = mod$1(U1 * HH);
const X3 = mod$1(r * r - HHH - _2n$1 * V);
const Y3 = mod$1(r * (V - X3) - S1 * HHH);
const Z3 = mod$1(Z1 * Z2 * H);
return new JacobianPoint(X3, Y3, Z3);
}
subtract(other) {
return this.add(other.negate());
}
multiplyUnsafe(scalar) {
const P0 = JacobianPoint.ZERO;
if (typeof scalar === 'bigint' && scalar === _0n$1)
return P0;
let n = normalizeScalar$1(scalar);
if (n === _1n$1)
return this;
if (!USE_ENDOMORPHISM) {
let p = P0;
let d = this;
while (n > _0n$1) {
if (n & _1n$1)
p = p.add(d);
d = d.double();
n >>= _1n$1;
}
return p;
}
let { k1neg, k1, k2neg, k2 } = splitScalarEndo(n);
let k1p = P0;
let k2p = P0;
let d = this;
while (k1 > _0n$1 || k2 > _0n$1) {
if (k1 & _1n$1)
k1p = k1p.add(d);
if (k2 & _1n$1)
k2p = k2p.add(d);
d = d.double();
k1 >>= _1n$1;
k2 >>= _1n$1;
}
if (k1neg)
k1p = k1p.negate();
if (k2neg)
k2p = k2p.negate();
k2p = new JacobianPoint(mod$1(k2p.x * CURVE$1.beta), k2p.y, k2p.z);
return k1p.add(k2p);
}
precomputeWindow(W) {
const windows = USE_ENDOMORPHISM ? 128 / W + 1 : 256 / W + 1;
const points = [];
let p = this;
let base = p;
for (let window = 0; window < windows; window++) {
base = p;
points.push(base);
for (let i = 1; i < 2 ** (W - 1); i++) {
base = base.add(p);
points.push(base);
}
p = base.double();
}
return points;
}
wNAF(n, affinePoint) {
if (!affinePoint && this.equals(JacobianPoint.BASE))
affinePoint = Point$1.BASE;
const W = (affinePoint && affinePoint._WINDOW_SIZE) || 1;
if (256 % W) {
throw new Error('Point#wNAF: Invalid precomputation window, must be power of 2');
}
let precomputes = affinePoint && pointPrecomputes$1.get(affinePoint);
if (!precomputes) {
precomputes = this.precomputeWindow(W);
if (affinePoint && W !== 1) {
precomputes = JacobianPoint.normalizeZ(precomputes);
pointPrecomputes$1.set(affinePoint, precomputes);
}
}
let p = JacobianPoint.ZERO;
let f = JacobianPoint.ZERO;
const windows = 1 + (USE_ENDOMORPHISM ? 128 / W : 256 / W);
const windowSize = 2 ** (W - 1);
const mask = BigInt(2 ** W - 1);
const maxNumber = 2 ** W;
const shiftBy = BigInt(W);
for (let window = 0; window < windows; window++) {
const offset = window * windowSize;
let wbits = Number(n & mask);
n >>= shiftBy;
if (wbits > windowSize) {
wbits -= maxNumber;
n += _1n$1;
}
if (wbits === 0) {
let pr = precomputes[offset];
if (window % 2)
pr = pr.negate();
f = f.add(pr);
}
else {
let cached = precomputes[offset + Math.abs(wbits) - 1];
if (wbits < 0)
cached = cached.negate();
p = p.add(cached);
}
}
return { p, f };
}
multiply(scalar, affinePoint) {
let n = normalizeScalar$1(scalar);
let point;
let fake;
if (USE_ENDOMORPHISM) {
const { k1neg, k1, k2neg, k2 } = splitScalarEndo(n);
let { p: k1p, f: f1p } = this.wNAF(k1, affinePoint);
let { p: k2p, f: f2p } = this.wNAF(k2, affinePoint);
if (k1neg)
k1p = k1p.negate();
if (k2neg)
k2p = k2p.negate();
k2p = new JacobianPoint(mod$1(k2p.x * CURVE$1.beta), k2p.y, k2p.z);
point = k1p.add(k2p);
fake = f1p.add(f2p);
}
else {
const { p, f } = this.wNAF(n, affinePoint);
point = p;
fake = f;
}
return JacobianPoint.normalizeZ([point, fake])[0];
}
toAffine(invZ = invert$1(this.z)) {
const { x, y, z } = this;
const iz1 = invZ;
const iz2 = mod$1(iz1 * iz1);
const iz3 = mod$1(iz2 * iz1);
const ax = mod$1(x * iz2);
const ay = mod$1(y * iz3);
const zz = mod$1(z * iz1);
if (zz !== _1n$1)
throw new Error('invZ was invalid');
return new Point$1(ax, ay);
}
}
JacobianPoint.BASE = new JacobianPoint(CURVE$1.Gx, CURVE$1.Gy, _1n$1);
JacobianPoint.ZERO = new JacobianPoint(_0n$1, _1n$1, _0n$1);
const pointPrecomputes$1 = new WeakMap();
class Point$1 {
constructor(x, y) {
this.x = x;
this.y = y;
}
_setWindowSize(windowSize) {
this._WINDOW_SIZE = windowSize;
pointPrecomputes$1.delete(this);
}
hasEvenY() {
return this.y % _2n$1 === _0n$1;
}
static fromCompressedHex(bytes) {
const isShort = bytes.length === 32;
const x = bytesToNumber(isShort ? bytes : bytes.subarray(1));
if (!isValidFieldElement(x))
throw new Error('Point is not on curve');
const y2 = weistrass(x);
let y = sqrtMod(y2);
const isYOdd = (y & _1n$1) === _1n$1;
if (isShort) {
if (isYOdd)
y = mod$1(-y);
}
else {
const isFirstByteOdd = (bytes[0] & 1) === 1;
if (isFirstByteOdd !== isYOdd)
y = mod$1(-y);
}
const point = new Point$1(x, y);
point.assertValidity();
return point;
}
static fromUncompressedHex(bytes) {
const x = bytesToNumber(bytes.subarray(1, 33));
const y = bytesToNumber(bytes.subarray(33, 65));
const point = new Point$1(x, y);
point.assertValidity();
return point;
}
static fromHex(hex) {
const bytes = ensureBytes$1(hex);
const len = bytes.length;
const header = bytes[0];
if (len === 32 || (len === 33 && (header === 0x02 || header === 0x03))) {
return this.fromCompressedHex(bytes);
}
if (len === 65 && header === 0x04)
return this.fromUncompressedHex(bytes);
throw new Error(`Point.fromHex: received invalid point. Expected 32-33 compressed bytes or 65 uncompressed bytes, not ${len}`);
}
static fromPrivateKey(privateKey) {
return Point$1.BASE.multiply(normalizePrivateKey(privateKey));
}
static fromSignature(msgHash, signature, recovery) {
msgHash = ensureBytes$1(msgHash);
const h = truncateHash(msgHash);
const { r, s } = normalizeSignature(signature);
if (recovery !== 0 && recovery !== 1) {
throw new Error('Cannot recover signature: invalid recovery bit');
}
const prefix = recovery & 1 ? '03' : '02';
const R = Point$1.fromHex(prefix + numTo32bStr(r));
const { n } = CURVE$1;
const rinv = invert$1(r, n);
const u1 = mod$1(-h * rinv, n);
const u2 = mod$1(s * rinv, n);
const Q = Point$1.BASE.multiplyAndAddUnsafe(R, u1, u2);
if (!Q)
throw new Error('Cannot recover signature: point at infinify');
Q.assertValidity();
return Q;
}
toRawBytes(isCompressed = false) {
return hexToBytes$2(this.toHex(isCompressed));
}
toHex(isCompressed = false) {
const x = numTo32bStr(this.x);
if (isCompressed) {
const prefix = this.hasEvenY() ? '02' : '03';
return `${prefix}${x}`;
}
else {
return `04${x}${numTo32bStr(this.y)}`;
}
}
toHexX() {
return this.toHex(true).slice(2);
}
toRawX() {
return this.toRawBytes(true).slice(1);
}
assertValidity() {
const msg = 'Point is not on elliptic curve';
const { x, y } = this;
if (!isValidFieldElement(x) || !isValidFieldElement(y))
throw new Error(msg);
const left = mod$1(y * y);
const right = weistrass(x);
if (mod$1(left - right) !== _0n$1)
throw new Error(msg);
}
equals(other) {
return this.x === other.x && this.y === other.y;
}
negate() {
return new Point$1(this.x, mod$1(-this.y));
}
double() {
return JacobianPoint.fromAffine(this).double().toAffine();
}
add(other) {
return JacobianPoint.fromAffine(this).add(JacobianPoint.fromAffine(other)).toAffine();
}
subtract(other) {
return this.add(other.negate());
}
multiply(scalar) {
return JacobianPoint.fromAffine(this).multiply(scalar, this).toAffine();
}
multiplyAndAddUnsafe(Q, a, b) {
const P = JacobianPoint.fromAffine(this);
const aP = a === _0n$1 || a === _1n$1 || this !== Point$1.BASE ? P.multiplyUnsafe(a) : P.multiply(a);
const bQ = JacobianPoint.fromAffine(Q).multiplyUnsafe(b);
const sum = aP.add(bQ);
return sum.equals(JacobianPoint.ZERO) ? undefined : sum.toAffine();
}
}
Point$1.BASE = new Point$1(CURVE$1.Gx, CURVE$1.Gy);
Point$1.ZERO = new Point$1(_0n$1, _0n$1);
function sliceDER(s) {
return Number.parseInt(s[0], 16) >= 8 ? '00' + s : s;
}
function parseDERInt(data) {
if (data.length < 2 || data[0] !== 0x02) {
throw new Error(`Invalid signature integer tag: ${bytesToHex$2(data)}`);
}
const len = data[1];
const res = data.subarray(2, len + 2);
if (!len || res.length !== len) {
throw new Error(`Invalid signature integer: wrong length`);
}
if (res[0] === 0x00 && res[1] <= 0x7f) {
throw new Error('Invalid signature integer: trailing length');
}
return { data: bytesToNumber(res), left: data.subarray(len + 2) };
}
function parseDERSignature(data) {
if (data.length < 2 || data[0] != 0x30) {
throw new Error(`Invalid signature tag: ${bytesToHex$2(data)}`);
}
if (data[1] !== data.length - 2) {
throw new Error('Invalid signature: incorrect length');
}
const { data: r, left: sBytes } = parseDERInt(data.subarray(2));
const { data: s, left: rBytesLeft } = parseDERInt(sBytes);
if (rBytesLeft.length) {
throw new Error(`Invalid signature: left bytes after parsing: ${bytesToHex$2(rBytesLeft)}`);
}
return { r, s };
}
class Signature$1 {
constructor(r, s) {
this.r = r;
this.s = s;
this.assertValidity();
}
static fromCompact(hex) {
const arr = hex instanceof Uint8Array;
const name = 'Signature.fromCompact';
if (typeof hex !== 'string' && !arr)
throw new TypeError(`${name}: Expected string or Uint8Array`);
const str = arr ? bytesToHex$2(hex) : hex;
if (str.length !== 128)
throw new Error(`${name}: Expected 64-byte hex`);
return new Signature$1(hexToNumber(str.slice(0, 64)), hexToNumber(str.slice(64, 128)));
}
static fromDER(hex) {
const arr = hex instanceof Uint8Array;
if (typeof hex !== 'string' && !arr)
throw new TypeError(`Signature.fromDER: Expected string or Uint8Array`);
const { r, s } = parseDERSignature(arr ? hex : hexToBytes$2(hex));
return new Signature$1(r, s);
}
static fromHex(hex) {
return this.fromDER(hex);
}
assertValidity() {
const { r, s } = this;
if (!isWithinCurveOrder(r))
throw new Error('Invalid Signature: r must be 0 < r < n');
if (!isWithinCurveOrder(s))
throw new Error('Invalid Signature: s must be 0 < s < n');
}
hasHighS() {
const HALF = CURVE$1.n >> _1n$1;
return this.s > HALF;
}
normalizeS() {
return this.hasHighS() ? new Signature$1(this.r, CURVE$1.n - this.s) : this;
}
toDERRawBytes(isCompressed = false) {
return hexToBytes$2(this.toDERHex(isCompressed));
}
toDERHex(isCompressed = false) {
const sHex = sliceDER(numberToHexUnpadded(this.s));
if (isCompressed)
return sHex;
const rHex = sliceDER(numberToHexUnpadded(this.r));
const rLen = numberToHexUnpadded(rHex.length / 2);
const sLen = numberToHexUnpadded(sHex.length / 2);
const length = numberToHexUnpadded(rHex.length / 2 + sHex.length / 2 + 4);
return `30${length}02${rLen}${rHex}02${sLen}${sHex}`;
}
toRawBytes() {
return this.toDERRawBytes();
}
toHex() {
return this.toDERHex();
}
toCompactRawBytes() {
return hexToBytes$2(this.toCompactHex());
}
toCompactHex() {
return numTo32bStr(this.r) + numTo32bStr(this.s);
}
}
function concatBytes$1(...arrays) {
if (!arrays.every((b) => b instanceof Uint8Array))
throw new Error('Uint8Array list expected');
if (arrays.length === 1)
return arrays[0];
const length = arrays.reduce((a, arr) => a + arr.length, 0);
const result = new Uint8Array(length);
for (let i = 0, pad = 0; i < arrays.length; i++) {
const arr = arrays[i];
result.set(arr, pad);
pad += arr.length;
}
return result;
}
const hexes$1 = Array.from({ length: 256 }, (v, i) => i.toString(16).padStart(2, '0'));
function bytesToHex$2(uint8a) {
if (!(uint8a instanceof Uint8Array))
throw new Error('Expected Uint8Array');
let hex = '';
for (let i = 0; i < uint8a.length; i++) {
hex += hexes$1[uint8a[i]];
}
return hex;
}
const POW_2_256$1 = BigInt('0x10000000000000000000000000000000000000000000000000000000000000000');
function numTo32bStr(num) {
if (typeof num !== 'bigint')
throw new Error('Expected bigint');
if (!(_0n$1 <= num && num < POW_2_256$1))
throw new Error('Expected number < 2^256');
return num.toString(16).padStart(64, '0');
}
function numTo32b(num) {
const b = hexToBytes$2(numTo32bStr(num));
if (b.length !== 32)
throw new Error('Error: expected 32 bytes');
return b;
}
function numberToHexUnpadded(num) {
const hex = num.toString(16);
return hex.length & 1 ? `0${hex}` : hex;
}
function hexToNumber(hex) {
if (typeof hex !== 'string') {
throw new TypeError('hexToNumber: expected string, got ' + typeof hex);
}
return BigInt(`0x${hex}`);
}
function hexToBytes$2(hex) {
if (typeof hex !== 'string') {
throw new TypeError('hexToBytes: expected string, got ' + typeof hex);
}
if (hex.length % 2)
throw new Error('hexToBytes: received invalid unpadded hex' + hex.length);
const array = new Uint8Array(hex.length / 2);
for (let i = 0; i < array.length; i++) {
const j = i * 2;
const hexByte = hex.slice(j, j + 2);
const byte = Number.parseInt(hexByte, 16);
if (Number.isNaN(byte) || byte < 0)
throw new Error('Invalid byte sequence');
array[i] = byte;
}
return array;
}
function bytesToNumber(bytes) {
return hexToNumber(bytesToHex$2(bytes));
}
function ensureBytes$1(hex) {
return hex instanceof Uint8Array ? Uint8Array.from(hex) : hexToBytes$2(hex);
}
function normalizeScalar$1(num) {
if (typeof num === 'number' && Number.isSafeInteger(num) && num > 0)
return BigInt(num);
if (typeof num === 'bigint' && isWithinCurveOrder(num))
return num;
throw new TypeError('Expected valid private scalar: 0 < scalar < curve.n');
}
function mod$1(a, b = CURVE$1.P) {
const result = a % b;
return result >= _0n$1 ? result : b + result;
}
function pow2$1(x, power) {
const { P } = CURVE$1;
let res = x;
while (power-- > _0n$1) {
res *= res;
res %= P;
}
return res;
}
function sqrtMod(x) {
const { P } = CURVE$1;
const _6n = BigInt(6);
const _11n = BigInt(11);
const _22n = BigInt(22);
const _23n = BigInt(23);
const _44n = BigInt(44);
const _88n = BigInt(88);
const b2 = (x * x * x) % P;
const b3 = (b2 * b2 * x) % P;
const b6 = (pow2$1(b3, _3n) * b3) % P;
const b9 = (pow2$1(b6, _3n) * b3) % P;
const b11 = (pow2$1(b9, _2n$1) * b2) % P;
const b22 = (pow2$1(b11, _11n) * b11) % P;
const b44 = (pow2$1(b22, _22n) * b22) % P;
const b88 = (pow2$1(b44, _44n) * b44) % P;
const b176 = (pow2$1(b88, _88n) * b88) % P;
const b220 = (pow2$1(b176, _44n) * b44) % P;
const b223 = (pow2$1(b220, _3n) * b3) % P;
const t1 = (pow2$1(b223, _23n) * b22) % P;
const t2 = (pow2$1(t1, _6n) * b2) % P;
return pow2$1(t2, _2n$1);
}
function invert$1(number, modulo = CURVE$1.P) {
if (number === _0n$1 || modulo <= _0n$1) {
throw new Error(`invert: expected positive integers, got n=${number} mod=${modulo}`);
}
let a = mod$1(number, modulo);
let b = modulo;
let x = _0n$1, u = _1n$1;
while (a !== _0n$1) {
const q = b / a;
const r = b % a;
const m = x - u * q;
b = a, a = r, x = u, u = m;
}
const gcd = b;
if (gcd !== _1n$1)
throw new Error('invert: does not exist');
return mod$1(x, modulo);
}
function invertBatch$1(nums, p = CURVE$1.P) {
const scratch = new Array(nums.length);
const lastMultiplied = nums.reduce((acc, num, i) => {
if (num === _0n$1)
return acc;
scratch[i] = acc;
return mod$1(acc * num, p);
}, _1n$1);
const inverted = invert$1(lastMultiplied, p);
nums.reduceRight((acc, num, i) => {
if (num === _0n$1)
return acc;
scratch[i] = mod$1(acc * scratch[i], p);
return mod$1(acc * num, p);
}, inverted);
return scratch;
}
const divNearest = (a, b) => (a + b / _2n$1) / b;
const ENDO = {
a1: BigInt('0x3086d221a7d46bcde86c90e49284eb15'),
b1: -_1n$1 * BigInt('0xe4437ed6010e88286f547fa90abfe4c3'),
a2: BigInt('0x114ca50f7a8e2f3f657c1108d9d44cfd8'),
b2: BigInt('0x3086d221a7d46bcde86c90e49284eb15'),
POW_2_128: BigInt('0x100000000000000000000000000000000'),
};
function splitScalarEndo(k) {
const { n } = CURVE$1;
const { a1, b1, a2, b2, POW_2_128 } = ENDO;
const c1 = divNearest(b2 * k, n);
const c2 = divNearest(-b1 * k, n);
let k1 = mod$1(k - c1 * a1 - c2 * a2, n);
let k2 = mod$1(-c1 * b1 - c2 * b2, n);
const k1neg = k1 > POW_2_128;
const k2neg = k2 > POW_2_128;
if (k1neg)
k1 = n - k1;
if (k2neg)
k2 = n - k2;
if (k1 > POW_2_128 || k2 > POW_2_128) {
throw new Error('splitScalarEndo: Endomorphism failed, k=' + k);
}
return { k1neg, k1, k2neg, k2 };
}
function truncateHash(hash) {
const { n } = CURVE$1;
const byteLength = hash.length;
const delta = byteLength * 8 - 256;
let h = bytesToNumber(hash);
if (delta > 0)
h = h >> BigInt(delta);
if (h >= n)
h -= n;
return h;
}
let _sha256Sync;
let _hmacSha256Sync;
class HmacDrbg {
constructor() {
this.v = new Uint8Array(32).fill(1);
this.k = new Uint8Array(32).fill(0);
this.counter = 0;
}
hmac(...values) {
return utils$1.hmacSha256(this.k, ...values);
}
hmacSync(...values) {
return _hmacSha256Sync(this.k, ...values);
}
checkSync() {
if (typeof _hmacSha256Sync !== 'function')
throw new ShaError('hmacSha256Sync needs to be set');
}
incr() {
if (this.counter >= 1000)
throw new Error('Tried 1,000 k values for sign(), all were invalid');
this.counter += 1;
}
async reseed(seed = new Uint8Array()) {
this.k = await this.hmac(this.v, Uint8Array.from([0x00]), seed);
this.v = await this.hmac(this.v);
if (seed.length === 0)
return;
this.k = await this.hmac(this.v, Uint8Array.from([0x01]), seed);
this.v = await this.hmac(this.v);
}
reseedSync(seed = new Uint8Array()) {
this.checkSync();
this.k = this.hmacSync(this.v, Uint8Array.from([0x00]), seed);
this.v = this.hmacSync(this.v);
if (seed.length === 0)
return;
this.k = this.hmacSync(this.v, Uint8Array.from([0x01]), seed);
this.v = this.hmacSync(this.v);
}
async generate() {
this.incr();
this.v = await this.hmac(this.v);
return this.v;
}
generateSync() {
this.checkSync();
this.incr();
this.v = this.hmacSync(this.v);
return this.v;
}
}
function isWithinCurveOrder(num) {
return _0n$1 < num && num < CURVE$1.n;
}
function isValidFieldElement(num) {
return _0n$1 < num && num < CURVE$1.P;
}
function kmdToSig(kBytes, m, d) {
const k = bytesToNumber(kBytes);
if (!isWithinCurveOrder(k))
return;
const { n } = CURVE$1;
const q = Point$1.BASE.multiply(k);
const r = mod$1(q.x, n);
if (r === _0n$1)
return;
const s = mod$1(invert$1(k, n) * mod$1(m + d * r, n), n);
if (s === _0n$1)
return;
const sig = new Signature$1(r, s);
const recovery = (q.x === sig.r ? 0 : 2) | Number(q.y & _1n$1);
return { sig, recovery };
}
function normalizePrivateKey(key) {
let num;
if (typeof key === 'bigint') {
num = key;
}
else if (typeof key === 'number' && Number.isSafeInteger(key) && key > 0) {
num = BigInt(key);
}
else if (typeof key === 'string') {
if (key.length !== 64)
throw new Error('Expected 32 bytes of private key');
num = hexToNumber(key);
}
else if (key instanceof Uint8Array) {
if (key.length !== 32)
throw new Error('Expected 32 bytes of private key');
num = bytesToNumber(key);
}
else {
throw new TypeError('Expected valid private key');
}
if (!isWithinCurveOrder(num))
throw new Error('Expected private key: 0 < key < n');
return num;
}
function normalizePublicKey(publicKey) {
if (publicKey instanceof Point$1) {
publicKey.assertValidity();
return publicKey;
}
else {
return Point$1.fromHex(publicKey);
}
}
function normalizeSignature(signature) {
if (signature instanceof Signature$1) {
signature.assertValidity();
return signature;
}
try {
return Signature$1.fromDER(signature);
}
catch (error) {
return Signature$1.fromCompact(signature);
}
}
function getPublicKey$1(privateKey, isCompressed = false) {
return Point$1.fromPrivateKey(privateKey).toRawBytes(isCompressed);
}
function bits2int(bytes) {
const slice = bytes.length > 32 ? bytes.slice(0, 32) : bytes;
return bytesToNumber(slice);
}
function bits2octets(bytes) {
const z1 = bits2int(bytes);
const z2 = mod$1(z1, CURVE$1.n);
return int2octets(z2 < _0n$1 ? z1 : z2);
}
function int2octets(num) {
return numTo32b(num);
}
function initSigArgs(msgHash, privateKey, extraEntropy) {
if (msgHash == null)
throw new Error(`sign: expected valid message hash, not "${msgHash}"`);
const h1 = ensureBytes$1(msgHash);
const d = normalizePrivateKey(privateKey);
const seedArgs = [int2octets(d), bits2octets(h1)];
if (extraEntropy != null) {
if (extraEntropy === true)
extraEntropy = utils$1.randomBytes(32);
const e = ensureBytes$1(extraEntropy);
if (e.length !== 32)
throw new Error('sign: Expected 32 bytes of extra data');
seedArgs.push(e);
}
const seed = concatBytes$1(...seedArgs);
const m = bits2int(h1);
return { seed, m, d };
}
function finalizeSig(recSig, opts) {
let { sig, recovery } = recSig;
const { canonical, der, recovered } = Object.assign({ canonical: true, der: true }, opts);
if (canonical && sig.hasHighS()) {
sig = sig.normalizeS();
recovery ^= 1;
}
const hashed = der ? sig.toDERRawBytes() : sig.toCompactRawBytes();
return recovered ? [hashed, recovery] : hashed;
}
async function sign$2(msgHash, privKey, opts = {}) {
const { seed, m, d } = initSigArgs(msgHash, privKey, opts.extraEntropy);
let sig;
const drbg = new HmacDrbg();
await drbg.reseed(seed);
while (!(sig = kmdToSig(await drbg.generate(), m, d)))
await drbg.reseed();
return finalizeSig(sig, opts);
}
const vopts = { strict: true };
function verify$1(signature, msgHash, publicKey, opts = vopts) {
let sig;
try {
sig = normalizeSignature(signature);
msgHash = ensureBytes$1(msgHash);
}
catch (error) {
return false;
}
const { r, s } = sig;
if (opts.strict && sig.hasHighS())
return false;
const h = truncateHash(msgHash);
let P;
try {
P = normalizePublicKey(publicKey);
}
catch (error) {
return false;
}
const { n } = CURVE$1;
const sinv = invert$1(s, n);
const u1 = mod$1(h * sinv, n);
const u2 = mod$1(r * sinv, n);
const R = Point$1.BASE.multiplyAndAddUnsafe(P, u1, u2);
if (!R)
return false;
const v = mod$1(R.x, n);
return v === r;
}
Point$1.BASE._setWindowSize(8);
const crypto$3 = {
node: nodeCrypto$1,
web: typeof self === 'object' && 'crypto' in self ? self.crypto : undefined,
};
const TAGGED_HASH_PREFIXES = {};
const utils$1 = {
bytesToHex: bytesToHex$2,
hexToBytes: hexToBytes$2,
concatBytes: concatBytes$1,
mod: mod$1,
invert: invert$1,
isValidPrivateKey(privateKey) {
try {
normalizePrivateKey(privateKey);
return true;
}
catch (error) {
return false;
}
},
_bigintTo32Bytes: numTo32b,
_normalizePrivateKey: normalizePrivateKey,
hashToPrivateKey: (hash) => {
hash = ensureBytes$1(hash);
if (hash.length < 40 || hash.length > 1024)
throw new Error('Expected 40-1024 bytes of private key as per FIPS 186');
const num = mod$1(bytesToNumber(hash), CURVE$1.n - _1n$1) + _1n$1;
return numTo32b(num);
},
randomBytes: (bytesLength = 32) => {
if (crypto$3.web) {
return crypto$3.web.getRandomValues(new Uint8Array(bytesLength));
}
else if (crypto$3.node) {
const { randomBytes } = crypto$3.node;
return Uint8Array.from(randomBytes(bytesLength));
}
else {
throw new Error("The environment doesn't have randomBytes function");
}
},
randomPrivateKey: () => {
return utils$1.hashToPrivateKey(utils$1.randomBytes(40));
},
sha256: async (...messages) => {
if (crypto$3.web) {
const buffer = await crypto$3.web.subtle.digest('SHA-256', concatBytes$1(...messages));
return new Uint8Array(buffer);
}
else if (crypto$3.node) {
const { createHash } = crypto$3.node;
const hash = createHash('sha256');
messages.forEach((m) => hash.update(m));
return Uint8Array.from(hash.digest());
}
else {
throw new Error("The environment doesn't have sha256 function");
}
},
hmacSha256: async (key, ...messages) => {
if (crypto$3.web) {
const ckey = await crypto$3.web.subtle.importKey('raw', key, { name: 'HMAC', hash: { name: 'SHA-256' } }, false, ['sign']);
const message = concatBytes$1(...messages);
const buffer = await crypto$3.web.subtle.sign('HMAC', ckey, message);
return new Uint8Array(buffer);
}
else if (crypto$3.node) {
const { createHmac } = crypto$3.node;
const hash = createHmac('sha256', key);
messages.forEach((m) => hash.update(m));
return Uint8Array.from(hash.digest());
}
else {
throw new Error("The environment doesn't have hmac-sha256 function");
}
},
sha256Sync: undefined,
hmacSha256Sync: undefined,
taggedHash: async (tag, ...messages) => {
let tagP = TAGGED_HASH_PREFIXES[tag];
if (tagP === undefined) {
const tagH = await utils$1.sha256(Uint8Array.from(tag, (c) => c.charCodeAt(0)));
tagP = concatBytes$1(tagH, tagH);
TAGGED_HASH_PREFIXES[tag] = tagP;
}
return utils$1.sha256(tagP, ...messages);
},
taggedHashSync: (tag, ...messages) => {
if (typeof _sha256Sync !== 'function')
throw new ShaError('sha256Sync is undefined, you need to set it');
let tagP = TAGGED_HASH_PREFIXES[tag];
if (tagP === undefined) {
const tagH = _sha256Sync(Uint8Array.from(tag, (c) => c.charCodeAt(0)));
tagP = concatBytes$1(tagH, tagH);
TAGGED_HASH_PREFIXES[tag] = tagP;
}
return _sha256Sync(tagP, ...messages);
},
precompute(windowSize = 8, point = Point$1.BASE) {
const cached = point === Point$1.BASE ? point : new Point$1(point.x, point.y);
cached._setWindowSize(windowSize);
cached.multiply(_3n);
return cached;
},
};
Object.defineProperties(utils$1, {
sha256Sync: {
configurable: false,
get() {
return _sha256Sync;
},
set(val) {
if (!_sha256Sync)
_sha256Sync = val;
},
},
hmacSha256Sync: {
configurable: false,
get() {
return _hmacSha256Sync;
},
set(val) {
if (!_hmacSha256Sync)
_hmacSha256Sync = val;
},
},
});
var sha3$1 = {exports: {}};
/**
* [js-sha3]{@link https://github.com/emn178/js-sha3}
*
* @version 0.8.0
* @author Chen, Yi-Cyuan [emn178@gmail.com]
* @copyright Chen, Yi-Cyuan 2015-2018
* @license MIT
*/
(function (module) {
/*jslint bitwise: true */
(function () {
var INPUT_ERROR = 'input is invalid type';
var FINALIZE_ERROR = 'finalize already called';
var WINDOW = typeof window === 'object';
var root = WINDOW ? window : {};
if (root.JS_SHA3_NO_WINDOW) {
WINDOW = false;
}
var WEB_WORKER = !WINDOW && typeof self === 'object';
var NODE_JS = !root.JS_SHA3_NO_NODE_JS && typeof process === 'object' && process.versions && process.versions.node;
if (NODE_JS) {
root = commonjsGlobal;
} else if (WEB_WORKER) {
root = self;
}
var COMMON_JS = !root.JS_SHA3_NO_COMMON_JS && 'object' === 'object' && module.exports;
var ARRAY_BUFFER = !root.JS_SHA3_NO_ARRAY_BUFFER && typeof ArrayBuffer !== 'undefined';
var HEX_CHARS = '0123456789abcdef'.split('');
var SHAKE_PADDING = [31, 7936, 2031616, 520093696];
var CSHAKE_PADDING = [4, 1024, 262144, 67108864];
var KECCAK_PADDING = [1, 256, 65536, 16777216];
var PADDING = [6, 1536, 393216, 100663296];
var SHIFT = [0, 8, 16, 24];
var RC = [1, 0, 32898, 0, 32906, 2147483648, 2147516416, 2147483648, 32907, 0, 2147483649,
0, 2147516545, 2147483648, 32777, 2147483648, 138, 0, 136, 0, 2147516425, 0,
2147483658, 0, 2147516555, 0, 139, 2147483648, 32905, 2147483648, 32771,
2147483648, 32770, 2147483648, 128, 2147483648, 32778, 0, 2147483658, 2147483648,
2147516545, 2147483648, 32896, 2147483648, 2147483649, 0, 2147516424, 2147483648];
var BITS = [224, 256, 384, 512];
var SHAKE_BITS = [128, 256];
var OUTPUT_TYPES = ['hex', 'buffer', 'arrayBuffer', 'array', 'digest'];
var CSHAKE_BYTEPAD = {
'128': 168,
'256': 136
};
if (root.JS_SHA3_NO_NODE_JS || !Array.isArray) {
Array.isArray = function (obj) {
return Object.prototype.toString.call(obj) === '[object Array]';
};
}
if (ARRAY_BUFFER && (root.JS_SHA3_NO_ARRAY_BUFFER_IS_VIEW || !ArrayBuffer.isView)) {
ArrayBuffer.isView = function (obj) {
return typeof obj === 'object' && obj.buffer && obj.buffer.constructor === ArrayBuffer;
};
}
var createOutputMethod = function (bits, padding, outputType) {
return function (message) {
return new Keccak(bits, padding, bits).update(message)[outputType]();
};
};
var createShakeOutputMethod = function (bits, padding, outputType) {
return function (message, outputBits) {
return new Keccak(bits, padding, outputBits).update(message)[outputType]();
};
};
var createCshakeOutputMethod = function (bits, padding, outputType) {
return function (message, outputBits, n, s) {
return methods['cshake' + bits].update(message, outputBits, n, s)[outputType]();
};
};
var createKmacOutputMethod = function (bits, padding, outputType) {
return function (key, message, outputBits, s) {
return methods['kmac' + bits].update(key, message, outputBits, s)[outputType]();
};
};
var createOutputMethods = function (method, createMethod, bits, padding) {
for (var i = 0; i < OUTPUT_TYPES.length; ++i) {
var type = OUTPUT_TYPES[i];
method[type] = createMethod(bits, padding, type);
}
return method;
};
var createMethod = function (bits, padding) {
var method = createOutputMethod(bits, padding, 'hex');
method.create = function () {
return new Keccak(bits, padding, bits);
};
method.update = function (message) {
return method.create().update(message);
};
return createOutputMethods(method, createOutputMethod, bits, padding);
};
var createShakeMethod = function (bits, padding) {
var method = createShakeOutputMethod(bits, padding, 'hex');
method.create = function (outputBits) {
return new Keccak(bits, padding, outputBits);
};
method.update = function (message, outputBits) {
return method.create(outputBits).update(message);
};
return createOutputMethods(method, createShakeOutputMethod, bits, padding);
};
var createCshakeMethod = function (bits, padding) {
var w = CSHAKE_BYTEPAD[bits];
var method = createCshakeOutputMethod(bits, padding, 'hex');
method.create = function (outputBits, n, s) {
if (!n && !s) {
return methods['shake' + bits].create(outputBits);
} else {
return new Keccak(bits, padding, outputBits).bytepad([n, s], w);
}
};
method.update = function (message, outputBits, n, s) {
return method.create(outputBits, n, s).update(message);
};
return createOutputMethods(method, createCshakeOutputMethod, bits, padding);
};
var createKmacMethod = function (bits, padding) {
var w = CSHAKE_BYTEPAD[bits];
var method = createKmacOutputMethod(bits, padding, 'hex');
method.create = function (key, outputBits, s) {
return new Kmac(bits, padding, outputBits).bytepad(['KMAC', s], w).bytepad([key], w);
};
method.update = function (key, message, outputBits, s) {
return method.create(key, outputBits, s).update(message);
};
return createOutputMethods(method, createKmacOutputMethod, bits, padding);
};
var algorithms = [
{ name: 'keccak', padding: KECCAK_PADDING, bits: BITS, createMethod: createMethod },
{ name: 'sha3', padding: PADDING, bits: BITS, createMethod: createMethod },
{ name: 'shake', padding: SHAKE_PADDING, bits: SHAKE_BITS, createMethod: createShakeMethod },
{ name: 'cshake', padding: CSHAKE_PADDING, bits: SHAKE_BITS, createMethod: createCshakeMethod },
{ name: 'kmac', padding: CSHAKE_PADDING, bits: SHAKE_BITS, createMethod: createKmacMethod }
];
var methods = {}, methodNames = [];
for (var i = 0; i < algorithms.length; ++i) {
var algorithm = algorithms[i];
var bits = algorithm.bits;
for (var j = 0; j < bits.length; ++j) {
var methodName = algorithm.name + '_' + bits[j];
methodNames.push(methodName);
methods[methodName] = algorithm.createMethod(bits[j], algorithm.padding);
if (algorithm.name !== 'sha3') {
var newMethodName = algorithm.name + bits[j];
methodNames.push(newMethodName);
methods[newMethodName] = methods[methodName];
}
}
}
function Keccak(bits, padding, outputBits) {
this.blocks = [];
this.s = [];
this.padding = padding;
this.outputBits = outputBits;
this.reset = true;
this.finalized = false;
this.block = 0;
this.start = 0;
this.blockCount = (1600 - (bits << 1)) >> 5;
this.byteCount = this.blockCount << 2;
this.outputBlocks = outputBits >> 5;
this.extraBytes = (outputBits & 31) >> 3;
for (var i = 0; i < 50; ++i) {
this.s[i] = 0;
}
}
Keccak.prototype.update = function (message) {
if (this.finalized) {
throw new Error(FINALIZE_ERROR);
}
var notString, type = typeof message;
if (type !== 'string') {
if (type === 'object') {
if (message === null) {
throw new Error(INPUT_ERROR);
} else if (ARRAY_BUFFER && message.constructor === ArrayBuffer) {
message = new Uint8Array(message);
} else if (!Array.isArray(message)) {
if (!ARRAY_BUFFER || !ArrayBuffer.isView(message)) {
throw new Error(INPUT_ERROR);
}
}
} else {
throw new Error(INPUT_ERROR);
}
notString = true;
}
var blocks = this.blocks, byteCount = this.byteCount, length = message.length,
blockCount = this.blockCount, index = 0, s = this.s, i, code;
while (index < length) {
if (this.reset) {
this.reset = false;
blocks[0] = this.block;
for (i = 1; i < blockCount + 1; ++i) {
blocks[i] = 0;
}
}
if (notString) {
for (i = this.start; index < length && i < byteCount; ++index) {
blocks[i >> 2] |= message[index] << SHIFT[i++ & 3];
}
} else {
for (i = this.start; index < length && i < byteCount; ++index) {
code = message.charCodeAt(index);
if (code < 0x80) {
blocks[i >> 2] |= code << SHIFT[i++ & 3];
} else if (code < 0x800) {
blocks[i >> 2] |= (0xc0 | (code >> 6)) << SHIFT[i++ & 3];
blocks[i >> 2] |= (0x80 | (code & 0x3f)) << SHIFT[i++ & 3];
} else if (code < 0xd800 || code >= 0xe000) {
blocks[i >> 2] |= (0xe0 | (code >> 12)) << SHIFT[i++ & 3];
blocks[i >> 2] |= (0x80 | ((code >> 6) & 0x3f)) << SHIFT[i++ & 3];
blocks[i >> 2] |= (0x80 | (code & 0x3f)) << SHIFT[i++ & 3];
} else {
code = 0x10000 + (((code & 0x3ff) << 10) | (message.charCodeAt(++index) & 0x3ff));
blocks[i >> 2] |= (0xf0 | (code >> 18)) << SHIFT[i++ & 3];
blocks[i >> 2] |= (0x80 | ((code >> 12) & 0x3f)) << SHIFT[i++ & 3];
blocks[i >> 2] |= (0x80 | ((code >> 6) & 0x3f)) << SHIFT[i++ & 3];
blocks[i >> 2] |= (0x80 | (code & 0x3f)) << SHIFT[i++ & 3];
}
}
}
this.lastByteIndex = i;
if (i >= byteCount) {
this.start = i - byteCount;
this.block = blocks[blockCount];
for (i = 0; i < blockCount; ++i) {
s[i] ^= blocks[i];
}
f(s);
this.reset = true;
} else {
this.start = i;
}
}
return this;
};
Keccak.prototype.encode = function (x, right) {
var o = x & 255, n = 1;
var bytes = [o];
x = x >> 8;
o = x & 255;
while (o > 0) {
bytes.unshift(o);
x = x >> 8;
o = x & 255;
++n;
}
if (right) {
bytes.push(n);
} else {
bytes.unshift(n);
}
this.update(bytes);
return bytes.length;
};
Keccak.prototype.encodeString = function (str) {
var notString, type = typeof str;
if (type !== 'string') {
if (type === 'object') {
if (str === null) {
throw new Error(INPUT_ERROR);
} else if (ARRAY_BUFFER && str.constructor === ArrayBuffer) {
str = new Uint8Array(str);
} else if (!Array.isArray(str)) {
if (!ARRAY_BUFFER || !ArrayBuffer.isView(str)) {
throw new Error(INPUT_ERROR);
}
}
} else {
throw new Error(INPUT_ERROR);
}
notString = true;
}
var bytes = 0, length = str.length;
if (notString) {
bytes = length;
} else {
for (var i = 0; i < str.length; ++i) {
var code = str.charCodeAt(i);
if (code < 0x80) {
bytes += 1;
} else if (code < 0x800) {
bytes += 2;
} else if (code < 0xd800 || code >= 0xe000) {
bytes += 3;
} else {
code = 0x10000 + (((code & 0x3ff) << 10) | (str.charCodeAt(++i) & 0x3ff));
bytes += 4;
}
}
}
bytes += this.encode(bytes * 8);
this.update(str);
return bytes;
};
Keccak.prototype.bytepad = function (strs, w) {
var bytes = this.encode(w);
for (var i = 0; i < strs.length; ++i) {
bytes += this.encodeString(strs[i]);
}
var paddingBytes = w - bytes % w;
var zeros = [];
zeros.length = paddingBytes;
this.update(zeros);
return this;
};
Keccak.prototype.finalize = function () {
if (this.finalized) {
return;
}
this.finalized = true;
var blocks = this.blocks, i = this.lastByteIndex, blockCount = this.blockCount, s = this.s;
blocks[i >> 2] |= this.padding[i & 3];
if (this.lastByteIndex === this.byteCount) {
blocks[0] = blocks[blockCount];
for (i = 1; i < blockCount + 1; ++i) {
blocks[i] = 0;
}
}
blocks[blockCount - 1] |= 0x80000000;
for (i = 0; i < blockCount; ++i) {
s[i] ^= blocks[i];
}
f(s);
};
Keccak.prototype.toString = Keccak.prototype.hex = function () {
this.finalize();
var blockCount = this.blockCount, s = this.s, outputBlocks = this.outputBlocks,
extraBytes = this.extraBytes, i = 0, j = 0;
var hex = '', block;
while (j < outputBlocks) {
for (i = 0; i < blockCount && j < outputBlocks; ++i, ++j) {
block = s[i];
hex += HEX_CHARS[(block >> 4) & 0x0F] + HEX_CHARS[block & 0x0F] +
HEX_CHARS[(block >> 12) & 0x0F] + HEX_CHARS[(block >> 8) & 0x0F] +
HEX_CHARS[(block >> 20) & 0x0F] + HEX_CHARS[(block >> 16) & 0x0F] +
HEX_CHARS[(block >> 28) & 0x0F] + HEX_CHARS[(block >> 24) & 0x0F];
}
if (j % blockCount === 0) {
f(s);
i = 0;
}
}
if (extraBytes) {
block = s[i];
hex += HEX_CHARS[(block >> 4) & 0x0F] + HEX_CHARS[block & 0x0F];
if (extraBytes > 1) {
hex += HEX_CHARS[(block >> 12) & 0x0F] + HEX_CHARS[(block >> 8) & 0x0F];
}
if (extraBytes > 2) {
hex += HEX_CHARS[(block >> 20) & 0x0F] + HEX_CHARS[(block >> 16) & 0x0F];
}
}
return hex;
};
Keccak.prototype.arrayBuffer = function () {
this.finalize();
var blockCount = this.blockCount, s = this.s, outputBlocks = this.outputBlocks,
extraBytes = this.extraBytes, i = 0, j = 0;
var bytes = this.outputBits >> 3;
var buffer;
if (extraBytes) {
buffer = new ArrayBuffer((outputBlocks + 1) << 2);
} else {
buffer = new ArrayBuffer(bytes);
}
var array = new Uint32Array(buffer);
while (j < outputBlocks) {
for (i = 0; i < blockCount && j < outputBlocks; ++i, ++j) {
array[j] = s[i];
}
if (j % blockCount === 0) {
f(s);
}
}
if (extraBytes) {
array[i] = s[i];
buffer = buffer.slice(0, bytes);
}
return buffer;
};
Keccak.prototype.buffer = Keccak.prototype.arrayBuffer;
Keccak.prototype.digest = Keccak.prototype.array = function () {
this.finalize();
var blockCount = this.blockCount, s = this.s, outputBlocks = this.outputBlocks,
extraBytes = this.extraBytes, i = 0, j = 0;
var array = [], offset, block;
while (j < outputBlocks) {
for (i = 0; i < blockCount && j < outputBlocks; ++i, ++j) {
offset = j << 2;
block = s[i];
array[offset] = block & 0xFF;
array[offset + 1] = (block >> 8) & 0xFF;
array[offset + 2] = (block >> 16) & 0xFF;
array[offset + 3] = (block >> 24) & 0xFF;
}
if (j % blockCount === 0) {
f(s);
}
}
if (extraBytes) {
offset = j << 2;
block = s[i];
array[offset] = block & 0xFF;
if (extraBytes > 1) {
array[offset + 1] = (block >> 8) & 0xFF;
}
if (extraBytes > 2) {
array[offset + 2] = (block >> 16) & 0xFF;
}
}
return array;
};
function Kmac(bits, padding, outputBits) {
Keccak.call(this, bits, padding, outputBits);
}
Kmac.prototype = new Keccak();
Kmac.prototype.finalize = function () {
this.encode(this.outputBits, true);
return Keccak.prototype.finalize.call(this);
};
var f = function (s) {
var h, l, n, c0, c1, c2, c3, c4, c5, c6, c7, c8, c9,
b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, b10, b11, b12, b13, b14, b15, b16, b17,
b18, b19, b20, b21, b22, b23, b24, b25, b26, b27, b28, b29, b30, b31, b32, b33,
b34, b35, b36, b37, b38, b39, b40, b41, b42, b43, b44, b45, b46, b47, b48, b49;
for (n = 0; n < 48; n += 2) {
c0 = s[0] ^ s[10] ^ s[20] ^ s[30] ^ s[40];
c1 = s[1] ^ s[11] ^ s[21] ^ s[31] ^ s[41];
c2 = s[2] ^ s[12] ^ s[22] ^ s[32] ^ s[42];
c3 = s[3] ^ s[13] ^ s[23] ^ s[33] ^ s[43];
c4 = s[4] ^ s[14] ^ s[24] ^ s[34] ^ s[44];
c5 = s[5] ^ s[15] ^ s[25] ^ s[35] ^ s[45];
c6 = s[6] ^ s[16] ^ s[26] ^ s[36] ^ s[46];
c7 = s[7] ^ s[17] ^ s[27] ^ s[37] ^ s[47];
c8 = s[8] ^ s[18] ^ s[28] ^ s[38] ^ s[48];
c9 = s[9] ^ s[19] ^ s[29] ^ s[39] ^ s[49];
h = c8 ^ ((c2 << 1) | (c3 >>> 31));
l = c9 ^ ((c3 << 1) | (c2 >>> 31));
s[0] ^= h;
s[1] ^= l;
s[10] ^= h;
s[11] ^= l;
s[20] ^= h;
s[21] ^= l;
s[30] ^= h;
s[31] ^= l;
s[40] ^= h;
s[41] ^= l;
h = c0 ^ ((c4 << 1) | (c5 >>> 31));
l = c1 ^ ((c5 << 1) | (c4 >>> 31));
s[2] ^= h;
s[3] ^= l;
s[12] ^= h;
s[13] ^= l;
s[22] ^= h;
s[23] ^= l;
s[32] ^= h;
s[33] ^= l;
s[42] ^= h;
s[43] ^= l;
h = c2 ^ ((c6 << 1) | (c7 >>> 31));
l = c3 ^ ((c7 << 1) | (c6 >>> 31));
s[4] ^= h;
s[5] ^= l;
s[14] ^= h;
s[15] ^= l;
s[24] ^= h;
s[25] ^= l;
s[34] ^= h;
s[35] ^= l;
s[44] ^= h;
s[45] ^= l;
h = c4 ^ ((c8 << 1) | (c9 >>> 31));
l = c5 ^ ((c9 << 1) | (c8 >>> 31));
s[6] ^= h;
s[7] ^= l;
s[16] ^= h;
s[17] ^= l;
s[26] ^= h;
s[27] ^= l;
s[36] ^= h;
s[37] ^= l;
s[46] ^= h;
s[47] ^= l;
h = c6 ^ ((c0 << 1) | (c1 >>> 31));
l = c7 ^ ((c1 << 1) | (c0 >>> 31));
s[8] ^= h;
s[9] ^= l;
s[18] ^= h;
s[19] ^= l;
s[28] ^= h;
s[29] ^= l;
s[38] ^= h;
s[39] ^= l;
s[48] ^= h;
s[49] ^= l;
b0 = s[0];
b1 = s[1];
b32 = (s[11] << 4) | (s[10] >>> 28);
b33 = (s[10] << 4) | (s[11] >>> 28);
b14 = (s[20] << 3) | (s[21] >>> 29);
b15 = (s[21] << 3) | (s[20] >>> 29);
b46 = (s[31] << 9) | (s[30] >>> 23);
b47 = (s[30] << 9) | (s[31] >>> 23);
b28 = (s[40] << 18) | (s[41] >>> 14);
b29 = (s[41] << 18) | (s[40] >>> 14);
b20 = (s[2] << 1) | (s[3] >>> 31);
b21 = (s[3] << 1) | (s[2] >>> 31);
b2 = (s[13] << 12) | (s[12] >>> 20);
b3 = (s[12] << 12) | (s[13] >>> 20);
b34 = (s[22] << 10) | (s[23] >>> 22);
b35 = (s[23] << 10) | (s[22] >>> 22);
b16 = (s[33] << 13) | (s[32] >>> 19);
b17 = (s[32] << 13) | (s[33] >>> 19);
b48 = (s[42] << 2) | (s[43] >>> 30);
b49 = (s[43] << 2) | (s[42] >>> 30);
b40 = (s[5] << 30) | (s[4] >>> 2);
b41 = (s[4] << 30) | (s[5] >>> 2);
b22 = (s[14] << 6) | (s[15] >>> 26);
b23 = (s[15] << 6) | (s[14] >>> 26);
b4 = (s[25] << 11) | (s[24] >>> 21);
b5 = (s[24] << 11) | (s[25] >>> 21);
b36 = (s[34] << 15) | (s[35] >>> 17);
b37 = (s[35] << 15) | (s[34] >>> 17);
b18 = (s[45] << 29) | (s[44] >>> 3);
b19 = (s[44] << 29) | (s[45] >>> 3);
b10 = (s[6] << 28) | (s[7] >>> 4);
b11 = (s[7] << 28) | (s[6] >>> 4);
b42 = (s[17] << 23) | (s[16] >>> 9);
b43 = (s[16] << 23) | (s[17] >>> 9);
b24 = (s[26] << 25) | (s[27] >>> 7);
b25 = (s[27] << 25) | (s[26] >>> 7);
b6 = (s[36] << 21) | (s[37] >>> 11);
b7 = (s[37] << 21) | (s[36] >>> 11);
b38 = (s[47] << 24) | (s[46] >>> 8);
b39 = (s[46] << 24) | (s[47] >>> 8);
b30 = (s[8] << 27) | (s[9] >>> 5);
b31 = (s[9] << 27) | (s[8] >>> 5);
b12 = (s[18] << 20) | (s[19] >>> 12);
b13 = (s[19] << 20) | (s[18] >>> 12);
b44 = (s[29] << 7) | (s[28] >>> 25);
b45 = (s[28] << 7) | (s[29] >>> 25);
b26 = (s[38] << 8) | (s[39] >>> 24);
b27 = (s[39] << 8) | (s[38] >>> 24);
b8 = (s[48] << 14) | (s[49] >>> 18);
b9 = (s[49] << 14) | (s[48] >>> 18);
s[0] = b0 ^ (~b2 & b4);
s[1] = b1 ^ (~b3 & b5);
s[10] = b10 ^ (~b12 & b14);
s[11] = b11 ^ (~b13 & b15);
s[20] = b20 ^ (~b22 & b24);
s[21] = b21 ^ (~b23 & b25);
s[30] = b30 ^ (~b32 & b34);
s[31] = b31 ^ (~b33 & b35);
s[40] = b40 ^ (~b42 & b44);
s[41] = b41 ^ (~b43 & b45);
s[2] = b2 ^ (~b4 & b6);
s[3] = b3 ^ (~b5 & b7);
s[12] = b12 ^ (~b14 & b16);
s[13] = b13 ^ (~b15 & b17);
s[22] = b22 ^ (~b24 & b26);
s[23] = b23 ^ (~b25 & b27);
s[32] = b32 ^ (~b34 & b36);
s[33] = b33 ^ (~b35 & b37);
s[42] = b42 ^ (~b44 & b46);
s[43] = b43 ^ (~b45 & b47);
s[4] = b4 ^ (~b6 & b8);
s[5] = b5 ^ (~b7 & b9);
s[14] = b14 ^ (~b16 & b18);
s[15] = b15 ^ (~b17 & b19);
s[24] = b24 ^ (~b26 & b28);
s[25] = b25 ^ (~b27 & b29);
s[34] = b34 ^ (~b36 & b38);
s[35] = b35 ^ (~b37 & b39);
s[44] = b44 ^ (~b46 & b48);
s[45] = b45 ^ (~b47 & b49);
s[6] = b6 ^ (~b8 & b0);
s[7] = b7 ^ (~b9 & b1);
s[16] = b16 ^ (~b18 & b10);
s[17] = b17 ^ (~b19 & b11);
s[26] = b26 ^ (~b28 & b20);
s[27] = b27 ^ (~b29 & b21);
s[36] = b36 ^ (~b38 & b30);
s[37] = b37 ^ (~b39 & b31);
s[46] = b46 ^ (~b48 & b40);
s[47] = b47 ^ (~b49 & b41);
s[8] = b8 ^ (~b0 & b2);
s[9] = b9 ^ (~b1 & b3);
s[18] = b18 ^ (~b10 & b12);
s[19] = b19 ^ (~b11 & b13);
s[28] = b28 ^ (~b20 & b22);
s[29] = b29 ^ (~b21 & b23);
s[38] = b38 ^ (~b30 & b32);
s[39] = b39 ^ (~b31 & b33);
s[48] = b48 ^ (~b40 & b42);
s[49] = b49 ^ (~b41 & b43);
s[0] ^= RC[n];
s[1] ^= RC[n + 1];
}
};
if (COMMON_JS) {
module.exports = methods;
} else {
for (i = 0; i < methodNames.length; ++i) {
root[methodNames[i]] = methods[methodNames[i]];
}
}
})();
} (sha3$1));
var sha3 = sha3$1.exports;
function base(ALPHABET, name) {
if (ALPHABET.length >= 255) {
throw new TypeError('Alphabet too long');
}
var BASE_MAP = new Uint8Array(256);
for (var j = 0; j < BASE_MAP.length; j++) {
BASE_MAP[j] = 255;
}
for (var i = 0; i < ALPHABET.length; i++) {
var x = ALPHABET.charAt(i);
var xc = x.charCodeAt(0);
if (BASE_MAP[xc] !== 255) {
throw new TypeError(x + ' is ambiguous');
}
BASE_MAP[xc] = i;
}
var BASE = ALPHABET.length;
var LEADER = ALPHABET.charAt(0);
var FACTOR = Math.log(BASE) / Math.log(256);
var iFACTOR = Math.log(256) / Math.log(BASE);
function encode(source) {
if (source instanceof Uint8Array);
else if (ArrayBuffer.isView(source)) {
source = new Uint8Array(source.buffer, source.byteOffset, source.byteLength);
} else if (Array.isArray(source)) {
source = Uint8Array.from(source);
}
if (!(source instanceof Uint8Array)) {
throw new TypeError('Expected Uint8Array');
}
if (source.length === 0) {
return '';
}
var zeroes = 0;
var length = 0;
var pbegin = 0;
var pend = source.length;
while (pbegin !== pend && source[pbegin] === 0) {
pbegin++;
zeroes++;
}
var size = (pend - pbegin) * iFACTOR + 1 >>> 0;
var b58 = new Uint8Array(size);
while (pbegin !== pend) {
var carry = source[pbegin];
var i = 0;
for (var it1 = size - 1; (carry !== 0 || i < length) && it1 !== -1; it1--, i++) {
carry += 256 * b58[it1] >>> 0;
b58[it1] = carry % BASE >>> 0;
carry = carry / BASE >>> 0;
}
if (carry !== 0) {
throw new Error('Non-zero carry');
}
length = i;
pbegin++;
}
var it2 = size - length;
while (it2 !== size && b58[it2] === 0) {
it2++;
}
var str = LEADER.repeat(zeroes);
for (; it2 < size; ++it2) {
str += ALPHABET.charAt(b58[it2]);
}
return str;
}
function decodeUnsafe(source) {
if (typeof source !== 'string') {
throw new TypeError('Expected String');
}
if (source.length === 0) {
return new Uint8Array();
}
var psz = 0;
if (source[psz] === ' ') {
return;
}
var zeroes = 0;
var length = 0;
while (source[psz] === LEADER) {
zeroes++;
psz++;
}
var size = (source.length - psz) * FACTOR + 1 >>> 0;
var b256 = new Uint8Array(size);
while (source[psz]) {
var carry = BASE_MAP[source.charCodeAt(psz)];
if (carry === 255) {
return;
}
var i = 0;
for (var it3 = size - 1; (carry !== 0 || i < length) && it3 !== -1; it3--, i++) {
carry += BASE * b256[it3] >>> 0;
b256[it3] = carry % 256 >>> 0;
carry = carry / 256 >>> 0;
}
if (carry !== 0) {
throw new Error('Non-zero carry');
}
length = i;
psz++;
}
if (source[psz] === ' ') {
return;
}
var it4 = size - length;
while (it4 !== size && b256[it4] === 0) {
it4++;
}
var vch = new Uint8Array(zeroes + (size - it4));
var j = zeroes;
while (it4 !== size) {
vch[j++] = b256[it4++];
}
return vch;
}
function decode(string) {
var buffer = decodeUnsafe(string);
if (buffer) {
return buffer;
}
throw new Error(`Non-${ name } character`);
}
return {
encode: encode,
decodeUnsafe: decodeUnsafe,
decode: decode
};
}
var src$1 = base;
var _brrp__multiformats_scope_baseX = src$1;
const equals$2 = (aa, bb) => {
if (aa === bb)
return true;
if (aa.byteLength !== bb.byteLength) {
return false;
}
for (let ii = 0; ii < aa.byteLength; ii++) {
if (aa[ii] !== bb[ii]) {
return false;
}
}
return true;
};
const coerce = o => {
if (o instanceof Uint8Array && o.constructor.name === 'Uint8Array')
return o;
if (o instanceof ArrayBuffer)
return new Uint8Array(o);
if (ArrayBuffer.isView(o)) {
return new Uint8Array(o.buffer, o.byteOffset, o.byteLength);
}
throw new Error('Unknown type, must be binary type');
};
const fromString$2 = str => new TextEncoder().encode(str);
const toString$4 = b => new TextDecoder().decode(b);
class Encoder {
constructor(name, prefix, baseEncode) {
this.name = name;
this.prefix = prefix;
this.baseEncode = baseEncode;
}
encode(bytes) {
if (bytes instanceof Uint8Array) {
return `${ this.prefix }${ this.baseEncode(bytes) }`;
} else {
throw Error('Unknown type, must be binary type');
}
}
}
class Decoder {
constructor(name, prefix, baseDecode) {
this.name = name;
this.prefix = prefix;
if (prefix.codePointAt(0) === undefined) {
throw new Error('Invalid prefix character');
}
this.prefixCodePoint = prefix.codePointAt(0);
this.baseDecode = baseDecode;
}
decode(text) {
if (typeof text === 'string') {
if (text.codePointAt(0) !== this.prefixCodePoint) {
throw Error(`Unable to decode multibase string ${ JSON.stringify(text) }, ${ this.name } decoder only supports inputs prefixed with ${ this.prefix }`);
}
return this.baseDecode(text.slice(this.prefix.length));
} else {
throw Error('Can only multibase decode strings');
}
}
or(decoder) {
return or(this, decoder);
}
}
class ComposedDecoder {
constructor(decoders) {
this.decoders = decoders;
}
or(decoder) {
return or(this, decoder);
}
decode(input) {
const prefix = input[0];
const decoder = this.decoders[prefix];
if (decoder) {
return decoder.decode(input);
} else {
throw RangeError(`Unable to decode multibase string ${ JSON.stringify(input) }, only inputs prefixed with ${ Object.keys(this.decoders) } are supported`);
}
}
}
const or = (left, right) => new ComposedDecoder({
...left.decoders || { [left.prefix]: left },
...right.decoders || { [right.prefix]: right }
});
class Codec {
constructor(name, prefix, baseEncode, baseDecode) {
this.name = name;
this.prefix = prefix;
this.baseEncode = baseEncode;
this.baseDecode = baseDecode;
this.encoder = new Encoder(name, prefix, baseEncode);
this.decoder = new Decoder(name, prefix, baseDecode);
}
encode(input) {
return this.encoder.encode(input);
}
decode(input) {
return this.decoder.decode(input);
}
}
const from$1 = ({name, prefix, encode, decode}) => new Codec(name, prefix, encode, decode);
const baseX = ({prefix, name, alphabet}) => {
const {encode, decode} = _brrp__multiformats_scope_baseX(alphabet, name);
return from$1({
prefix,
name,
encode,
decode: text => coerce(decode(text))
});
};
const decode$7 = (string, alphabet, bitsPerChar, name) => {
const codes = {};
for (let i = 0; i < alphabet.length; ++i) {
codes[alphabet[i]] = i;
}
let end = string.length;
while (string[end - 1] === '=') {
--end;
}
const out = new Uint8Array(end * bitsPerChar / 8 | 0);
let bits = 0;
let buffer = 0;
let written = 0;
for (let i = 0; i < end; ++i) {
const value = codes[string[i]];
if (value === undefined) {
throw new SyntaxError(`Non-${ name } character`);
}
buffer = buffer << bitsPerChar | value;
bits += bitsPerChar;
if (bits >= 8) {
bits -= 8;
out[written++] = 255 & buffer >> bits;
}
}
if (bits >= bitsPerChar || 255 & buffer << 8 - bits) {
throw new SyntaxError('Unexpected end of data');
}
return out;
};
const encode$6 = (data, alphabet, bitsPerChar) => {
const pad = alphabet[alphabet.length - 1] === '=';
const mask = (1 << bitsPerChar) - 1;
let out = '';
let bits = 0;
let buffer = 0;
for (let i = 0; i < data.length; ++i) {
buffer = buffer << 8 | data[i];
bits += 8;
while (bits > bitsPerChar) {
bits -= bitsPerChar;
out += alphabet[mask & buffer >> bits];
}
}
if (bits) {
out += alphabet[mask & buffer << bitsPerChar - bits];
}
if (pad) {
while (out.length * bitsPerChar & 7) {
out += '=';
}
}
return out;
};
const rfc4648 = ({name, prefix, bitsPerChar, alphabet}) => {
return from$1({
prefix,
name,
encode(input) {
return encode$6(input, alphabet, bitsPerChar);
},
decode(input) {
return decode$7(input, alphabet, bitsPerChar, name);
}
});
};
const identity$2 = from$1({
prefix: '\0',
name: 'identity',
encode: buf => toString$4(buf),
decode: str => fromString$2(str)
});
var identityBase = /*#__PURE__*/Object.freeze({
__proto__: null,
identity: identity$2
});
const base2 = rfc4648({
prefix: '0',
name: 'base2',
alphabet: '01',
bitsPerChar: 1
});
var base2$1 = /*#__PURE__*/Object.freeze({
__proto__: null,
base2: base2
});
const base8 = rfc4648({
prefix: '7',
name: 'base8',
alphabet: '01234567',
bitsPerChar: 3
});
var base8$1 = /*#__PURE__*/Object.freeze({
__proto__: null,
base8: base8
});
const base10 = baseX({
prefix: '9',
name: 'base10',
alphabet: '0123456789'
});
var base10$1 = /*#__PURE__*/Object.freeze({
__proto__: null,
base10: base10
});
const base16 = rfc4648({
prefix: 'f',
name: 'base16',
alphabet: '0123456789abcdef',
bitsPerChar: 4
});
const base16upper = rfc4648({
prefix: 'F',
name: 'base16upper',
alphabet: '0123456789ABCDEF',
bitsPerChar: 4
});
var base16$1 = /*#__PURE__*/Object.freeze({
__proto__: null,
base16: base16,
base16upper: base16upper
});
const base32 = rfc4648({
prefix: 'b',
name: 'base32',
alphabet: 'abcdefghijklmnopqrstuvwxyz234567',
bitsPerChar: 5
});
const base32upper = rfc4648({
prefix: 'B',
name: 'base32upper',
alphabet: 'ABCDEFGHIJKLMNOPQRSTUVWXYZ234567',
bitsPerChar: 5
});
const base32pad = rfc4648({
prefix: 'c',
name: 'base32pad',
alphabet: 'abcdefghijklmnopqrstuvwxyz234567=',
bitsPerChar: 5
});
const base32padupper = rfc4648({
prefix: 'C',
name: 'base32padupper',
alphabet: 'ABCDEFGHIJKLMNOPQRSTUVWXYZ234567=',
bitsPerChar: 5
});
const base32hex = rfc4648({
prefix: 'v',
name: 'base32hex',
alphabet: '0123456789abcdefghijklmnopqrstuv',
bitsPerChar: 5
});
const base32hexupper = rfc4648({
prefix: 'V',
name: 'base32hexupper',
alphabet: '0123456789ABCDEFGHIJKLMNOPQRSTUV',
bitsPerChar: 5
});
const base32hexpad = rfc4648({
prefix: 't',
name: 'base32hexpad',
alphabet: '0123456789abcdefghijklmnopqrstuv=',
bitsPerChar: 5
});
const base32hexpadupper = rfc4648({
prefix: 'T',
name: 'base32hexpadupper',
alphabet: '0123456789ABCDEFGHIJKLMNOPQRSTUV=',
bitsPerChar: 5
});
const base32z = rfc4648({
prefix: 'h',
name: 'base32z',
alphabet: 'ybndrfg8ejkmcpqxot1uwisza345h769',
bitsPerChar: 5
});
var base32$1 = /*#__PURE__*/Object.freeze({
__proto__: null,
base32: base32,
base32upper: base32upper,
base32pad: base32pad,
base32padupper: base32padupper,
base32hex: base32hex,
base32hexupper: base32hexupper,
base32hexpad: base32hexpad,
base32hexpadupper: base32hexpadupper,
base32z: base32z
});
const base36 = baseX({
prefix: 'k',
name: 'base36',
alphabet: '0123456789abcdefghijklmnopqrstuvwxyz'
});
const base36upper = baseX({
prefix: 'K',
name: 'base36upper',
alphabet: '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ'
});
var base36$1 = /*#__PURE__*/Object.freeze({
__proto__: null,
base36: base36,
base36upper: base36upper
});
const base58btc = baseX({
name: 'base58btc',
prefix: 'z',
alphabet: '123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz'
});
const base58flickr = baseX({
name: 'base58flickr',
prefix: 'Z',
alphabet: '123456789abcdefghijkmnopqrstuvwxyzABCDEFGHJKLMNPQRSTUVWXYZ'
});
var base58 = /*#__PURE__*/Object.freeze({
__proto__: null,
base58btc: base58btc,
base58flickr: base58flickr
});
const base64$2 = rfc4648({
prefix: 'm',
name: 'base64',
alphabet: 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/',
bitsPerChar: 6
});
const base64pad = rfc4648({
prefix: 'M',
name: 'base64pad',
alphabet: 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/=',
bitsPerChar: 6
});
const base64url = rfc4648({
prefix: 'u',
name: 'base64url',
alphabet: 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_',
bitsPerChar: 6
});
const base64urlpad = rfc4648({
prefix: 'U',
name: 'base64urlpad',
alphabet: 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_=',
bitsPerChar: 6
});
var base64$3 = /*#__PURE__*/Object.freeze({
__proto__: null,
base64: base64$2,
base64pad: base64pad,
base64url: base64url,
base64urlpad: base64urlpad
});
const alphabet = Array.from('\uD83D\uDE80\uD83E\uDE90\u2604\uD83D\uDEF0\uD83C\uDF0C\uD83C\uDF11\uD83C\uDF12\uD83C\uDF13\uD83C\uDF14\uD83C\uDF15\uD83C\uDF16\uD83C\uDF17\uD83C\uDF18\uD83C\uDF0D\uD83C\uDF0F\uD83C\uDF0E\uD83D\uDC09\u2600\uD83D\uDCBB\uD83D\uDDA5\uD83D\uDCBE\uD83D\uDCBF\uD83D\uDE02\u2764\uD83D\uDE0D\uD83E\uDD23\uD83D\uDE0A\uD83D\uDE4F\uD83D\uDC95\uD83D\uDE2D\uD83D\uDE18\uD83D\uDC4D\uD83D\uDE05\uD83D\uDC4F\uD83D\uDE01\uD83D\uDD25\uD83E\uDD70\uD83D\uDC94\uD83D\uDC96\uD83D\uDC99\uD83D\uDE22\uD83E\uDD14\uD83D\uDE06\uD83D\uDE44\uD83D\uDCAA\uD83D\uDE09\u263A\uD83D\uDC4C\uD83E\uDD17\uD83D\uDC9C\uD83D\uDE14\uD83D\uDE0E\uD83D\uDE07\uD83C\uDF39\uD83E\uDD26\uD83C\uDF89\uD83D\uDC9E\u270C\u2728\uD83E\uDD37\uD83D\uDE31\uD83D\uDE0C\uD83C\uDF38\uD83D\uDE4C\uD83D\uDE0B\uD83D\uDC97\uD83D\uDC9A\uD83D\uDE0F\uD83D\uDC9B\uD83D\uDE42\uD83D\uDC93\uD83E\uDD29\uD83D\uDE04\uD83D\uDE00\uD83D\uDDA4\uD83D\uDE03\uD83D\uDCAF\uD83D\uDE48\uD83D\uDC47\uD83C\uDFB6\uD83D\uDE12\uD83E\uDD2D\u2763\uD83D\uDE1C\uD83D\uDC8B\uD83D\uDC40\uD83D\uDE2A\uD83D\uDE11\uD83D\uDCA5\uD83D\uDE4B\uD83D\uDE1E\uD83D\uDE29\uD83D\uDE21\uD83E\uDD2A\uD83D\uDC4A\uD83E\uDD73\uD83D\uDE25\uD83E\uDD24\uD83D\uDC49\uD83D\uDC83\uD83D\uDE33\u270B\uD83D\uDE1A\uD83D\uDE1D\uD83D\uDE34\uD83C\uDF1F\uD83D\uDE2C\uD83D\uDE43\uD83C\uDF40\uD83C\uDF37\uD83D\uDE3B\uD83D\uDE13\u2B50\u2705\uD83E\uDD7A\uD83C\uDF08\uD83D\uDE08\uD83E\uDD18\uD83D\uDCA6\u2714\uD83D\uDE23\uD83C\uDFC3\uD83D\uDC90\u2639\uD83C\uDF8A\uD83D\uDC98\uD83D\uDE20\u261D\uD83D\uDE15\uD83C\uDF3A\uD83C\uDF82\uD83C\uDF3B\uD83D\uDE10\uD83D\uDD95\uD83D\uDC9D\uD83D\uDE4A\uD83D\uDE39\uD83D\uDDE3\uD83D\uDCAB\uD83D\uDC80\uD83D\uDC51\uD83C\uDFB5\uD83E\uDD1E\uD83D\uDE1B\uD83D\uDD34\uD83D\uDE24\uD83C\uDF3C\uD83D\uDE2B\u26BD\uD83E\uDD19\u2615\uD83C\uDFC6\uD83E\uDD2B\uD83D\uDC48\uD83D\uDE2E\uD83D\uDE46\uD83C\uDF7B\uD83C\uDF43\uD83D\uDC36\uD83D\uDC81\uD83D\uDE32\uD83C\uDF3F\uD83E\uDDE1\uD83C\uDF81\u26A1\uD83C\uDF1E\uD83C\uDF88\u274C\u270A\uD83D\uDC4B\uD83D\uDE30\uD83E\uDD28\uD83D\uDE36\uD83E\uDD1D\uD83D\uDEB6\uD83D\uDCB0\uD83C\uDF53\uD83D\uDCA2\uD83E\uDD1F\uD83D\uDE41\uD83D\uDEA8\uD83D\uDCA8\uD83E\uDD2C\u2708\uD83C\uDF80\uD83C\uDF7A\uD83E\uDD13\uD83D\uDE19\uD83D\uDC9F\uD83C\uDF31\uD83D\uDE16\uD83D\uDC76\uD83E\uDD74\u25B6\u27A1\u2753\uD83D\uDC8E\uD83D\uDCB8\u2B07\uD83D\uDE28\uD83C\uDF1A\uD83E\uDD8B\uD83D\uDE37\uD83D\uDD7A\u26A0\uD83D\uDE45\uD83D\uDE1F\uD83D\uDE35\uD83D\uDC4E\uD83E\uDD32\uD83E\uDD20\uD83E\uDD27\uD83D\uDCCC\uD83D\uDD35\uD83D\uDC85\uD83E\uDDD0\uD83D\uDC3E\uD83C\uDF52\uD83D\uDE17\uD83E\uDD11\uD83C\uDF0A\uD83E\uDD2F\uD83D\uDC37\u260E\uD83D\uDCA7\uD83D\uDE2F\uD83D\uDC86\uD83D\uDC46\uD83C\uDFA4\uD83D\uDE47\uD83C\uDF51\u2744\uD83C\uDF34\uD83D\uDCA3\uD83D\uDC38\uD83D\uDC8C\uD83D\uDCCD\uD83E\uDD40\uD83E\uDD22\uD83D\uDC45\uD83D\uDCA1\uD83D\uDCA9\uD83D\uDC50\uD83D\uDCF8\uD83D\uDC7B\uD83E\uDD10\uD83E\uDD2E\uD83C\uDFBC\uD83E\uDD75\uD83D\uDEA9\uD83C\uDF4E\uD83C\uDF4A\uD83D\uDC7C\uD83D\uDC8D\uD83D\uDCE3\uD83E\uDD42');
const alphabetBytesToChars = alphabet.reduce((p, c, i) => {
p[i] = c;
return p;
}, []);
const alphabetCharsToBytes = alphabet.reduce((p, c, i) => {
p[c.codePointAt(0)] = i;
return p;
}, []);
function encode$5(data) {
return data.reduce((p, c) => {
p += alphabetBytesToChars[c];
return p;
}, '');
}
function decode$6(str) {
const byts = [];
for (const char of str) {
const byt = alphabetCharsToBytes[char.codePointAt(0)];
if (byt === undefined) {
throw new Error(`Non-base256emoji character: ${ char }`);
}
byts.push(byt);
}
return new Uint8Array(byts);
}
const base256emoji = from$1({
prefix: '\uD83D\uDE80',
name: 'base256emoji',
encode: encode$5,
decode: decode$6
});
var base256emoji$1 = /*#__PURE__*/Object.freeze({
__proto__: null,
base256emoji: base256emoji
});
var encode_1$1 = encode$4;
var MSB$2 = 128, REST$2 = 127, MSBALL$1 = ~REST$2, INT$1 = Math.pow(2, 31);
function encode$4(num, out, offset) {
out = out || [];
offset = offset || 0;
var oldOffset = offset;
while (num >= INT$1) {
out[offset++] = num & 255 | MSB$2;
num /= 128;
}
while (num & MSBALL$1) {
out[offset++] = num & 255 | MSB$2;
num >>>= 7;
}
out[offset] = num | 0;
encode$4.bytes = offset - oldOffset + 1;
return out;
}
var decode$5 = read$1;
var MSB$1$1 = 128, REST$1$1 = 127;
function read$1(buf, offset) {
var res = 0, offset = offset || 0, shift = 0, counter = offset, b, l = buf.length;
do {
if (counter >= l) {
read$1.bytes = 0;
throw new RangeError('Could not decode varint');
}
b = buf[counter++];
res += shift < 28 ? (b & REST$1$1) << shift : (b & REST$1$1) * Math.pow(2, shift);
shift += 7;
} while (b >= MSB$1$1);
read$1.bytes = counter - offset;
return res;
}
var N1$2 = Math.pow(2, 7);
var N2$2 = Math.pow(2, 14);
var N3$2 = Math.pow(2, 21);
var N4$2 = Math.pow(2, 28);
var N5$2 = Math.pow(2, 35);
var N6$2 = Math.pow(2, 42);
var N7$2 = Math.pow(2, 49);
var N8$2 = Math.pow(2, 56);
var N9$2 = Math.pow(2, 63);
var length$1 = function (value) {
return value < N1$2 ? 1 : value < N2$2 ? 2 : value < N3$2 ? 3 : value < N4$2 ? 4 : value < N5$2 ? 5 : value < N6$2 ? 6 : value < N7$2 ? 7 : value < N8$2 ? 8 : value < N9$2 ? 9 : 10;
};
var varint$1 = {
encode: encode_1$1,
decode: decode$5,
encodingLength: length$1
};
var _brrp_varint = varint$1;
const decode$4 = (data, offset = 0) => {
const code = _brrp_varint.decode(data, offset);
return [
code,
_brrp_varint.decode.bytes
];
};
const encodeTo = (int, target, offset = 0) => {
_brrp_varint.encode(int, target, offset);
return target;
};
const encodingLength = int => {
return _brrp_varint.encodingLength(int);
};
const create$5 = (code, digest) => {
const size = digest.byteLength;
const sizeOffset = encodingLength(code);
const digestOffset = sizeOffset + encodingLength(size);
const bytes = new Uint8Array(digestOffset + size);
encodeTo(code, bytes, 0);
encodeTo(size, bytes, sizeOffset);
bytes.set(digest, digestOffset);
return new Digest(code, size, digest, bytes);
};
const decode$3 = multihash => {
const bytes = coerce(multihash);
const [code, sizeOffset] = decode$4(bytes);
const [size, digestOffset] = decode$4(bytes.subarray(sizeOffset));
const digest = bytes.subarray(sizeOffset + digestOffset);
if (digest.byteLength !== size) {
throw new Error('Incorrect length');
}
return new Digest(code, size, digest, bytes);
};
const equals$1 = (a, b) => {
if (a === b) {
return true;
} else {
return a.code === b.code && a.size === b.size && equals$2(a.bytes, b.bytes);
}
};
class Digest {
constructor(code, size, digest, bytes) {
this.code = code;
this.size = size;
this.digest = digest;
this.bytes = bytes;
}
}
const from = ({name, code, encode}) => new Hasher(name, code, encode);
class Hasher {
constructor(name, code, encode) {
this.name = name;
this.code = code;
this.encode = encode;
}
digest(input) {
if (input instanceof Uint8Array) {
const result = this.encode(input);
return result instanceof Uint8Array ? create$5(this.code, result) : result.then(digest => create$5(this.code, digest));
} else {
throw Error('Unknown type, must be binary type');
}
}
}
const sha = name => async data => new Uint8Array(await crypto.subtle.digest(name, data));
const sha256$1 = from({
name: 'sha2-256',
code: 18,
encode: sha('SHA-256')
});
const sha512$1 = from({
name: 'sha2-512',
code: 19,
encode: sha('SHA-512')
});
var sha2 = /*#__PURE__*/Object.freeze({
__proto__: null,
sha256: sha256$1,
sha512: sha512$1
});
const code = 0;
const name = 'identity';
const encode$3 = coerce;
const digest = input => create$5(code, encode$3(input));
const identity = {
code,
name,
encode: encode$3,
digest
};
var identity$1 = /*#__PURE__*/Object.freeze({
__proto__: null,
identity: identity
});
new TextEncoder();
new TextDecoder();
class CID {
constructor(version, code, multihash, bytes) {
this.code = code;
this.version = version;
this.multihash = multihash;
this.bytes = bytes;
this.byteOffset = bytes.byteOffset;
this.byteLength = bytes.byteLength;
this.asCID = this;
this._baseCache = new Map();
Object.defineProperties(this, {
byteOffset: hidden,
byteLength: hidden,
code: readonly,
version: readonly,
multihash: readonly,
bytes: readonly,
_baseCache: hidden,
asCID: hidden
});
}
toV0() {
switch (this.version) {
case 0: {
return this;
}
default: {
const {code, multihash} = this;
if (code !== DAG_PB_CODE) {
throw new Error('Cannot convert a non dag-pb CID to CIDv0');
}
if (multihash.code !== SHA_256_CODE) {
throw new Error('Cannot convert non sha2-256 multihash CID to CIDv0');
}
return CID.createV0(multihash);
}
}
}
toV1() {
switch (this.version) {
case 0: {
const {code, digest} = this.multihash;
const multihash = create$5(code, digest);
return CID.createV1(this.code, multihash);
}
case 1: {
return this;
}
default: {
throw Error(`Can not convert CID version ${ this.version } to version 0. This is a bug please report`);
}
}
}
equals(other) {
return other && this.code === other.code && this.version === other.version && equals$1(this.multihash, other.multihash);
}
toString(base) {
const {bytes, version, _baseCache} = this;
switch (version) {
case 0:
return toStringV0(bytes, _baseCache, base || base58btc.encoder);
default:
return toStringV1(bytes, _baseCache, base || base32.encoder);
}
}
toJSON() {
return {
code: this.code,
version: this.version,
hash: this.multihash.bytes
};
}
get [Symbol.toStringTag]() {
return 'CID';
}
[Symbol.for('nodejs.util.inspect.custom')]() {
return 'CID(' + this.toString() + ')';
}
static isCID(value) {
deprecate(/^0\.0/, IS_CID_DEPRECATION);
return !!(value && (value[cidSymbol] || value.asCID === value));
}
get toBaseEncodedString() {
throw new Error('Deprecated, use .toString()');
}
get codec() {
throw new Error('"codec" property is deprecated, use integer "code" property instead');
}
get buffer() {
throw new Error('Deprecated .buffer property, use .bytes to get Uint8Array instead');
}
get multibaseName() {
throw new Error('"multibaseName" property is deprecated');
}
get prefix() {
throw new Error('"prefix" property is deprecated');
}
static asCID(value) {
if (value instanceof CID) {
return value;
} else if (value != null && value.asCID === value) {
const {version, code, multihash, bytes} = value;
return new CID(version, code, multihash, bytes || encodeCID(version, code, multihash.bytes));
} else if (value != null && value[cidSymbol] === true) {
const {version, multihash, code} = value;
const digest = decode$3(multihash);
return CID.create(version, code, digest);
} else {
return null;
}
}
static create(version, code, digest) {
if (typeof code !== 'number') {
throw new Error('String codecs are no longer supported');
}
switch (version) {
case 0: {
if (code !== DAG_PB_CODE) {
throw new Error(`Version 0 CID must use dag-pb (code: ${ DAG_PB_CODE }) block encoding`);
} else {
return new CID(version, code, digest, digest.bytes);
}
}
case 1: {
const bytes = encodeCID(version, code, digest.bytes);
return new CID(version, code, digest, bytes);
}
default: {
throw new Error('Invalid version');
}
}
}
static createV0(digest) {
return CID.create(0, DAG_PB_CODE, digest);
}
static createV1(code, digest) {
return CID.create(1, code, digest);
}
static decode(bytes) {
const [cid, remainder] = CID.decodeFirst(bytes);
if (remainder.length) {
throw new Error('Incorrect length');
}
return cid;
}
static decodeFirst(bytes) {
const specs = CID.inspectBytes(bytes);
const prefixSize = specs.size - specs.multihashSize;
const multihashBytes = coerce(bytes.subarray(prefixSize, prefixSize + specs.multihashSize));
if (multihashBytes.byteLength !== specs.multihashSize) {
throw new Error('Incorrect length');
}
const digestBytes = multihashBytes.subarray(specs.multihashSize - specs.digestSize);
const digest = new Digest(specs.multihashCode, specs.digestSize, digestBytes, multihashBytes);
const cid = specs.version === 0 ? CID.createV0(digest) : CID.createV1(specs.codec, digest);
return [
cid,
bytes.subarray(specs.size)
];
}
static inspectBytes(initialBytes) {
let offset = 0;
const next = () => {
const [i, length] = decode$4(initialBytes.subarray(offset));
offset += length;
return i;
};
let version = next();
let codec = DAG_PB_CODE;
if (version === 18) {
version = 0;
offset = 0;
} else if (version === 1) {
codec = next();
}
if (version !== 0 && version !== 1) {
throw new RangeError(`Invalid CID version ${ version }`);
}
const prefixSize = offset;
const multihashCode = next();
const digestSize = next();
const size = offset + digestSize;
const multihashSize = size - prefixSize;
return {
version,
codec,
multihashCode,
digestSize,
multihashSize,
size
};
}
static parse(source, base) {
const [prefix, bytes] = parseCIDtoBytes(source, base);
const cid = CID.decode(bytes);
cid._baseCache.set(prefix, source);
return cid;
}
}
const parseCIDtoBytes = (source, base) => {
switch (source[0]) {
case 'Q': {
const decoder = base || base58btc;
return [
base58btc.prefix,
decoder.decode(`${ base58btc.prefix }${ source }`)
];
}
case base58btc.prefix: {
const decoder = base || base58btc;
return [
base58btc.prefix,
decoder.decode(source)
];
}
case base32.prefix: {
const decoder = base || base32;
return [
base32.prefix,
decoder.decode(source)
];
}
default: {
if (base == null) {
throw Error('To parse non base32 or base58btc encoded CID multibase decoder must be provided');
}
return [
source[0],
base.decode(source)
];
}
}
};
const toStringV0 = (bytes, cache, base) => {
const {prefix} = base;
if (prefix !== base58btc.prefix) {
throw Error(`Cannot string encode V0 in ${ base.name } encoding`);
}
const cid = cache.get(prefix);
if (cid == null) {
const cid = base.encode(bytes).slice(1);
cache.set(prefix, cid);
return cid;
} else {
return cid;
}
};
const toStringV1 = (bytes, cache, base) => {
const {prefix} = base;
const cid = cache.get(prefix);
if (cid == null) {
const cid = base.encode(bytes);
cache.set(prefix, cid);
return cid;
} else {
return cid;
}
};
const DAG_PB_CODE = 112;
const SHA_256_CODE = 18;
const encodeCID = (version, code, multihash) => {
const codeOffset = encodingLength(version);
const hashOffset = codeOffset + encodingLength(code);
const bytes = new Uint8Array(hashOffset + multihash.byteLength);
encodeTo(version, bytes, 0);
encodeTo(code, bytes, codeOffset);
bytes.set(multihash, hashOffset);
return bytes;
};
const cidSymbol = Symbol.for('@ipld/js-cid/CID');
const readonly = {
writable: false,
configurable: false,
enumerable: true
};
const hidden = {
writable: false,
enumerable: false,
configurable: false
};
const version$3 = '0.0.0-dev';
const deprecate = (range, message) => {
if (range.test(version$3)) {
console.warn(message);
} else {
throw new Error(message);
}
};
const IS_CID_DEPRECATION = `CID.isCID(v) is deprecated and will be removed in the next major release.
Following code pattern:
if (CID.isCID(value)) {
doSomethingWithCID(value)
}
Is replaced with:
const cid = CID.asCID(value)
if (cid) {
// Make sure to use cid instead of value
doSomethingWithCID(cid)
}
`;
const bases = {
...identityBase,
...base2$1,
...base8$1,
...base10$1,
...base16$1,
...base32$1,
...base36$1,
...base58,
...base64$3,
...base256emoji$1
};
({
...sha2,
...identity$1
});
function alloc(size = 0) {
if (globalThis.Buffer != null && globalThis.Buffer.alloc != null) {
return globalThis.Buffer.alloc(size);
}
return new Uint8Array(size);
}
function allocUnsafe$1(size = 0) {
if (globalThis.Buffer != null && globalThis.Buffer.allocUnsafe != null) {
return globalThis.Buffer.allocUnsafe(size);
}
return new Uint8Array(size);
}
function createCodec$1(name, prefix, encode, decode) {
return {
name,
prefix,
encoder: {
name,
prefix,
encode
},
decoder: { decode }
};
}
const string = createCodec$1('utf8', 'u', buf => {
const decoder = new TextDecoder('utf8');
return 'u' + decoder.decode(buf);
}, str => {
const encoder = new TextEncoder();
return encoder.encode(str.substring(1));
});
const ascii = createCodec$1('ascii', 'a', buf => {
let string = 'a';
for (let i = 0; i < buf.length; i++) {
string += String.fromCharCode(buf[i]);
}
return string;
}, str => {
str = str.substring(1);
const buf = allocUnsafe$1(str.length);
for (let i = 0; i < str.length; i++) {
buf[i] = str.charCodeAt(i);
}
return buf;
});
const BASES = {
utf8: string,
'utf-8': string,
hex: bases.base16,
latin1: ascii,
ascii: ascii,
binary: ascii,
...bases
};
function fromString$1(string, encoding = 'utf8') {
const base = BASES[encoding];
if (!base) {
throw new Error(`Unsupported encoding "${ encoding }"`);
}
if ((encoding === 'utf8' || encoding === 'utf-8') && globalThis.Buffer != null && globalThis.Buffer.from != null) {
return globalThis.Buffer.from(string, 'utf8');
}
return base.decoder.decode(`${ base.prefix }${ string }`);
}
function toString$3(array, encoding = 'utf8') {
const base = BASES[encoding];
if (!base) {
throw new Error(`Unsupported encoding "${ encoding }"`);
}
if ((encoding === 'utf8' || encoding === 'utf-8') && globalThis.Buffer != null && globalThis.Buffer.from != null) {
return globalThis.Buffer.from(array.buffer, array.byteOffset, array.byteLength).toString('utf8');
}
return base.encoder.encode(array).substring(1);
}
/**
* Convert input to a byte array.
*
* Handles both `0x` prefixed and non-prefixed strings.
*/
function hexToBytes$1(hex) {
if (typeof hex === "string") {
const _hex = hex.replace(/^0x/i, "");
return fromString$1(_hex.toLowerCase(), "base16");
}
return hex;
}
/**
* Convert byte array to hex string (no `0x` prefix).
*/
const bytesToHex$1 = (bytes) => toString$3(bytes, "base16");
/**
* Decode byte array to utf-8 string.
*/
const bytesToUtf8 = (b) => toString$3(b, "utf8");
/**
* Encode utf-8 string to byte array.
*/
const utf8ToBytes = (s) => fromString$1(s, "utf8");
/**
* Concatenate using Uint8Arrays as `Buffer` has a different behavior with `DataView`
*/
function concat$1(byteArrays, totalLength) {
const len = totalLength ?? byteArrays.reduce((acc, curr) => acc + curr.length, 0);
const res = new Uint8Array(len);
let offset = 0;
for (const bytes of byteArrays) {
res.set(bytes, offset);
offset += bytes.length;
}
return res;
}
const randomBytes$1 = utils$1.randomBytes;
utils$1.sha256;
function keccak256(input) {
return new Uint8Array(sha3.keccak256.arrayBuffer(input));
}
function compressPublicKey$1(publicKey) {
if (publicKey.length === 64) {
publicKey = concat$1([new Uint8Array([4]), publicKey], 65);
}
const point = Point$1.fromHex(publicKey);
return point.toRawBytes(true);
}
/**
* Verify an ECDSA signature.
*/
function verifySignature(signature, message, publicKey) {
try {
const _signature = Signature$1.fromCompact(signature.slice(0, 64));
return verify$1(_signature, message, publicKey);
}
catch {
return false;
}
}
// Maximum encoded size of an ENR
const MAX_RECORD_SIZE = 300;
const ERR_INVALID_ID = "Invalid record id";
const ERR_NO_SIGNATURE = "No valid signature found";
// The maximum length of byte size of a multiaddr to encode in the `multiaddr` field
// The size is a big endian 16-bit unsigned integer
const MULTIADDR_LENGTH_SIZE = 2;
const version$2 = "logger/5.7.0";
let _permanentCensorErrors = false;
let _censorErrors = false;
const LogLevels = { debug: 1, "default": 2, info: 2, warning: 3, error: 4, off: 5 };
let _logLevel = LogLevels["default"];
let _globalLogger = null;
function _checkNormalize() {
try {
const missing = [];
// Make sure all forms of normalization are supported
["NFD", "NFC", "NFKD", "NFKC"].forEach((form) => {
try {
if ("test".normalize(form) !== "test") {
throw new Error("bad normalize");
}
;
}
catch (error) {
missing.push(form);
}
});
if (missing.length) {
throw new Error("missing " + missing.join(", "));
}
if (String.fromCharCode(0xe9).normalize("NFD") !== String.fromCharCode(0x65, 0x0301)) {
throw new Error("broken implementation");
}
}
catch (error) {
return error.message;
}
return null;
}
const _normalizeError = _checkNormalize();
var LogLevel;
(function (LogLevel) {
LogLevel["DEBUG"] = "DEBUG";
LogLevel["INFO"] = "INFO";
LogLevel["WARNING"] = "WARNING";
LogLevel["ERROR"] = "ERROR";
LogLevel["OFF"] = "OFF";
})(LogLevel || (LogLevel = {}));
var ErrorCode;
(function (ErrorCode) {
///////////////////
// Generic Errors
// Unknown Error
ErrorCode["UNKNOWN_ERROR"] = "UNKNOWN_ERROR";
// Not Implemented
ErrorCode["NOT_IMPLEMENTED"] = "NOT_IMPLEMENTED";
// Unsupported Operation
// - operation
ErrorCode["UNSUPPORTED_OPERATION"] = "UNSUPPORTED_OPERATION";
// Network Error (i.e. Ethereum Network, such as an invalid chain ID)
// - event ("noNetwork" is not re-thrown in provider.ready; otherwise thrown)
ErrorCode["NETWORK_ERROR"] = "NETWORK_ERROR";
// Some sort of bad response from the server
ErrorCode["SERVER_ERROR"] = "SERVER_ERROR";
// Timeout
ErrorCode["TIMEOUT"] = "TIMEOUT";
///////////////////
// Operational Errors
// Buffer Overrun
ErrorCode["BUFFER_OVERRUN"] = "BUFFER_OVERRUN";
// Numeric Fault
// - operation: the operation being executed
// - fault: the reason this faulted
ErrorCode["NUMERIC_FAULT"] = "NUMERIC_FAULT";
///////////////////
// Argument Errors
// Missing new operator to an object
// - name: The name of the class
ErrorCode["MISSING_NEW"] = "MISSING_NEW";
// Invalid argument (e.g. value is incompatible with type) to a function:
// - argument: The argument name that was invalid
// - value: The value of the argument
ErrorCode["INVALID_ARGUMENT"] = "INVALID_ARGUMENT";
// Missing argument to a function:
// - count: The number of arguments received
// - expectedCount: The number of arguments expected
ErrorCode["MISSING_ARGUMENT"] = "MISSING_ARGUMENT";
// Too many arguments
// - count: The number of arguments received
// - expectedCount: The number of arguments expected
ErrorCode["UNEXPECTED_ARGUMENT"] = "UNEXPECTED_ARGUMENT";
///////////////////
// Blockchain Errors
// Call exception
// - transaction: the transaction
// - address?: the contract address
// - args?: The arguments passed into the function
// - method?: The Solidity method signature
// - errorSignature?: The EIP848 error signature
// - errorArgs?: The EIP848 error parameters
// - reason: The reason (only for EIP848 "Error(string)")
ErrorCode["CALL_EXCEPTION"] = "CALL_EXCEPTION";
// Insufficient funds (< value + gasLimit * gasPrice)
// - transaction: the transaction attempted
ErrorCode["INSUFFICIENT_FUNDS"] = "INSUFFICIENT_FUNDS";
// Nonce has already been used
// - transaction: the transaction attempted
ErrorCode["NONCE_EXPIRED"] = "NONCE_EXPIRED";
// The replacement fee for the transaction is too low
// - transaction: the transaction attempted
ErrorCode["REPLACEMENT_UNDERPRICED"] = "REPLACEMENT_UNDERPRICED";
// The gas limit could not be estimated
// - transaction: the transaction passed to estimateGas
ErrorCode["UNPREDICTABLE_GAS_LIMIT"] = "UNPREDICTABLE_GAS_LIMIT";
// The transaction was replaced by one with a higher gas price
// - reason: "cancelled", "replaced" or "repriced"
// - cancelled: true if reason == "cancelled" or reason == "replaced")
// - hash: original transaction hash
// - replacement: the full TransactionsResponse for the replacement
// - receipt: the receipt of the replacement
ErrorCode["TRANSACTION_REPLACED"] = "TRANSACTION_REPLACED";
///////////////////
// Interaction Errors
// The user rejected the action, such as signing a message or sending
// a transaction
ErrorCode["ACTION_REJECTED"] = "ACTION_REJECTED";
})(ErrorCode || (ErrorCode = {}));
const HEX = "0123456789abcdef";
class Logger {
constructor(version) {
Object.defineProperty(this, "version", {
enumerable: true,
value: version,
writable: false
});
}
_log(logLevel, args) {
const level = logLevel.toLowerCase();
if (LogLevels[level] == null) {
this.throwArgumentError("invalid log level name", "logLevel", logLevel);
}
if (_logLevel > LogLevels[level]) {
return;
}
console.log.apply(console, args);
}
debug(...args) {
this._log(Logger.levels.DEBUG, args);
}
info(...args) {
this._log(Logger.levels.INFO, args);
}
warn(...args) {
this._log(Logger.levels.WARNING, args);
}
makeError(message, code, params) {
// Errors are being censored
if (_censorErrors) {
return this.makeError("censored error", code, {});
}
if (!code) {
code = Logger.errors.UNKNOWN_ERROR;
}
if (!params) {
params = {};
}
const messageDetails = [];
Object.keys(params).forEach((key) => {
const value = params[key];
try {
if (value instanceof Uint8Array) {
let hex = "";
for (let i = 0; i < value.length; i++) {
hex += HEX[value[i] >> 4];
hex += HEX[value[i] & 0x0f];
}
messageDetails.push(key + "=Uint8Array(0x" + hex + ")");
}
else {
messageDetails.push(key + "=" + JSON.stringify(value));
}
}
catch (error) {
messageDetails.push(key + "=" + JSON.stringify(params[key].toString()));
}
});
messageDetails.push(`code=${code}`);
messageDetails.push(`version=${this.version}`);
const reason = message;
let url = "";
switch (code) {
case ErrorCode.NUMERIC_FAULT: {
url = "NUMERIC_FAULT";
const fault = message;
switch (fault) {
case "overflow":
case "underflow":
case "division-by-zero":
url += "-" + fault;
break;
case "negative-power":
case "negative-width":
url += "-unsupported";
break;
case "unbound-bitwise-result":
url += "-unbound-result";
break;
}
break;
}
case ErrorCode.CALL_EXCEPTION:
case ErrorCode.INSUFFICIENT_FUNDS:
case ErrorCode.MISSING_NEW:
case ErrorCode.NONCE_EXPIRED:
case ErrorCode.REPLACEMENT_UNDERPRICED:
case ErrorCode.TRANSACTION_REPLACED:
case ErrorCode.UNPREDICTABLE_GAS_LIMIT:
url = code;
break;
}
if (url) {
message += " [ See: https:/\/links.ethers.org/v5-errors-" + url + " ]";
}
if (messageDetails.length) {
message += " (" + messageDetails.join(", ") + ")";
}
// @TODO: Any??
const error = new Error(message);
error.reason = reason;
error.code = code;
Object.keys(params).forEach(function (key) {
error[key] = params[key];
});
return error;
}
throwError(message, code, params) {
throw this.makeError(message, code, params);
}
throwArgumentError(message, name, value) {
return this.throwError(message, Logger.errors.INVALID_ARGUMENT, {
argument: name,
value: value
});
}
assert(condition, message, code, params) {
if (!!condition) {
return;
}
this.throwError(message, code, params);
}
assertArgument(condition, message, name, value) {
if (!!condition) {
return;
}
this.throwArgumentError(message, name, value);
}
checkNormalize(message) {
if (_normalizeError) {
this.throwError("platform missing String.prototype.normalize", Logger.errors.UNSUPPORTED_OPERATION, {
operation: "String.prototype.normalize", form: _normalizeError
});
}
}
checkSafeUint53(value, message) {
if (typeof (value) !== "number") {
return;
}
if (message == null) {
message = "value not safe";
}
if (value < 0 || value >= 0x1fffffffffffff) {
this.throwError(message, Logger.errors.NUMERIC_FAULT, {
operation: "checkSafeInteger",
fault: "out-of-safe-range",
value: value
});
}
if (value % 1) {
this.throwError(message, Logger.errors.NUMERIC_FAULT, {
operation: "checkSafeInteger",
fault: "non-integer",
value: value
});
}
}
checkArgumentCount(count, expectedCount, message) {
if (message) {
message = ": " + message;
}
else {
message = "";
}
if (count < expectedCount) {
this.throwError("missing argument" + message, Logger.errors.MISSING_ARGUMENT, {
count: count,
expectedCount: expectedCount
});
}
if (count > expectedCount) {
this.throwError("too many arguments" + message, Logger.errors.UNEXPECTED_ARGUMENT, {
count: count,
expectedCount: expectedCount
});
}
}
checkNew(target, kind) {
if (target === Object || target == null) {
this.throwError("missing new", Logger.errors.MISSING_NEW, { name: kind.name });
}
}
checkAbstract(target, kind) {
if (target === kind) {
this.throwError("cannot instantiate abstract class " + JSON.stringify(kind.name) + " directly; use a sub-class", Logger.errors.UNSUPPORTED_OPERATION, { name: target.name, operation: "new" });
}
else if (target === Object || target == null) {
this.throwError("missing new", Logger.errors.MISSING_NEW, { name: kind.name });
}
}
static globalLogger() {
if (!_globalLogger) {
_globalLogger = new Logger(version$2);
}
return _globalLogger;
}
static setCensorship(censorship, permanent) {
if (!censorship && permanent) {
this.globalLogger().throwError("cannot permanently disable censorship", Logger.errors.UNSUPPORTED_OPERATION, {
operation: "setCensorship"
});
}
if (_permanentCensorErrors) {
if (!censorship) {
return;
}
this.globalLogger().throwError("error censorship permanent", Logger.errors.UNSUPPORTED_OPERATION, {
operation: "setCensorship"
});
}
_censorErrors = !!censorship;
_permanentCensorErrors = !!permanent;
}
static setLogLevel(logLevel) {
const level = LogLevels[logLevel.toLowerCase()];
if (level == null) {
Logger.globalLogger().warn("invalid log level - " + logLevel);
return;
}
_logLevel = level;
}
static from(version) {
return new Logger(version);
}
}
Logger.errors = ErrorCode;
Logger.levels = LogLevel;
const version$1 = "bytes/5.7.0";
const logger$2 = new Logger(version$1);
///////////////////////////////
function isHexable(value) {
return !!(value.toHexString);
}
function addSlice(array) {
if (array.slice) {
return array;
}
array.slice = function () {
const args = Array.prototype.slice.call(arguments);
return addSlice(new Uint8Array(Array.prototype.slice.apply(array, args)));
};
return array;
}
function isBytesLike(value) {
return ((isHexString(value) && !(value.length % 2)) || isBytes(value));
}
function isInteger(value) {
return (typeof (value) === "number" && value == value && (value % 1) === 0);
}
function isBytes(value) {
if (value == null) {
return false;
}
if (value.constructor === Uint8Array) {
return true;
}
if (typeof (value) === "string") {
return false;
}
if (!isInteger(value.length) || value.length < 0) {
return false;
}
for (let i = 0; i < value.length; i++) {
const v = value[i];
if (!isInteger(v) || v < 0 || v >= 256) {
return false;
}
}
return true;
}
function arrayify(value, options) {
if (!options) {
options = {};
}
if (typeof (value) === "number") {
logger$2.checkSafeUint53(value, "invalid arrayify value");
const result = [];
while (value) {
result.unshift(value & 0xff);
value = parseInt(String(value / 256));
}
if (result.length === 0) {
result.push(0);
}
return addSlice(new Uint8Array(result));
}
if (options.allowMissingPrefix && typeof (value) === "string" && value.substring(0, 2) !== "0x") {
value = "0x" + value;
}
if (isHexable(value)) {
value = value.toHexString();
}
if (isHexString(value)) {
let hex = value.substring(2);
if (hex.length % 2) {
if (options.hexPad === "left") {
hex = "0" + hex;
}
else if (options.hexPad === "right") {
hex += "0";
}
else {
logger$2.throwArgumentError("hex data is odd-length", "value", value);
}
}
const result = [];
for (let i = 0; i < hex.length; i += 2) {
result.push(parseInt(hex.substring(i, i + 2), 16));
}
return addSlice(new Uint8Array(result));
}
if (isBytes(value)) {
return addSlice(new Uint8Array(value));
}
return logger$2.throwArgumentError("invalid arrayify value", "value", value);
}
function isHexString(value, length) {
if (typeof (value) !== "string" || !value.match(/^0x[0-9A-Fa-f]*$/)) {
return false;
}
if (length && value.length !== 2 + 2 * length) {
return false;
}
return true;
}
const HexCharacters = "0123456789abcdef";
function hexlify(value, options) {
if (!options) {
options = {};
}
if (typeof (value) === "number") {
logger$2.checkSafeUint53(value, "invalid hexlify value");
let hex = "";
while (value) {
hex = HexCharacters[value & 0xf] + hex;
value = Math.floor(value / 16);
}
if (hex.length) {
if (hex.length % 2) {
hex = "0" + hex;
}
return "0x" + hex;
}
return "0x00";
}
if (typeof (value) === "bigint") {
value = value.toString(16);
if (value.length % 2) {
return ("0x0" + value);
}
return "0x" + value;
}
if (options.allowMissingPrefix && typeof (value) === "string" && value.substring(0, 2) !== "0x") {
value = "0x" + value;
}
if (isHexable(value)) {
return value.toHexString();
}
if (isHexString(value)) {
if (value.length % 2) {
if (options.hexPad === "left") {
value = "0x0" + value.substring(2);
}
else if (options.hexPad === "right") {
value += "0";
}
else {
logger$2.throwArgumentError("hex data is odd-length", "value", value);
}
}
return value.toLowerCase();
}
if (isBytes(value)) {
let result = "0x";
for (let i = 0; i < value.length; i++) {
let v = value[i];
result += HexCharacters[(v & 0xf0) >> 4] + HexCharacters[v & 0x0f];
}
return result;
}
return logger$2.throwArgumentError("invalid hexlify value", "value", value);
}
const version = "rlp/5.7.0";
const logger$1 = new Logger(version);
function arrayifyInteger(value) {
const result = [];
while (value) {
result.unshift(value & 0xff);
value >>= 8;
}
return result;
}
function unarrayifyInteger(data, offset, length) {
let result = 0;
for (let i = 0; i < length; i++) {
result = (result * 256) + data[offset + i];
}
return result;
}
function _encode(object) {
if (Array.isArray(object)) {
let payload = [];
object.forEach(function (child) {
payload = payload.concat(_encode(child));
});
if (payload.length <= 55) {
payload.unshift(0xc0 + payload.length);
return payload;
}
const length = arrayifyInteger(payload.length);
length.unshift(0xf7 + length.length);
return length.concat(payload);
}
if (!isBytesLike(object)) {
logger$1.throwArgumentError("RLP object must be BytesLike", "object", object);
}
const data = Array.prototype.slice.call(arrayify(object));
if (data.length === 1 && data[0] <= 0x7f) {
return data;
}
else if (data.length <= 55) {
data.unshift(0x80 + data.length);
return data;
}
const length = arrayifyInteger(data.length);
length.unshift(0xb7 + length.length);
return length.concat(data);
}
function encode$2(object) {
return hexlify(_encode(object));
}
function _decodeChildren(data, offset, childOffset, length) {
const result = [];
while (childOffset < offset + 1 + length) {
const decoded = _decode(data, childOffset);
result.push(decoded.result);
childOffset += decoded.consumed;
if (childOffset > offset + 1 + length) {
logger$1.throwError("child data too short", Logger.errors.BUFFER_OVERRUN, {});
}
}
return { consumed: (1 + length), result: result };
}
// returns { consumed: number, result: Object }
function _decode(data, offset) {
if (data.length === 0) {
logger$1.throwError("data too short", Logger.errors.BUFFER_OVERRUN, {});
}
// Array with extra length prefix
if (data[offset] >= 0xf8) {
const lengthLength = data[offset] - 0xf7;
if (offset + 1 + lengthLength > data.length) {
logger$1.throwError("data short segment too short", Logger.errors.BUFFER_OVERRUN, {});
}
const length = unarrayifyInteger(data, offset + 1, lengthLength);
if (offset + 1 + lengthLength + length > data.length) {
logger$1.throwError("data long segment too short", Logger.errors.BUFFER_OVERRUN, {});
}
return _decodeChildren(data, offset, offset + 1 + lengthLength, lengthLength + length);
}
else if (data[offset] >= 0xc0) {
const length = data[offset] - 0xc0;
if (offset + 1 + length > data.length) {
logger$1.throwError("data array too short", Logger.errors.BUFFER_OVERRUN, {});
}
return _decodeChildren(data, offset, offset + 1, length);
}
else if (data[offset] >= 0xb8) {
const lengthLength = data[offset] - 0xb7;
if (offset + 1 + lengthLength > data.length) {
logger$1.throwError("data array too short", Logger.errors.BUFFER_OVERRUN, {});
}
const length = unarrayifyInteger(data, offset + 1, lengthLength);
if (offset + 1 + lengthLength + length > data.length) {
logger$1.throwError("data array too short", Logger.errors.BUFFER_OVERRUN, {});
}
const result = hexlify(data.slice(offset + 1 + lengthLength, offset + 1 + lengthLength + length));
return { consumed: (1 + lengthLength + length), result: result };
}
else if (data[offset] >= 0x80) {
const length = data[offset] - 0x80;
if (offset + 1 + length > data.length) {
logger$1.throwError("data too short", Logger.errors.BUFFER_OVERRUN, {});
}
const result = hexlify(data.slice(offset + 1, offset + 1 + length));
return { consumed: (1 + length), result: result };
}
return { consumed: 1, result: hexlify(data[offset]) };
}
function decode$2(data) {
const bytes = arrayify(data);
const decoded = _decode(bytes, 0);
if (decoded.consumed !== bytes.length) {
logger$1.throwArgumentError("invalid rlp data", "data", data);
}
return decoded.result;
}
const word = '[a-fA-F\\d:]';
const boundry = options => options && options.includeBoundaries
? `(?:(?<=\\s|^)(?=${word})|(?<=${word})(?=\\s|$))`
: '';
const v4 = '(?:25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]\\d|\\d)(?:\\.(?:25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]\\d|\\d)){3}';
const v6segment = '[a-fA-F\\d]{1,4}';
const v6 = `
(?:
(?:${v6segment}:){7}(?:${v6segment}|:)| // 1:2:3:4:5:6:7:: 1:2:3:4:5:6:7:8
(?:${v6segment}:){6}(?:${v4}|:${v6segment}|:)| // 1:2:3:4:5:6:: 1:2:3:4:5:6::8 1:2:3:4:5:6::8 1:2:3:4:5:6::1.2.3.4
(?:${v6segment}:){5}(?::${v4}|(?::${v6segment}){1,2}|:)| // 1:2:3:4:5:: 1:2:3:4:5::7:8 1:2:3:4:5::8 1:2:3:4:5::7:1.2.3.4
(?:${v6segment}:){4}(?:(?::${v6segment}){0,1}:${v4}|(?::${v6segment}){1,3}|:)| // 1:2:3:4:: 1:2:3:4::6:7:8 1:2:3:4::8 1:2:3:4::6:7:1.2.3.4
(?:${v6segment}:){3}(?:(?::${v6segment}){0,2}:${v4}|(?::${v6segment}){1,4}|:)| // 1:2:3:: 1:2:3::5:6:7:8 1:2:3::8 1:2:3::5:6:7:1.2.3.4
(?:${v6segment}:){2}(?:(?::${v6segment}){0,3}:${v4}|(?::${v6segment}){1,5}|:)| // 1:2:: 1:2::4:5:6:7:8 1:2::8 1:2::4:5:6:7:1.2.3.4
(?:${v6segment}:){1}(?:(?::${v6segment}){0,4}:${v4}|(?::${v6segment}){1,6}|:)| // 1:: 1::3:4:5:6:7:8 1::8 1::3:4:5:6:7:1.2.3.4
(?::(?:(?::${v6segment}){0,5}:${v4}|(?::${v6segment}){1,7}|:)) // ::2:3:4:5:6:7:8 ::2:3:4:5:6:7:8 ::8 ::1.2.3.4
)(?:%[0-9a-zA-Z]{1,})? // %eth0 %1
`.replace(/\s*\/\/.*$/gm, '').replace(/\n/g, '').trim();
// Pre-compile only the exact regexes because adding a global flag make regexes stateful
const v46Exact = new RegExp(`(?:^${v4}$)|(?:^${v6}$)`);
const v4exact = new RegExp(`^${v4}$`);
const v6exact = new RegExp(`^${v6}$`);
const ipRegex = options => options && options.exact
? v46Exact
: new RegExp(`(?:${boundry(options)}${v4}${boundry(options)})|(?:${boundry(options)}${v6}${boundry(options)})`, 'g');
ipRegex.v4 = options => options && options.exact ? v4exact : new RegExp(`${boundry(options)}${v4}${boundry(options)}`, 'g');
ipRegex.v6 = options => options && options.exact ? v6exact : new RegExp(`${boundry(options)}${v6}${boundry(options)}`, 'g');
// Even though the browser version is a no-op, we wrap it to ensure consistent behavior.
function functionTimeout(function_) {
const wrappedFunction = (...arguments_) => function_(...arguments_);
Object.defineProperty(wrappedFunction, 'name', {
value: `functionTimeout(${function_.name || '<anonymous>'})`,
configurable: true,
});
return wrappedFunction;
}
const {toString: toString$2} = Object.prototype;
function isRegexp(value) {
return toString$2.call(value) === '[object RegExp]';
}
const flagMap = {
global: 'g',
ignoreCase: 'i',
multiline: 'm',
dotAll: 's',
sticky: 'y',
unicode: 'u'
};
function clonedRegexp(regexp, options = {}) {
if (!isRegexp(regexp)) {
throw new TypeError('Expected a RegExp instance');
}
const flags = Object.keys(flagMap).map(flag => (
(typeof options[flag] === 'boolean' ? options[flag] : regexp[flag]) ? flagMap[flag] : ''
)).join('');
const clonedRegexp = new RegExp(options.source || regexp.source, flags);
clonedRegexp.lastIndex = typeof options.lastIndex === 'number' ?
options.lastIndex :
regexp.lastIndex;
return clonedRegexp;
}
function isMatch(regex, string, {timeout} = {}) {
try {
return functionTimeout(() => clonedRegexp(regex).test(string), {timeout})();
} catch (error) {
throw error;
}
}
const maxIPv4Length = 15;
const maxIPv6Length = 45;
const options = {
timeout: 400,
};
function isIP(string) {
return isMatch(ipRegex({exact: true}), string.slice(0, maxIPv6Length), options);
}
function isIPv6(string) {
return isMatch(ipRegex.v6({exact: true}), string.slice(0, maxIPv6Length), options);
}
function isIPv4(string) {
return isMatch(ipRegex.v4({exact: true}), string.slice(0, maxIPv4Length), options);
}
const isV4 = isIPv4;
const isV6 = isIPv6;
// Copied from https://github.com/indutny/node-ip/blob/master/lib/ip.js#L7
// but with buf/offset args removed because we don't use them
const toBytes = function (ip) {
let offset = 0;
let result;
ip = ip.trim();
if (isV4(ip)) {
result = new Uint8Array(offset + 4);
ip.split(/\./g).forEach((byte) => {
result[offset++] = parseInt(byte, 10) & 0xff;
});
}
else if (isV6(ip)) {
const sections = ip.split(':', 8);
let i;
for (i = 0; i < sections.length; i++) {
const isv4 = isV4(sections[i]);
let v4Buffer;
if (isv4) {
v4Buffer = toBytes(sections[i]);
sections[i] = toString$3(v4Buffer.slice(0, 2), 'base16');
}
if (v4Buffer != null && ++i < 8) {
sections.splice(i, 0, toString$3(v4Buffer.slice(2, 4), 'base16'));
}
}
if (sections[0] === '') {
while (sections.length < 8)
sections.unshift('0');
}
else if (sections[sections.length - 1] === '') {
while (sections.length < 8)
sections.push('0');
}
else if (sections.length < 8) {
for (i = 0; i < sections.length && sections[i] !== ''; i++)
;
const argv = [i, 1];
for (i = 9 - sections.length; i > 0; i--) {
argv.push('0');
}
sections.splice.apply(sections, argv);
}
result = new Uint8Array(offset + 16);
for (i = 0; i < sections.length; i++) {
const word = parseInt(sections[i], 16);
result[offset++] = (word >> 8) & 0xff;
result[offset++] = word & 0xff;
}
}
if (result == null) {
throw new Error(`invalid ip address "${ip}"`);
}
return result;
};
// Copied from https://github.com/indutny/node-ip/blob/master/lib/ip.js#L63
const toString$1 = function (buf, offset = 0, length) {
offset = ~~offset;
length = length ?? (buf.length - offset);
const result = [];
let string = '';
const view = new DataView(buf.buffer);
if (length === 4) {
// IPv4
for (let i = 0; i < length; i++) {
result.push(buf[offset + i]);
}
string = result.join('.');
}
else if (length === 16) {
// IPv6
for (let i = 0; i < length; i += 2) {
result.push(view.getUint16(offset + i).toString(16));
}
string = result.join(':');
string = string.replace(/(^|:)0(:0)*:0(:|$)/, '$1::$3');
string = string.replace(/:{3,4}/, '::');
}
return string;
};
const V$1 = -1;
const names$1 = {};
const codes$2 = {};
const table$1 = [
[4, 32, 'ip4'],
[6, 16, 'tcp'],
[33, 16, 'dccp'],
[41, 128, 'ip6'],
[42, V$1, 'ip6zone'],
[53, V$1, 'dns', true],
[54, V$1, 'dns4', true],
[55, V$1, 'dns6', true],
[56, V$1, 'dnsaddr', true],
[132, 16, 'sctp'],
[273, 16, 'udp'],
[275, 0, 'p2p-webrtc-star'],
[276, 0, 'p2p-webrtc-direct'],
[277, 0, 'p2p-stardust'],
[280, 0, 'webrtc'],
[290, 0, 'p2p-circuit'],
[301, 0, 'udt'],
[302, 0, 'utp'],
[400, V$1, 'unix', false, true],
// `ipfs` is added before `p2p` for legacy support.
// All text representations will default to `p2p`, but `ipfs` will
// still be supported
[421, V$1, 'ipfs'],
// `p2p` is the preferred name for 421, and is now the default
[421, V$1, 'p2p'],
[443, 0, 'https'],
[444, 96, 'onion'],
[445, 296, 'onion3'],
[446, V$1, 'garlic64'],
[460, 0, 'quic'],
[465, 0, 'webtransport'],
[466, V$1, 'certhash'],
[477, 0, 'ws'],
[478, 0, 'wss'],
[479, 0, 'p2p-websocket-star'],
[480, 0, 'http'],
[777, V$1, 'memory']
];
// populate tables
table$1.forEach(row => {
const proto = createProtocol$1(...row);
codes$2[proto.code] = proto;
names$1[proto.name] = proto;
});
function createProtocol$1(code, size, name, resolvable, path) {
return {
code,
size,
name,
resolvable: Boolean(resolvable),
path: Boolean(path)
};
}
function getProtocol$1(proto) {
if (typeof proto === 'number') {
if (codes$2[proto] != null) {
return codes$2[proto];
}
throw new Error(`no protocol with code: ${proto}`);
}
else if (typeof proto === 'string') {
if (names$1[proto] != null) {
return names$1[proto];
}
throw new Error(`no protocol with name: ${proto}`);
}
throw new Error(`invalid protocol id type: ${typeof proto}`);
}
var encode_1 = encode$1;
var MSB$1 = 0x80
, REST$1 = 0x7F
, MSBALL = ~REST$1
, INT = Math.pow(2, 31);
function encode$1(num, out, offset) {
if (Number.MAX_SAFE_INTEGER && num > Number.MAX_SAFE_INTEGER) {
encode$1.bytes = 0;
throw new RangeError('Could not encode varint')
}
out = out || [];
offset = offset || 0;
var oldOffset = offset;
while(num >= INT) {
out[offset++] = (num & 0xFF) | MSB$1;
num /= 128;
}
while(num & MSBALL) {
out[offset++] = (num & 0xFF) | MSB$1;
num >>>= 7;
}
out[offset] = num | 0;
encode$1.bytes = offset - oldOffset + 1;
return out
}
var decode$1 = read;
var MSB = 0x80
, REST = 0x7F;
function read(buf, offset) {
var res = 0
, offset = offset || 0
, shift = 0
, counter = offset
, b
, l = buf.length;
do {
if (counter >= l || shift > 49) {
read.bytes = 0;
throw new RangeError('Could not decode varint')
}
b = buf[counter++];
res += shift < 28
? (b & REST) << shift
: (b & REST) * Math.pow(2, shift);
shift += 7;
} while (b >= MSB)
read.bytes = counter - offset;
return res
}
var N1$1 = Math.pow(2, 7);
var N2$1 = Math.pow(2, 14);
var N3$1 = Math.pow(2, 21);
var N4$1 = Math.pow(2, 28);
var N5$1 = Math.pow(2, 35);
var N6$1 = Math.pow(2, 42);
var N7$1 = Math.pow(2, 49);
var N8$1 = Math.pow(2, 56);
var N9$1 = Math.pow(2, 63);
var length = function (value) {
return (
value < N1$1 ? 1
: value < N2$1 ? 2
: value < N3$1 ? 3
: value < N4$1 ? 4
: value < N5$1 ? 5
: value < N6$1 ? 6
: value < N7$1 ? 7
: value < N8$1 ? 8
: value < N9$1 ? 9
: 10
)
};
var varint = {
encode: encode_1
, decode: decode$1
, encodingLength: length
};
function concat(arrays, length) {
if (!length) {
length = arrays.reduce((acc, curr) => acc + curr.length, 0);
}
const output = allocUnsafe$1(length);
let offset = 0;
for (const arr of arrays) {
output.set(arr, offset);
offset += arr.length;
}
return output;
}
/**
* Convert [code,Uint8Array] to string
*/
function convertToString(proto, buf) {
const protocol = getProtocol$1(proto);
switch (protocol.code) {
case 4: // ipv4
case 41: // ipv6
return bytes2ip(buf);
case 6: // tcp
case 273: // udp
case 33: // dccp
case 132: // sctp
return bytes2port(buf).toString();
case 53: // dns
case 54: // dns4
case 55: // dns6
case 56: // dnsaddr
case 400: // unix
case 777: // memory
return bytes2str(buf);
case 421: // ipfs
return bytes2mh(buf);
case 444: // onion
return bytes2onion(buf);
case 445: // onion3
return bytes2onion(buf);
case 466: // certhash
return bytes2mb(buf);
default:
return toString$3(buf, 'base16'); // no clue. convert to hex
}
}
function convertToBytes(proto, str) {
const protocol = getProtocol$1(proto);
switch (protocol.code) {
case 4: // ipv4
return ip2bytes(str);
case 41: // ipv6
return ip2bytes(str);
case 6: // tcp
case 273: // udp
case 33: // dccp
case 132: // sctp
return port2bytes(parseInt(str, 10));
case 53: // dns
case 54: // dns4
case 55: // dns6
case 56: // dnsaddr
case 400: // unix
case 777: // memory
return str2bytes(str);
case 421: // ipfs
return mh2bytes(str);
case 444: // onion
return onion2bytes(str);
case 445: // onion3
return onion32bytes(str);
case 466: // certhash
return mb2bytes(str);
default:
return fromString$1(str, 'base16'); // no clue. convert from hex
}
}
const decoders$1 = Object.values(bases).map((c) => c.decoder);
const anybaseDecoder = (function () {
let acc = decoders$1[0].or(decoders$1[1]);
decoders$1.slice(2).forEach((d) => (acc = acc.or(d)));
return acc;
})();
function ip2bytes(ipString) {
if (!isIP(ipString)) {
throw new Error(`invalid ip address "${ipString}"`);
}
return toBytes(ipString);
}
function bytes2ip(ipBuff) {
const ipString = toString$1(ipBuff, 0, ipBuff.length);
if (ipString == null) {
throw new Error('ipBuff is required');
}
if (!isIP(ipString)) {
throw new Error(`invalid ip address "${ipString}"`);
}
return ipString;
}
function port2bytes(port) {
const buf = new ArrayBuffer(2);
const view = new DataView(buf);
view.setUint16(0, port);
return new Uint8Array(buf);
}
function bytes2port(buf) {
const view = new DataView(buf.buffer);
return view.getUint16(buf.byteOffset);
}
function str2bytes(str) {
const buf = fromString$1(str);
const size = Uint8Array.from(varint.encode(buf.length));
return concat([size, buf], size.length + buf.length);
}
function bytes2str(buf) {
const size = varint.decode(buf);
buf = buf.slice(varint.decode.bytes);
if (buf.length !== size) {
throw new Error('inconsistent lengths');
}
return toString$3(buf);
}
function mh2bytes(hash) {
let mh;
if (hash[0] === 'Q' || hash[0] === '1') {
mh = decode$3(base58btc.decode(`z${hash}`)).bytes;
}
else {
mh = CID.parse(hash).multihash.bytes;
}
// the address is a varint prefixed multihash string representation
const size = Uint8Array.from(varint.encode(mh.length));
return concat([size, mh], size.length + mh.length);
}
function mb2bytes(mbstr) {
const mb = anybaseDecoder.decode(mbstr);
const size = Uint8Array.from(varint.encode(mb.length));
return concat([size, mb], size.length + mb.length);
}
function bytes2mb(buf) {
const size = varint.decode(buf);
const hash = buf.slice(varint.decode.bytes);
if (hash.length !== size) {
throw new Error('inconsistent lengths');
}
return 'u' + toString$3(hash, 'base64url');
}
/**
* Converts bytes to bas58btc string
*/
function bytes2mh(buf) {
const size = varint.decode(buf);
const address = buf.slice(varint.decode.bytes);
if (address.length !== size) {
throw new Error('inconsistent lengths');
}
return toString$3(address, 'base58btc');
}
function onion2bytes(str) {
const addr = str.split(':');
if (addr.length !== 2) {
throw new Error(`failed to parse onion addr: ["'${addr.join('", "')}'"]' does not contain a port number`);
}
if (addr[0].length !== 16) {
throw new Error(`failed to parse onion addr: ${addr[0]} not a Tor onion address.`);
}
// onion addresses do not include the multibase prefix, add it before decoding
const buf = base32.decode('b' + addr[0]);
// onion port number
const port = parseInt(addr[1], 10);
if (port < 1 || port > 65536) {
throw new Error('Port number is not in range(1, 65536)');
}
const portBuf = port2bytes(port);
return concat([buf, portBuf], buf.length + portBuf.length);
}
function onion32bytes(str) {
const addr = str.split(':');
if (addr.length !== 2) {
throw new Error(`failed to parse onion addr: ["'${addr.join('", "')}'"]' does not contain a port number`);
}
if (addr[0].length !== 56) {
throw new Error(`failed to parse onion addr: ${addr[0]} not a Tor onion3 address.`);
}
// onion addresses do not include the multibase prefix, add it before decoding
const buf = base32.decode(`b${addr[0]}`);
// onion port number
const port = parseInt(addr[1], 10);
if (port < 1 || port > 65536) {
throw new Error('Port number is not in range(1, 65536)');
}
const portBuf = port2bytes(port);
return concat([buf, portBuf], buf.length + portBuf.length);
}
function bytes2onion(buf) {
const addrBytes = buf.slice(0, buf.length - 2);
const portBytes = buf.slice(buf.length - 2);
const addr = toString$3(addrBytes, 'base32');
const port = bytes2port(portBytes);
return `${addr}:${port}`;
}
var protobufjs = {exports: {}};
var src = {exports: {}};
var indexLight = {exports: {}};
var indexMinimal$1 = {};
var minimal$2 = {};
var aspromise;
var hasRequiredAspromise;
function requireAspromise () {
if (hasRequiredAspromise) return aspromise;
hasRequiredAspromise = 1;
aspromise = asPromise;
/**
* Callback as used by {@link util.asPromise}.
* @typedef asPromiseCallback
* @type {function}
* @param {Error|null} error Error, if any
* @param {...*} params Additional arguments
* @returns {undefined}
*/
/**
* Returns a promise from a node-style callback function.
* @memberof util
* @param {asPromiseCallback} fn Function to call
* @param {*} ctx Function context
* @param {...*} params Function arguments
* @returns {Promise<*>} Promisified function
*/
function asPromise(fn, ctx/*, varargs */) {
var params = new Array(arguments.length - 1),
offset = 0,
index = 2,
pending = true;
while (index < arguments.length)
params[offset++] = arguments[index++];
return new Promise(function executor(resolve, reject) {
params[offset] = function callback(err/*, varargs */) {
if (pending) {
pending = false;
if (err)
reject(err);
else {
var params = new Array(arguments.length - 1),
offset = 0;
while (offset < params.length)
params[offset++] = arguments[offset];
resolve.apply(null, params);
}
}
};
try {
fn.apply(ctx || null, params);
} catch (err) {
if (pending) {
pending = false;
reject(err);
}
}
});
}
return aspromise;
}
var base64$1 = {};
var hasRequiredBase64;
function requireBase64 () {
if (hasRequiredBase64) return base64$1;
hasRequiredBase64 = 1;
(function (exports) {
/**
* A minimal base64 implementation for number arrays.
* @memberof util
* @namespace
*/
var base64 = exports;
/**
* Calculates the byte length of a base64 encoded string.
* @param {string} string Base64 encoded string
* @returns {number} Byte length
*/
base64.length = function length(string) {
var p = string.length;
if (!p)
return 0;
var n = 0;
while (--p % 4 > 1 && string.charAt(p) === "=")
++n;
return Math.ceil(string.length * 3) / 4 - n;
};
// Base64 encoding table
var b64 = new Array(64);
// Base64 decoding table
var s64 = new Array(123);
// 65..90, 97..122, 48..57, 43, 47
for (var i = 0; i < 64;)
s64[b64[i] = i < 26 ? i + 65 : i < 52 ? i + 71 : i < 62 ? i - 4 : i - 59 | 43] = i++;
/**
* Encodes a buffer to a base64 encoded string.
* @param {Uint8Array} buffer Source buffer
* @param {number} start Source start
* @param {number} end Source end
* @returns {string} Base64 encoded string
*/
base64.encode = function encode(buffer, start, end) {
var parts = null,
chunk = [];
var i = 0, // output index
j = 0, // goto index
t; // temporary
while (start < end) {
var b = buffer[start++];
switch (j) {
case 0:
chunk[i++] = b64[b >> 2];
t = (b & 3) << 4;
j = 1;
break;
case 1:
chunk[i++] = b64[t | b >> 4];
t = (b & 15) << 2;
j = 2;
break;
case 2:
chunk[i++] = b64[t | b >> 6];
chunk[i++] = b64[b & 63];
j = 0;
break;
}
if (i > 8191) {
(parts || (parts = [])).push(String.fromCharCode.apply(String, chunk));
i = 0;
}
}
if (j) {
chunk[i++] = b64[t];
chunk[i++] = 61;
if (j === 1)
chunk[i++] = 61;
}
if (parts) {
if (i)
parts.push(String.fromCharCode.apply(String, chunk.slice(0, i)));
return parts.join("");
}
return String.fromCharCode.apply(String, chunk.slice(0, i));
};
var invalidEncoding = "invalid encoding";
/**
* Decodes a base64 encoded string to a buffer.
* @param {string} string Source string
* @param {Uint8Array} buffer Destination buffer
* @param {number} offset Destination offset
* @returns {number} Number of bytes written
* @throws {Error} If encoding is invalid
*/
base64.decode = function decode(string, buffer, offset) {
var start = offset;
var j = 0, // goto index
t; // temporary
for (var i = 0; i < string.length;) {
var c = string.charCodeAt(i++);
if (c === 61 && j > 1)
break;
if ((c = s64[c]) === undefined)
throw Error(invalidEncoding);
switch (j) {
case 0:
t = c;
j = 1;
break;
case 1:
buffer[offset++] = t << 2 | (c & 48) >> 4;
t = c;
j = 2;
break;
case 2:
buffer[offset++] = (t & 15) << 4 | (c & 60) >> 2;
t = c;
j = 3;
break;
case 3:
buffer[offset++] = (t & 3) << 6 | c;
j = 0;
break;
}
}
if (j === 1)
throw Error(invalidEncoding);
return offset - start;
};
/**
* Tests if the specified string appears to be base64 encoded.
* @param {string} string String to test
* @returns {boolean} `true` if probably base64 encoded, otherwise false
*/
base64.test = function test(string) {
return /^(?:[A-Za-z0-9+/]{4})*(?:[A-Za-z0-9+/]{2}==|[A-Za-z0-9+/]{3}=)?$/.test(string);
};
} (base64$1));
return base64$1;
}
var eventemitter;
var hasRequiredEventemitter;
function requireEventemitter () {
if (hasRequiredEventemitter) return eventemitter;
hasRequiredEventemitter = 1;
eventemitter = EventEmitter;
/**
* Constructs a new event emitter instance.
* @classdesc A minimal event emitter.
* @memberof util
* @constructor
*/
function EventEmitter() {
/**
* Registered listeners.
* @type {Object.<string,*>}
* @private
*/
this._listeners = {};
}
/**
* Registers an event listener.
* @param {string} evt Event name
* @param {function} fn Listener
* @param {*} [ctx] Listener context
* @returns {util.EventEmitter} `this`
*/
EventEmitter.prototype.on = function on(evt, fn, ctx) {
(this._listeners[evt] || (this._listeners[evt] = [])).push({
fn : fn,
ctx : ctx || this
});
return this;
};
/**
* Removes an event listener or any matching listeners if arguments are omitted.
* @param {string} [evt] Event name. Removes all listeners if omitted.
* @param {function} [fn] Listener to remove. Removes all listeners of `evt` if omitted.
* @returns {util.EventEmitter} `this`
*/
EventEmitter.prototype.off = function off(evt, fn) {
if (evt === undefined)
this._listeners = {};
else {
if (fn === undefined)
this._listeners[evt] = [];
else {
var listeners = this._listeners[evt];
for (var i = 0; i < listeners.length;)
if (listeners[i].fn === fn)
listeners.splice(i, 1);
else
++i;
}
}
return this;
};
/**
* Emits an event by calling its listeners with the specified arguments.
* @param {string} evt Event name
* @param {...*} args Arguments
* @returns {util.EventEmitter} `this`
*/
EventEmitter.prototype.emit = function emit(evt) {
var listeners = this._listeners[evt];
if (listeners) {
var args = [],
i = 1;
for (; i < arguments.length;)
args.push(arguments[i++]);
for (i = 0; i < listeners.length;)
listeners[i].fn.apply(listeners[i++].ctx, args);
}
return this;
};
return eventemitter;
}
var float;
var hasRequiredFloat;
function requireFloat () {
if (hasRequiredFloat) return float;
hasRequiredFloat = 1;
float = factory(factory);
/**
* Reads / writes floats / doubles from / to buffers.
* @name util.float
* @namespace
*/
/**
* Writes a 32 bit float to a buffer using little endian byte order.
* @name util.float.writeFloatLE
* @function
* @param {number} val Value to write
* @param {Uint8Array} buf Target buffer
* @param {number} pos Target buffer offset
* @returns {undefined}
*/
/**
* Writes a 32 bit float to a buffer using big endian byte order.
* @name util.float.writeFloatBE
* @function
* @param {number} val Value to write
* @param {Uint8Array} buf Target buffer
* @param {number} pos Target buffer offset
* @returns {undefined}
*/
/**
* Reads a 32 bit float from a buffer using little endian byte order.
* @name util.float.readFloatLE
* @function
* @param {Uint8Array} buf Source buffer
* @param {number} pos Source buffer offset
* @returns {number} Value read
*/
/**
* Reads a 32 bit float from a buffer using big endian byte order.
* @name util.float.readFloatBE
* @function
* @param {Uint8Array} buf Source buffer
* @param {number} pos Source buffer offset
* @returns {number} Value read
*/
/**
* Writes a 64 bit double to a buffer using little endian byte order.
* @name util.float.writeDoubleLE
* @function
* @param {number} val Value to write
* @param {Uint8Array} buf Target buffer
* @param {number} pos Target buffer offset
* @returns {undefined}
*/
/**
* Writes a 64 bit double to a buffer using big endian byte order.
* @name util.float.writeDoubleBE
* @function
* @param {number} val Value to write
* @param {Uint8Array} buf Target buffer
* @param {number} pos Target buffer offset
* @returns {undefined}
*/
/**
* Reads a 64 bit double from a buffer using little endian byte order.
* @name util.float.readDoubleLE
* @function
* @param {Uint8Array} buf Source buffer
* @param {number} pos Source buffer offset
* @returns {number} Value read
*/
/**
* Reads a 64 bit double from a buffer using big endian byte order.
* @name util.float.readDoubleBE
* @function
* @param {Uint8Array} buf Source buffer
* @param {number} pos Source buffer offset
* @returns {number} Value read
*/
// Factory function for the purpose of node-based testing in modified global environments
function factory(exports) {
// float: typed array
if (typeof Float32Array !== "undefined") (function() {
var f32 = new Float32Array([ -0 ]),
f8b = new Uint8Array(f32.buffer),
le = f8b[3] === 128;
function writeFloat_f32_cpy(val, buf, pos) {
f32[0] = val;
buf[pos ] = f8b[0];
buf[pos + 1] = f8b[1];
buf[pos + 2] = f8b[2];
buf[pos + 3] = f8b[3];
}
function writeFloat_f32_rev(val, buf, pos) {
f32[0] = val;
buf[pos ] = f8b[3];
buf[pos + 1] = f8b[2];
buf[pos + 2] = f8b[1];
buf[pos + 3] = f8b[0];
}
/* istanbul ignore next */
exports.writeFloatLE = le ? writeFloat_f32_cpy : writeFloat_f32_rev;
/* istanbul ignore next */
exports.writeFloatBE = le ? writeFloat_f32_rev : writeFloat_f32_cpy;
function readFloat_f32_cpy(buf, pos) {
f8b[0] = buf[pos ];
f8b[1] = buf[pos + 1];
f8b[2] = buf[pos + 2];
f8b[3] = buf[pos + 3];
return f32[0];
}
function readFloat_f32_rev(buf, pos) {
f8b[3] = buf[pos ];
f8b[2] = buf[pos + 1];
f8b[1] = buf[pos + 2];
f8b[0] = buf[pos + 3];
return f32[0];
}
/* istanbul ignore next */
exports.readFloatLE = le ? readFloat_f32_cpy : readFloat_f32_rev;
/* istanbul ignore next */
exports.readFloatBE = le ? readFloat_f32_rev : readFloat_f32_cpy;
// float: ieee754
})(); else (function() {
function writeFloat_ieee754(writeUint, val, buf, pos) {
var sign = val < 0 ? 1 : 0;
if (sign)
val = -val;
if (val === 0)
writeUint(1 / val > 0 ? /* positive */ 0 : /* negative 0 */ 2147483648, buf, pos);
else if (isNaN(val))
writeUint(2143289344, buf, pos);
else if (val > 3.4028234663852886e+38) // +-Infinity
writeUint((sign << 31 | 2139095040) >>> 0, buf, pos);
else if (val < 1.1754943508222875e-38) // denormal
writeUint((sign << 31 | Math.round(val / 1.401298464324817e-45)) >>> 0, buf, pos);
else {
var exponent = Math.floor(Math.log(val) / Math.LN2),
mantissa = Math.round(val * Math.pow(2, -exponent) * 8388608) & 8388607;
writeUint((sign << 31 | exponent + 127 << 23 | mantissa) >>> 0, buf, pos);
}
}
exports.writeFloatLE = writeFloat_ieee754.bind(null, writeUintLE);
exports.writeFloatBE = writeFloat_ieee754.bind(null, writeUintBE);
function readFloat_ieee754(readUint, buf, pos) {
var uint = readUint(buf, pos),
sign = (uint >> 31) * 2 + 1,
exponent = uint >>> 23 & 255,
mantissa = uint & 8388607;
return exponent === 255
? mantissa
? NaN
: sign * Infinity
: exponent === 0 // denormal
? sign * 1.401298464324817e-45 * mantissa
: sign * Math.pow(2, exponent - 150) * (mantissa + 8388608);
}
exports.readFloatLE = readFloat_ieee754.bind(null, readUintLE);
exports.readFloatBE = readFloat_ieee754.bind(null, readUintBE);
})();
// double: typed array
if (typeof Float64Array !== "undefined") (function() {
var f64 = new Float64Array([-0]),
f8b = new Uint8Array(f64.buffer),
le = f8b[7] === 128;
function writeDouble_f64_cpy(val, buf, pos) {
f64[0] = val;
buf[pos ] = f8b[0];
buf[pos + 1] = f8b[1];
buf[pos + 2] = f8b[2];
buf[pos + 3] = f8b[3];
buf[pos + 4] = f8b[4];
buf[pos + 5] = f8b[5];
buf[pos + 6] = f8b[6];
buf[pos + 7] = f8b[7];
}
function writeDouble_f64_rev(val, buf, pos) {
f64[0] = val;
buf[pos ] = f8b[7];
buf[pos + 1] = f8b[6];
buf[pos + 2] = f8b[5];
buf[pos + 3] = f8b[4];
buf[pos + 4] = f8b[3];
buf[pos + 5] = f8b[2];
buf[pos + 6] = f8b[1];
buf[pos + 7] = f8b[0];
}
/* istanbul ignore next */
exports.writeDoubleLE = le ? writeDouble_f64_cpy : writeDouble_f64_rev;
/* istanbul ignore next */
exports.writeDoubleBE = le ? writeDouble_f64_rev : writeDouble_f64_cpy;
function readDouble_f64_cpy(buf, pos) {
f8b[0] = buf[pos ];
f8b[1] = buf[pos + 1];
f8b[2] = buf[pos + 2];
f8b[3] = buf[pos + 3];
f8b[4] = buf[pos + 4];
f8b[5] = buf[pos + 5];
f8b[6] = buf[pos + 6];
f8b[7] = buf[pos + 7];
return f64[0];
}
function readDouble_f64_rev(buf, pos) {
f8b[7] = buf[pos ];
f8b[6] = buf[pos + 1];
f8b[5] = buf[pos + 2];
f8b[4] = buf[pos + 3];
f8b[3] = buf[pos + 4];
f8b[2] = buf[pos + 5];
f8b[1] = buf[pos + 6];
f8b[0] = buf[pos + 7];
return f64[0];
}
/* istanbul ignore next */
exports.readDoubleLE = le ? readDouble_f64_cpy : readDouble_f64_rev;
/* istanbul ignore next */
exports.readDoubleBE = le ? readDouble_f64_rev : readDouble_f64_cpy;
// double: ieee754
})(); else (function() {
function writeDouble_ieee754(writeUint, off0, off1, val, buf, pos) {
var sign = val < 0 ? 1 : 0;
if (sign)
val = -val;
if (val === 0) {
writeUint(0, buf, pos + off0);
writeUint(1 / val > 0 ? /* positive */ 0 : /* negative 0 */ 2147483648, buf, pos + off1);
} else if (isNaN(val)) {
writeUint(0, buf, pos + off0);
writeUint(2146959360, buf, pos + off1);
} else if (val > 1.7976931348623157e+308) { // +-Infinity
writeUint(0, buf, pos + off0);
writeUint((sign << 31 | 2146435072) >>> 0, buf, pos + off1);
} else {
var mantissa;
if (val < 2.2250738585072014e-308) { // denormal
mantissa = val / 5e-324;
writeUint(mantissa >>> 0, buf, pos + off0);
writeUint((sign << 31 | mantissa / 4294967296) >>> 0, buf, pos + off1);
} else {
var exponent = Math.floor(Math.log(val) / Math.LN2);
if (exponent === 1024)
exponent = 1023;
mantissa = val * Math.pow(2, -exponent);
writeUint(mantissa * 4503599627370496 >>> 0, buf, pos + off0);
writeUint((sign << 31 | exponent + 1023 << 20 | mantissa * 1048576 & 1048575) >>> 0, buf, pos + off1);
}
}
}
exports.writeDoubleLE = writeDouble_ieee754.bind(null, writeUintLE, 0, 4);
exports.writeDoubleBE = writeDouble_ieee754.bind(null, writeUintBE, 4, 0);
function readDouble_ieee754(readUint, off0, off1, buf, pos) {
var lo = readUint(buf, pos + off0),
hi = readUint(buf, pos + off1);
var sign = (hi >> 31) * 2 + 1,
exponent = hi >>> 20 & 2047,
mantissa = 4294967296 * (hi & 1048575) + lo;
return exponent === 2047
? mantissa
? NaN
: sign * Infinity
: exponent === 0 // denormal
? sign * 5e-324 * mantissa
: sign * Math.pow(2, exponent - 1075) * (mantissa + 4503599627370496);
}
exports.readDoubleLE = readDouble_ieee754.bind(null, readUintLE, 0, 4);
exports.readDoubleBE = readDouble_ieee754.bind(null, readUintBE, 4, 0);
})();
return exports;
}
// uint helpers
function writeUintLE(val, buf, pos) {
buf[pos ] = val & 255;
buf[pos + 1] = val >>> 8 & 255;
buf[pos + 2] = val >>> 16 & 255;
buf[pos + 3] = val >>> 24;
}
function writeUintBE(val, buf, pos) {
buf[pos ] = val >>> 24;
buf[pos + 1] = val >>> 16 & 255;
buf[pos + 2] = val >>> 8 & 255;
buf[pos + 3] = val & 255;
}
function readUintLE(buf, pos) {
return (buf[pos ]
| buf[pos + 1] << 8
| buf[pos + 2] << 16
| buf[pos + 3] << 24) >>> 0;
}
function readUintBE(buf, pos) {
return (buf[pos ] << 24
| buf[pos + 1] << 16
| buf[pos + 2] << 8
| buf[pos + 3]) >>> 0;
}
return float;
}
var inquire_1;
var hasRequiredInquire;
function requireInquire () {
if (hasRequiredInquire) return inquire_1;
hasRequiredInquire = 1;
inquire_1 = inquire;
/**
* Requires a module only if available.
* @memberof util
* @param {string} moduleName Module to require
* @returns {?Object} Required module if available and not empty, otherwise `null`
*/
function inquire(moduleName) {
try {
var mod = eval("quire".replace(/^/,"re"))(moduleName); // eslint-disable-line no-eval
if (mod && (mod.length || Object.keys(mod).length))
return mod;
} catch (e) {} // eslint-disable-line no-empty
return null;
}
return inquire_1;
}
var utf8$2 = {};
var hasRequiredUtf8;
function requireUtf8 () {
if (hasRequiredUtf8) return utf8$2;
hasRequiredUtf8 = 1;
(function (exports) {
/**
* A minimal UTF8 implementation for number arrays.
* @memberof util
* @namespace
*/
var utf8 = exports;
/**
* Calculates the UTF8 byte length of a string.
* @param {string} string String
* @returns {number} Byte length
*/
utf8.length = function utf8_length(string) {
var len = 0,
c = 0;
for (var i = 0; i < string.length; ++i) {
c = string.charCodeAt(i);
if (c < 128)
len += 1;
else if (c < 2048)
len += 2;
else if ((c & 0xFC00) === 0xD800 && (string.charCodeAt(i + 1) & 0xFC00) === 0xDC00) {
++i;
len += 4;
} else
len += 3;
}
return len;
};
/**
* Reads UTF8 bytes as a string.
* @param {Uint8Array} buffer Source buffer
* @param {number} start Source start
* @param {number} end Source end
* @returns {string} String read
*/
utf8.read = function utf8_read(buffer, start, end) {
var len = end - start;
if (len < 1)
return "";
var parts = null,
chunk = [],
i = 0, // char offset
t; // temporary
while (start < end) {
t = buffer[start++];
if (t < 128)
chunk[i++] = t;
else if (t > 191 && t < 224)
chunk[i++] = (t & 31) << 6 | buffer[start++] & 63;
else if (t > 239 && t < 365) {
t = ((t & 7) << 18 | (buffer[start++] & 63) << 12 | (buffer[start++] & 63) << 6 | buffer[start++] & 63) - 0x10000;
chunk[i++] = 0xD800 + (t >> 10);
chunk[i++] = 0xDC00 + (t & 1023);
} else
chunk[i++] = (t & 15) << 12 | (buffer[start++] & 63) << 6 | buffer[start++] & 63;
if (i > 8191) {
(parts || (parts = [])).push(String.fromCharCode.apply(String, chunk));
i = 0;
}
}
if (parts) {
if (i)
parts.push(String.fromCharCode.apply(String, chunk.slice(0, i)));
return parts.join("");
}
return String.fromCharCode.apply(String, chunk.slice(0, i));
};
/**
* Writes a string as UTF8 bytes.
* @param {string} string Source string
* @param {Uint8Array} buffer Destination buffer
* @param {number} offset Destination offset
* @returns {number} Bytes written
*/
utf8.write = function utf8_write(string, buffer, offset) {
var start = offset,
c1, // character 1
c2; // character 2
for (var i = 0; i < string.length; ++i) {
c1 = string.charCodeAt(i);
if (c1 < 128) {
buffer[offset++] = c1;
} else if (c1 < 2048) {
buffer[offset++] = c1 >> 6 | 192;
buffer[offset++] = c1 & 63 | 128;
} else if ((c1 & 0xFC00) === 0xD800 && ((c2 = string.charCodeAt(i + 1)) & 0xFC00) === 0xDC00) {
c1 = 0x10000 + ((c1 & 0x03FF) << 10) + (c2 & 0x03FF);
++i;
buffer[offset++] = c1 >> 18 | 240;
buffer[offset++] = c1 >> 12 & 63 | 128;
buffer[offset++] = c1 >> 6 & 63 | 128;
buffer[offset++] = c1 & 63 | 128;
} else {
buffer[offset++] = c1 >> 12 | 224;
buffer[offset++] = c1 >> 6 & 63 | 128;
buffer[offset++] = c1 & 63 | 128;
}
}
return offset - start;
};
} (utf8$2));
return utf8$2;
}
var pool_1;
var hasRequiredPool;
function requirePool () {
if (hasRequiredPool) return pool_1;
hasRequiredPool = 1;
pool_1 = pool;
/**
* An allocator as used by {@link util.pool}.
* @typedef PoolAllocator
* @type {function}
* @param {number} size Buffer size
* @returns {Uint8Array} Buffer
*/
/**
* A slicer as used by {@link util.pool}.
* @typedef PoolSlicer
* @type {function}
* @param {number} start Start offset
* @param {number} end End offset
* @returns {Uint8Array} Buffer slice
* @this {Uint8Array}
*/
/**
* A general purpose buffer pool.
* @memberof util
* @function
* @param {PoolAllocator} alloc Allocator
* @param {PoolSlicer} slice Slicer
* @param {number} [size=8192] Slab size
* @returns {PoolAllocator} Pooled allocator
*/
function pool(alloc, slice, size) {
var SIZE = size || 8192;
var MAX = SIZE >>> 1;
var slab = null;
var offset = SIZE;
return function pool_alloc(size) {
if (size < 1 || size > MAX)
return alloc(size);
if (offset + size > SIZE) {
slab = alloc(SIZE);
offset = 0;
}
var buf = slice.call(slab, offset, offset += size);
if (offset & 7) // align to 32 bit
offset = (offset | 7) + 1;
return buf;
};
}
return pool_1;
}
var longbits$1;
var hasRequiredLongbits$1;
function requireLongbits$1 () {
if (hasRequiredLongbits$1) return longbits$1;
hasRequiredLongbits$1 = 1;
longbits$1 = LongBits;
var util = requireMinimal$2();
/**
* Constructs new long bits.
* @classdesc Helper class for working with the low and high bits of a 64 bit value.
* @memberof util
* @constructor
* @param {number} lo Low 32 bits, unsigned
* @param {number} hi High 32 bits, unsigned
*/
function LongBits(lo, hi) {
// note that the casts below are theoretically unnecessary as of today, but older statically
// generated converter code might still call the ctor with signed 32bits. kept for compat.
/**
* Low bits.
* @type {number}
*/
this.lo = lo >>> 0;
/**
* High bits.
* @type {number}
*/
this.hi = hi >>> 0;
}
/**
* Zero bits.
* @memberof util.LongBits
* @type {util.LongBits}
*/
var zero = LongBits.zero = new LongBits(0, 0);
zero.toNumber = function() { return 0; };
zero.zzEncode = zero.zzDecode = function() { return this; };
zero.length = function() { return 1; };
/**
* Zero hash.
* @memberof util.LongBits
* @type {string}
*/
var zeroHash = LongBits.zeroHash = "\0\0\0\0\0\0\0\0";
/**
* Constructs new long bits from the specified number.
* @param {number} value Value
* @returns {util.LongBits} Instance
*/
LongBits.fromNumber = function fromNumber(value) {
if (value === 0)
return zero;
var sign = value < 0;
if (sign)
value = -value;
var lo = value >>> 0,
hi = (value - lo) / 4294967296 >>> 0;
if (sign) {
hi = ~hi >>> 0;
lo = ~lo >>> 0;
if (++lo > 4294967295) {
lo = 0;
if (++hi > 4294967295)
hi = 0;
}
}
return new LongBits(lo, hi);
};
/**
* Constructs new long bits from a number, long or string.
* @param {Long|number|string} value Value
* @returns {util.LongBits} Instance
*/
LongBits.from = function from(value) {
if (typeof value === "number")
return LongBits.fromNumber(value);
if (util.isString(value)) {
/* istanbul ignore else */
if (util.Long)
value = util.Long.fromString(value);
else
return LongBits.fromNumber(parseInt(value, 10));
}
return value.low || value.high ? new LongBits(value.low >>> 0, value.high >>> 0) : zero;
};
/**
* Converts this long bits to a possibly unsafe JavaScript number.
* @param {boolean} [unsigned=false] Whether unsigned or not
* @returns {number} Possibly unsafe number
*/
LongBits.prototype.toNumber = function toNumber(unsigned) {
if (!unsigned && this.hi >>> 31) {
var lo = ~this.lo + 1 >>> 0,
hi = ~this.hi >>> 0;
if (!lo)
hi = hi + 1 >>> 0;
return -(lo + hi * 4294967296);
}
return this.lo + this.hi * 4294967296;
};
/**
* Converts this long bits to a long.
* @param {boolean} [unsigned=false] Whether unsigned or not
* @returns {Long} Long
*/
LongBits.prototype.toLong = function toLong(unsigned) {
return util.Long
? new util.Long(this.lo | 0, this.hi | 0, Boolean(unsigned))
/* istanbul ignore next */
: { low: this.lo | 0, high: this.hi | 0, unsigned: Boolean(unsigned) };
};
var charCodeAt = String.prototype.charCodeAt;
/**
* Constructs new long bits from the specified 8 characters long hash.
* @param {string} hash Hash
* @returns {util.LongBits} Bits
*/
LongBits.fromHash = function fromHash(hash) {
if (hash === zeroHash)
return zero;
return new LongBits(
( charCodeAt.call(hash, 0)
| charCodeAt.call(hash, 1) << 8
| charCodeAt.call(hash, 2) << 16
| charCodeAt.call(hash, 3) << 24) >>> 0
,
( charCodeAt.call(hash, 4)
| charCodeAt.call(hash, 5) << 8
| charCodeAt.call(hash, 6) << 16
| charCodeAt.call(hash, 7) << 24) >>> 0
);
};
/**
* Converts this long bits to a 8 characters long hash.
* @returns {string} Hash
*/
LongBits.prototype.toHash = function toHash() {
return String.fromCharCode(
this.lo & 255,
this.lo >>> 8 & 255,
this.lo >>> 16 & 255,
this.lo >>> 24 ,
this.hi & 255,
this.hi >>> 8 & 255,
this.hi >>> 16 & 255,
this.hi >>> 24
);
};
/**
* Zig-zag encodes this long bits.
* @returns {util.LongBits} `this`
*/
LongBits.prototype.zzEncode = function zzEncode() {
var mask = this.hi >> 31;
this.hi = ((this.hi << 1 | this.lo >>> 31) ^ mask) >>> 0;
this.lo = ( this.lo << 1 ^ mask) >>> 0;
return this;
};
/**
* Zig-zag decodes this long bits.
* @returns {util.LongBits} `this`
*/
LongBits.prototype.zzDecode = function zzDecode() {
var mask = -(this.lo & 1);
this.lo = ((this.lo >>> 1 | this.hi << 31) ^ mask) >>> 0;
this.hi = ( this.hi >>> 1 ^ mask) >>> 0;
return this;
};
/**
* Calculates the length of this longbits when encoded as a varint.
* @returns {number} Length
*/
LongBits.prototype.length = function length() {
var part0 = this.lo,
part1 = (this.lo >>> 28 | this.hi << 4) >>> 0,
part2 = this.hi >>> 24;
return part2 === 0
? part1 === 0
? part0 < 16384
? part0 < 128 ? 1 : 2
: part0 < 2097152 ? 3 : 4
: part1 < 16384
? part1 < 128 ? 5 : 6
: part1 < 2097152 ? 7 : 8
: part2 < 128 ? 9 : 10;
};
return longbits$1;
}
var hasRequiredMinimal$2;
function requireMinimal$2 () {
if (hasRequiredMinimal$2) return minimal$2;
hasRequiredMinimal$2 = 1;
(function (exports) {
var util = exports;
// used to return a Promise where callback is omitted
util.asPromise = requireAspromise();
// converts to / from base64 encoded strings
util.base64 = requireBase64();
// base class of rpc.Service
util.EventEmitter = requireEventemitter();
// float handling accross browsers
util.float = requireFloat();
// requires modules optionally and hides the call from bundlers
util.inquire = requireInquire();
// converts to / from utf8 encoded strings
util.utf8 = requireUtf8();
// provides a node-like buffer pool in the browser
util.pool = requirePool();
// utility to work with the low and high bits of a 64 bit value
util.LongBits = requireLongbits$1();
/**
* Whether running within node or not.
* @memberof util
* @type {boolean}
*/
util.isNode = Boolean(typeof commonjsGlobal !== "undefined"
&& commonjsGlobal
&& commonjsGlobal.process
&& commonjsGlobal.process.versions
&& commonjsGlobal.process.versions.node);
/**
* Global object reference.
* @memberof util
* @type {Object}
*/
util.global = util.isNode && commonjsGlobal
|| typeof window !== "undefined" && window
|| typeof self !== "undefined" && self
|| commonjsGlobal; // eslint-disable-line no-invalid-this
/**
* An immuable empty array.
* @memberof util
* @type {Array.<*>}
* @const
*/
util.emptyArray = Object.freeze ? Object.freeze([]) : /* istanbul ignore next */ []; // used on prototypes
/**
* An immutable empty object.
* @type {Object}
* @const
*/
util.emptyObject = Object.freeze ? Object.freeze({}) : /* istanbul ignore next */ {}; // used on prototypes
/**
* Tests if the specified value is an integer.
* @function
* @param {*} value Value to test
* @returns {boolean} `true` if the value is an integer
*/
util.isInteger = Number.isInteger || /* istanbul ignore next */ function isInteger(value) {
return typeof value === "number" && isFinite(value) && Math.floor(value) === value;
};
/**
* Tests if the specified value is a string.
* @param {*} value Value to test
* @returns {boolean} `true` if the value is a string
*/
util.isString = function isString(value) {
return typeof value === "string" || value instanceof String;
};
/**
* Tests if the specified value is a non-null object.
* @param {*} value Value to test
* @returns {boolean} `true` if the value is a non-null object
*/
util.isObject = function isObject(value) {
return value && typeof value === "object";
};
/**
* Checks if a property on a message is considered to be present.
* This is an alias of {@link util.isSet}.
* @function
* @param {Object} obj Plain object or message instance
* @param {string} prop Property name
* @returns {boolean} `true` if considered to be present, otherwise `false`
*/
util.isset =
/**
* Checks if a property on a message is considered to be present.
* @param {Object} obj Plain object or message instance
* @param {string} prop Property name
* @returns {boolean} `true` if considered to be present, otherwise `false`
*/
util.isSet = function isSet(obj, prop) {
var value = obj[prop];
if (value != null && obj.hasOwnProperty(prop)) // eslint-disable-line eqeqeq, no-prototype-builtins
return typeof value !== "object" || (Array.isArray(value) ? value.length : Object.keys(value).length) > 0;
return false;
};
/**
* Any compatible Buffer instance.
* This is a minimal stand-alone definition of a Buffer instance. The actual type is that exported by node's typings.
* @interface Buffer
* @extends Uint8Array
*/
/**
* Node's Buffer class if available.
* @type {Constructor<Buffer>}
*/
util.Buffer = (function() {
try {
var Buffer = util.inquire("buffer").Buffer;
// refuse to use non-node buffers if not explicitly assigned (perf reasons):
return Buffer.prototype.utf8Write ? Buffer : /* istanbul ignore next */ null;
} catch (e) {
/* istanbul ignore next */
return null;
}
})();
// Internal alias of or polyfull for Buffer.from.
util._Buffer_from = null;
// Internal alias of or polyfill for Buffer.allocUnsafe.
util._Buffer_allocUnsafe = null;
/**
* Creates a new buffer of whatever type supported by the environment.
* @param {number|number[]} [sizeOrArray=0] Buffer size or number array
* @returns {Uint8Array|Buffer} Buffer
*/
util.newBuffer = function newBuffer(sizeOrArray) {
/* istanbul ignore next */
return typeof sizeOrArray === "number"
? util.Buffer
? util._Buffer_allocUnsafe(sizeOrArray)
: new util.Array(sizeOrArray)
: util.Buffer
? util._Buffer_from(sizeOrArray)
: typeof Uint8Array === "undefined"
? sizeOrArray
: new Uint8Array(sizeOrArray);
};
/**
* Array implementation used in the browser. `Uint8Array` if supported, otherwise `Array`.
* @type {Constructor<Uint8Array>}
*/
util.Array = typeof Uint8Array !== "undefined" ? Uint8Array /* istanbul ignore next */ : Array;
/**
* Any compatible Long instance.
* This is a minimal stand-alone definition of a Long instance. The actual type is that exported by long.js.
* @interface Long
* @property {number} low Low bits
* @property {number} high High bits
* @property {boolean} unsigned Whether unsigned or not
*/
/**
* Long.js's Long class if available.
* @type {Constructor<Long>}
*/
util.Long = /* istanbul ignore next */ util.global.dcodeIO && /* istanbul ignore next */ util.global.dcodeIO.Long
|| /* istanbul ignore next */ util.global.Long
|| util.inquire("long");
/**
* Regular expression used to verify 2 bit (`bool`) map keys.
* @type {RegExp}
* @const
*/
util.key2Re = /^true|false|0|1$/;
/**
* Regular expression used to verify 32 bit (`int32` etc.) map keys.
* @type {RegExp}
* @const
*/
util.key32Re = /^-?(?:0|[1-9][0-9]*)$/;
/**
* Regular expression used to verify 64 bit (`int64` etc.) map keys.
* @type {RegExp}
* @const
*/
util.key64Re = /^(?:[\\x00-\\xff]{8}|-?(?:0|[1-9][0-9]*))$/;
/**
* Converts a number or long to an 8 characters long hash string.
* @param {Long|number} value Value to convert
* @returns {string} Hash
*/
util.longToHash = function longToHash(value) {
return value
? util.LongBits.from(value).toHash()
: util.LongBits.zeroHash;
};
/**
* Converts an 8 characters long hash string to a long or number.
* @param {string} hash Hash
* @param {boolean} [unsigned=false] Whether unsigned or not
* @returns {Long|number} Original value
*/
util.longFromHash = function longFromHash(hash, unsigned) {
var bits = util.LongBits.fromHash(hash);
if (util.Long)
return util.Long.fromBits(bits.lo, bits.hi, unsigned);
return bits.toNumber(Boolean(unsigned));
};
/**
* Merges the properties of the source object into the destination object.
* @memberof util
* @param {Object.<string,*>} dst Destination object
* @param {Object.<string,*>} src Source object
* @param {boolean} [ifNotSet=false] Merges only if the key is not already set
* @returns {Object.<string,*>} Destination object
*/
function merge(dst, src, ifNotSet) { // used by converters
for (var keys = Object.keys(src), i = 0; i < keys.length; ++i)
if (dst[keys[i]] === undefined || !ifNotSet)
dst[keys[i]] = src[keys[i]];
return dst;
}
util.merge = merge;
/**
* Converts the first character of a string to lower case.
* @param {string} str String to convert
* @returns {string} Converted string
*/
util.lcFirst = function lcFirst(str) {
return str.charAt(0).toLowerCase() + str.substring(1);
};
/**
* Creates a custom error constructor.
* @memberof util
* @param {string} name Error name
* @returns {Constructor<Error>} Custom error constructor
*/
function newError(name) {
function CustomError(message, properties) {
if (!(this instanceof CustomError))
return new CustomError(message, properties);
// Error.call(this, message);
// ^ just returns a new error instance because the ctor can be called as a function
Object.defineProperty(this, "message", { get: function() { return message; } });
/* istanbul ignore next */
if (Error.captureStackTrace) // node
Error.captureStackTrace(this, CustomError);
else
Object.defineProperty(this, "stack", { value: new Error().stack || "" });
if (properties)
merge(this, properties);
}
CustomError.prototype = Object.create(Error.prototype, {
constructor: {
value: CustomError,
writable: true,
enumerable: false,
configurable: true,
},
name: {
get() { return name; },
set: undefined,
enumerable: false,
// configurable: false would accurately preserve the behavior of
// the original, but I'm guessing that was not intentional.
// For an actual error subclass, this property would
// be configurable.
configurable: true,
},
toString: {
value() { return this.name + ": " + this.message; },
writable: true,
enumerable: false,
configurable: true,
},
});
return CustomError;
}
util.newError = newError;
/**
* Constructs a new protocol error.
* @classdesc Error subclass indicating a protocol specifc error.
* @memberof util
* @extends Error
* @template T extends Message<T>
* @constructor
* @param {string} message Error message
* @param {Object.<string,*>} [properties] Additional properties
* @example
* try {
* MyMessage.decode(someBuffer); // throws if required fields are missing
* } catch (e) {
* if (e instanceof ProtocolError && e.instance)
* console.log("decoded so far: " + JSON.stringify(e.instance));
* }
*/
util.ProtocolError = newError("ProtocolError");
/**
* So far decoded message instance.
* @name util.ProtocolError#instance
* @type {Message<T>}
*/
/**
* A OneOf getter as returned by {@link util.oneOfGetter}.
* @typedef OneOfGetter
* @type {function}
* @returns {string|undefined} Set field name, if any
*/
/**
* Builds a getter for a oneof's present field name.
* @param {string[]} fieldNames Field names
* @returns {OneOfGetter} Unbound getter
*/
util.oneOfGetter = function getOneOf(fieldNames) {
var fieldMap = {};
for (var i = 0; i < fieldNames.length; ++i)
fieldMap[fieldNames[i]] = 1;
/**
* @returns {string|undefined} Set field name, if any
* @this Object
* @ignore
*/
return function() { // eslint-disable-line consistent-return
for (var keys = Object.keys(this), i = keys.length - 1; i > -1; --i)
if (fieldMap[keys[i]] === 1 && this[keys[i]] !== undefined && this[keys[i]] !== null)
return keys[i];
};
};
/**
* A OneOf setter as returned by {@link util.oneOfSetter}.
* @typedef OneOfSetter
* @type {function}
* @param {string|undefined} value Field name
* @returns {undefined}
*/
/**
* Builds a setter for a oneof's present field name.
* @param {string[]} fieldNames Field names
* @returns {OneOfSetter} Unbound setter
*/
util.oneOfSetter = function setOneOf(fieldNames) {
/**
* @param {string} name Field name
* @returns {undefined}
* @this Object
* @ignore
*/
return function(name) {
for (var i = 0; i < fieldNames.length; ++i)
if (fieldNames[i] !== name)
delete this[fieldNames[i]];
};
};
/**
* Default conversion options used for {@link Message#toJSON} implementations.
*
* These options are close to proto3's JSON mapping with the exception that internal types like Any are handled just like messages. More precisely:
*
* - Longs become strings
* - Enums become string keys
* - Bytes become base64 encoded strings
* - (Sub-)Messages become plain objects
* - Maps become plain objects with all string keys
* - Repeated fields become arrays
* - NaN and Infinity for float and double fields become strings
*
* @type {IConversionOptions}
* @see https://developers.google.com/protocol-buffers/docs/proto3?hl=en#json
*/
util.toJSONOptions = {
longs: String,
enums: String,
bytes: String,
json: true
};
// Sets up buffer utility according to the environment (called in index-minimal)
util._configure = function() {
var Buffer = util.Buffer;
/* istanbul ignore if */
if (!Buffer) {
util._Buffer_from = util._Buffer_allocUnsafe = null;
return;
}
// because node 4.x buffers are incompatible & immutable
// see: https://github.com/dcodeIO/protobuf.js/pull/665
util._Buffer_from = Buffer.from !== Uint8Array.from && Buffer.from ||
/* istanbul ignore next */
function Buffer_from(value, encoding) {
return new Buffer(value, encoding);
};
util._Buffer_allocUnsafe = Buffer.allocUnsafe ||
/* istanbul ignore next */
function Buffer_allocUnsafe(size) {
return new Buffer(size);
};
};
} (minimal$2));
return minimal$2;
}
var writer$1 = Writer$2;
var util$9 = requireMinimal$2();
var BufferWriter$1; // cyclic
var LongBits$2 = util$9.LongBits,
base64 = util$9.base64,
utf8$1 = util$9.utf8;
/**
* Constructs a new writer operation instance.
* @classdesc Scheduled writer operation.
* @constructor
* @param {function(*, Uint8Array, number)} fn Function to call
* @param {number} len Value byte length
* @param {*} val Value to write
* @ignore
*/
function Op(fn, len, val) {
/**
* Function to call.
* @type {function(Uint8Array, number, *)}
*/
this.fn = fn;
/**
* Value byte length.
* @type {number}
*/
this.len = len;
/**
* Next operation.
* @type {Writer.Op|undefined}
*/
this.next = undefined;
/**
* Value to write.
* @type {*}
*/
this.val = val; // type varies
}
/* istanbul ignore next */
function noop$1() {} // eslint-disable-line no-empty-function
/**
* Constructs a new writer state instance.
* @classdesc Copied writer state.
* @memberof Writer
* @constructor
* @param {Writer} writer Writer to copy state from
* @ignore
*/
function State(writer) {
/**
* Current head.
* @type {Writer.Op}
*/
this.head = writer.head;
/**
* Current tail.
* @type {Writer.Op}
*/
this.tail = writer.tail;
/**
* Current buffer length.
* @type {number}
*/
this.len = writer.len;
/**
* Next state.
* @type {State|null}
*/
this.next = writer.states;
}
/**
* Constructs a new writer instance.
* @classdesc Wire format writer using `Uint8Array` if available, otherwise `Array`.
* @constructor
*/
function Writer$2() {
/**
* Current length.
* @type {number}
*/
this.len = 0;
/**
* Operations head.
* @type {Object}
*/
this.head = new Op(noop$1, 0, 0);
/**
* Operations tail
* @type {Object}
*/
this.tail = this.head;
/**
* Linked forked states.
* @type {Object|null}
*/
this.states = null;
// When a value is written, the writer calculates its byte length and puts it into a linked
// list of operations to perform when finish() is called. This both allows us to allocate
// buffers of the exact required size and reduces the amount of work we have to do compared
// to first calculating over objects and then encoding over objects. In our case, the encoding
// part is just a linked list walk calling operations with already prepared values.
}
var create$4 = function create() {
return util$9.Buffer
? function create_buffer_setup() {
return (Writer$2.create = function create_buffer() {
return new BufferWriter$1();
})();
}
/* istanbul ignore next */
: function create_array() {
return new Writer$2();
};
};
/**
* Creates a new writer.
* @function
* @returns {BufferWriter|Writer} A {@link BufferWriter} when Buffers are supported, otherwise a {@link Writer}
*/
Writer$2.create = create$4();
/**
* Allocates a buffer of the specified size.
* @param {number} size Buffer size
* @returns {Uint8Array} Buffer
*/
Writer$2.alloc = function alloc(size) {
return new util$9.Array(size);
};
// Use Uint8Array buffer pool in the browser, just like node does with buffers
/* istanbul ignore else */
if (util$9.Array !== Array)
Writer$2.alloc = util$9.pool(Writer$2.alloc, util$9.Array.prototype.subarray);
/**
* Pushes a new operation to the queue.
* @param {function(Uint8Array, number, *)} fn Function to call
* @param {number} len Value byte length
* @param {number} val Value to write
* @returns {Writer} `this`
* @private
*/
Writer$2.prototype._push = function push(fn, len, val) {
this.tail = this.tail.next = new Op(fn, len, val);
this.len += len;
return this;
};
function writeByte(val, buf, pos) {
buf[pos] = val & 255;
}
function writeVarint32(val, buf, pos) {
while (val > 127) {
buf[pos++] = val & 127 | 128;
val >>>= 7;
}
buf[pos] = val;
}
/**
* Constructs a new varint writer operation instance.
* @classdesc Scheduled varint writer operation.
* @extends Op
* @constructor
* @param {number} len Value byte length
* @param {number} val Value to write
* @ignore
*/
function VarintOp(len, val) {
this.len = len;
this.next = undefined;
this.val = val;
}
VarintOp.prototype = Object.create(Op.prototype);
VarintOp.prototype.fn = writeVarint32;
/**
* Writes an unsigned 32 bit value as a varint.
* @param {number} value Value to write
* @returns {Writer} `this`
*/
Writer$2.prototype.uint32 = function write_uint32(value) {
// here, the call to this.push has been inlined and a varint specific Op subclass is used.
// uint32 is by far the most frequently used operation and benefits significantly from this.
this.len += (this.tail = this.tail.next = new VarintOp(
(value = value >>> 0)
< 128 ? 1
: value < 16384 ? 2
: value < 2097152 ? 3
: value < 268435456 ? 4
: 5,
value)).len;
return this;
};
/**
* Writes a signed 32 bit value as a varint.
* @function
* @param {number} value Value to write
* @returns {Writer} `this`
*/
Writer$2.prototype.int32 = function write_int32(value) {
return value < 0
? this._push(writeVarint64, 10, LongBits$2.fromNumber(value)) // 10 bytes per spec
: this.uint32(value);
};
/**
* Writes a 32 bit value as a varint, zig-zag encoded.
* @param {number} value Value to write
* @returns {Writer} `this`
*/
Writer$2.prototype.sint32 = function write_sint32(value) {
return this.uint32((value << 1 ^ value >> 31) >>> 0);
};
function writeVarint64(val, buf, pos) {
while (val.hi) {
buf[pos++] = val.lo & 127 | 128;
val.lo = (val.lo >>> 7 | val.hi << 25) >>> 0;
val.hi >>>= 7;
}
while (val.lo > 127) {
buf[pos++] = val.lo & 127 | 128;
val.lo = val.lo >>> 7;
}
buf[pos++] = val.lo;
}
/**
* Writes an unsigned 64 bit value as a varint.
* @param {Long|number|string} value Value to write
* @returns {Writer} `this`
* @throws {TypeError} If `value` is a string and no long library is present.
*/
Writer$2.prototype.uint64 = function write_uint64(value) {
var bits = LongBits$2.from(value);
return this._push(writeVarint64, bits.length(), bits);
};
/**
* Writes a signed 64 bit value as a varint.
* @function
* @param {Long|number|string} value Value to write
* @returns {Writer} `this`
* @throws {TypeError} If `value` is a string and no long library is present.
*/
Writer$2.prototype.int64 = Writer$2.prototype.uint64;
/**
* Writes a signed 64 bit value as a varint, zig-zag encoded.
* @param {Long|number|string} value Value to write
* @returns {Writer} `this`
* @throws {TypeError} If `value` is a string and no long library is present.
*/
Writer$2.prototype.sint64 = function write_sint64(value) {
var bits = LongBits$2.from(value).zzEncode();
return this._push(writeVarint64, bits.length(), bits);
};
/**
* Writes a boolish value as a varint.
* @param {boolean} value Value to write
* @returns {Writer} `this`
*/
Writer$2.prototype.bool = function write_bool(value) {
return this._push(writeByte, 1, value ? 1 : 0);
};
function writeFixed32(val, buf, pos) {
buf[pos ] = val & 255;
buf[pos + 1] = val >>> 8 & 255;
buf[pos + 2] = val >>> 16 & 255;
buf[pos + 3] = val >>> 24;
}
/**
* Writes an unsigned 32 bit value as fixed 32 bits.
* @param {number} value Value to write
* @returns {Writer} `this`
*/
Writer$2.prototype.fixed32 = function write_fixed32(value) {
return this._push(writeFixed32, 4, value >>> 0);
};
/**
* Writes a signed 32 bit value as fixed 32 bits.
* @function
* @param {number} value Value to write
* @returns {Writer} `this`
*/
Writer$2.prototype.sfixed32 = Writer$2.prototype.fixed32;
/**
* Writes an unsigned 64 bit value as fixed 64 bits.
* @param {Long|number|string} value Value to write
* @returns {Writer} `this`
* @throws {TypeError} If `value` is a string and no long library is present.
*/
Writer$2.prototype.fixed64 = function write_fixed64(value) {
var bits = LongBits$2.from(value);
return this._push(writeFixed32, 4, bits.lo)._push(writeFixed32, 4, bits.hi);
};
/**
* Writes a signed 64 bit value as fixed 64 bits.
* @function
* @param {Long|number|string} value Value to write
* @returns {Writer} `this`
* @throws {TypeError} If `value` is a string and no long library is present.
*/
Writer$2.prototype.sfixed64 = Writer$2.prototype.fixed64;
/**
* Writes a float (32 bit).
* @function
* @param {number} value Value to write
* @returns {Writer} `this`
*/
Writer$2.prototype.float = function write_float(value) {
return this._push(util$9.float.writeFloatLE, 4, value);
};
/**
* Writes a double (64 bit float).
* @function
* @param {number} value Value to write
* @returns {Writer} `this`
*/
Writer$2.prototype.double = function write_double(value) {
return this._push(util$9.float.writeDoubleLE, 8, value);
};
var writeBytes = util$9.Array.prototype.set
? function writeBytes_set(val, buf, pos) {
buf.set(val, pos); // also works for plain array values
}
/* istanbul ignore next */
: function writeBytes_for(val, buf, pos) {
for (var i = 0; i < val.length; ++i)
buf[pos + i] = val[i];
};
/**
* Writes a sequence of bytes.
* @param {Uint8Array|string} value Buffer or base64 encoded string to write
* @returns {Writer} `this`
*/
Writer$2.prototype.bytes = function write_bytes(value) {
var len = value.length >>> 0;
if (!len)
return this._push(writeByte, 1, 0);
if (util$9.isString(value)) {
var buf = Writer$2.alloc(len = base64.length(value));
base64.decode(value, buf, 0);
value = buf;
}
return this.uint32(len)._push(writeBytes, len, value);
};
/**
* Writes a string.
* @param {string} value Value to write
* @returns {Writer} `this`
*/
Writer$2.prototype.string = function write_string(value) {
var len = utf8$1.length(value);
return len
? this.uint32(len)._push(utf8$1.write, len, value)
: this._push(writeByte, 1, 0);
};
/**
* Forks this writer's state by pushing it to a stack.
* Calling {@link Writer#reset|reset} or {@link Writer#ldelim|ldelim} resets the writer to the previous state.
* @returns {Writer} `this`
*/
Writer$2.prototype.fork = function fork() {
this.states = new State(this);
this.head = this.tail = new Op(noop$1, 0, 0);
this.len = 0;
return this;
};
/**
* Resets this instance to the last state.
* @returns {Writer} `this`
*/
Writer$2.prototype.reset = function reset() {
if (this.states) {
this.head = this.states.head;
this.tail = this.states.tail;
this.len = this.states.len;
this.states = this.states.next;
} else {
this.head = this.tail = new Op(noop$1, 0, 0);
this.len = 0;
}
return this;
};
/**
* Resets to the last state and appends the fork state's current write length as a varint followed by its operations.
* @returns {Writer} `this`
*/
Writer$2.prototype.ldelim = function ldelim() {
var head = this.head,
tail = this.tail,
len = this.len;
this.reset().uint32(len);
if (len) {
this.tail.next = head.next; // skip noop
this.tail = tail;
this.len += len;
}
return this;
};
/**
* Finishes the write operation.
* @returns {Uint8Array} Finished buffer
*/
Writer$2.prototype.finish = function finish() {
var head = this.head.next, // skip noop
buf = this.constructor.alloc(this.len),
pos = 0;
while (head) {
head.fn(head.val, buf, pos);
pos += head.len;
head = head.next;
}
// this.head = this.tail = null;
return buf;
};
Writer$2._configure = function(BufferWriter_) {
BufferWriter$1 = BufferWriter_;
Writer$2.create = create$4();
BufferWriter$1._configure();
};
var writer_buffer$1 = BufferWriter;
// extends Writer
var Writer$1 = writer$1;
(BufferWriter.prototype = Object.create(Writer$1.prototype)).constructor = BufferWriter;
var util$8 = requireMinimal$2();
/**
* Constructs a new buffer writer instance.
* @classdesc Wire format writer using node buffers.
* @extends Writer
* @constructor
*/
function BufferWriter() {
Writer$1.call(this);
}
BufferWriter._configure = function () {
/**
* Allocates a buffer of the specified size.
* @function
* @param {number} size Buffer size
* @returns {Buffer} Buffer
*/
BufferWriter.alloc = util$8._Buffer_allocUnsafe;
BufferWriter.writeBytesBuffer = util$8.Buffer && util$8.Buffer.prototype instanceof Uint8Array && util$8.Buffer.prototype.set.name === "set"
? function writeBytesBuffer_set(val, buf, pos) {
buf.set(val, pos); // faster than copy (requires node >= 4 where Buffers extend Uint8Array and set is properly inherited)
// also works for plain array values
}
/* istanbul ignore next */
: function writeBytesBuffer_copy(val, buf, pos) {
if (val.copy) // Buffer values
val.copy(buf, pos, 0, val.length);
else for (var i = 0; i < val.length;) // plain array values
buf[pos++] = val[i++];
};
};
/**
* @override
*/
BufferWriter.prototype.bytes = function write_bytes_buffer(value) {
if (util$8.isString(value))
value = util$8._Buffer_from(value, "base64");
var len = value.length >>> 0;
this.uint32(len);
if (len)
this._push(BufferWriter.writeBytesBuffer, len, value);
return this;
};
function writeStringBuffer(val, buf, pos) {
if (val.length < 40) // plain js is faster for short strings (probably due to redundant assertions)
util$8.utf8.write(val, buf, pos);
else if (buf.utf8Write)
buf.utf8Write(val, pos);
else
buf.write(val, pos);
}
/**
* @override
*/
BufferWriter.prototype.string = function write_string_buffer(value) {
var len = util$8.Buffer.byteLength(value);
this.uint32(len);
if (len)
this._push(writeStringBuffer, len, value);
return this;
};
/**
* Finishes the write operation.
* @name BufferWriter#finish
* @function
* @returns {Buffer} Finished buffer
*/
BufferWriter._configure();
var reader$1 = Reader$2;
var util$7 = requireMinimal$2();
var BufferReader$1; // cyclic
var LongBits$1 = util$7.LongBits,
utf8 = util$7.utf8;
/* istanbul ignore next */
function indexOutOfRange(reader, writeLength) {
return RangeError("index out of range: " + reader.pos + " + " + (writeLength || 1) + " > " + reader.len);
}
/**
* Constructs a new reader instance using the specified buffer.
* @classdesc Wire format reader using `Uint8Array` if available, otherwise `Array`.
* @constructor
* @param {Uint8Array} buffer Buffer to read from
*/
function Reader$2(buffer) {
/**
* Read buffer.
* @type {Uint8Array}
*/
this.buf = buffer;
/**
* Read buffer position.
* @type {number}
*/
this.pos = 0;
/**
* Read buffer length.
* @type {number}
*/
this.len = buffer.length;
}
var create_array = typeof Uint8Array !== "undefined"
? function create_typed_array(buffer) {
if (buffer instanceof Uint8Array || Array.isArray(buffer))
return new Reader$2(buffer);
throw Error("illegal buffer");
}
/* istanbul ignore next */
: function create_array(buffer) {
if (Array.isArray(buffer))
return new Reader$2(buffer);
throw Error("illegal buffer");
};
var create$3 = function create() {
return util$7.Buffer
? function create_buffer_setup(buffer) {
return (Reader$2.create = function create_buffer(buffer) {
return util$7.Buffer.isBuffer(buffer)
? new BufferReader$1(buffer)
/* istanbul ignore next */
: create_array(buffer);
})(buffer);
}
/* istanbul ignore next */
: create_array;
};
/**
* Creates a new reader using the specified buffer.
* @function
* @param {Uint8Array|Buffer} buffer Buffer to read from
* @returns {Reader|BufferReader} A {@link BufferReader} if `buffer` is a Buffer, otherwise a {@link Reader}
* @throws {Error} If `buffer` is not a valid buffer
*/
Reader$2.create = create$3();
Reader$2.prototype._slice = util$7.Array.prototype.subarray || /* istanbul ignore next */ util$7.Array.prototype.slice;
/**
* Reads a varint as an unsigned 32 bit value.
* @function
* @returns {number} Value read
*/
Reader$2.prototype.uint32 = (function read_uint32_setup() {
var value = 4294967295; // optimizer type-hint, tends to deopt otherwise (?!)
return function read_uint32() {
value = ( this.buf[this.pos] & 127 ) >>> 0; if (this.buf[this.pos++] < 128) return value;
value = (value | (this.buf[this.pos] & 127) << 7) >>> 0; if (this.buf[this.pos++] < 128) return value;
value = (value | (this.buf[this.pos] & 127) << 14) >>> 0; if (this.buf[this.pos++] < 128) return value;
value = (value | (this.buf[this.pos] & 127) << 21) >>> 0; if (this.buf[this.pos++] < 128) return value;
value = (value | (this.buf[this.pos] & 15) << 28) >>> 0; if (this.buf[this.pos++] < 128) return value;
/* istanbul ignore if */
if ((this.pos += 5) > this.len) {
this.pos = this.len;
throw indexOutOfRange(this, 10);
}
return value;
};
})();
/**
* Reads a varint as a signed 32 bit value.
* @returns {number} Value read
*/
Reader$2.prototype.int32 = function read_int32() {
return this.uint32() | 0;
};
/**
* Reads a zig-zag encoded varint as a signed 32 bit value.
* @returns {number} Value read
*/
Reader$2.prototype.sint32 = function read_sint32() {
var value = this.uint32();
return value >>> 1 ^ -(value & 1) | 0;
};
/* eslint-disable no-invalid-this */
function readLongVarint() {
// tends to deopt with local vars for octet etc.
var bits = new LongBits$1(0, 0);
var i = 0;
if (this.len - this.pos > 4) { // fast route (lo)
for (; i < 4; ++i) {
// 1st..4th
bits.lo = (bits.lo | (this.buf[this.pos] & 127) << i * 7) >>> 0;
if (this.buf[this.pos++] < 128)
return bits;
}
// 5th
bits.lo = (bits.lo | (this.buf[this.pos] & 127) << 28) >>> 0;
bits.hi = (bits.hi | (this.buf[this.pos] & 127) >> 4) >>> 0;
if (this.buf[this.pos++] < 128)
return bits;
i = 0;
} else {
for (; i < 3; ++i) {
/* istanbul ignore if */
if (this.pos >= this.len)
throw indexOutOfRange(this);
// 1st..3th
bits.lo = (bits.lo | (this.buf[this.pos] & 127) << i * 7) >>> 0;
if (this.buf[this.pos++] < 128)
return bits;
}
// 4th
bits.lo = (bits.lo | (this.buf[this.pos++] & 127) << i * 7) >>> 0;
return bits;
}
if (this.len - this.pos > 4) { // fast route (hi)
for (; i < 5; ++i) {
// 6th..10th
bits.hi = (bits.hi | (this.buf[this.pos] & 127) << i * 7 + 3) >>> 0;
if (this.buf[this.pos++] < 128)
return bits;
}
} else {
for (; i < 5; ++i) {
/* istanbul ignore if */
if (this.pos >= this.len)
throw indexOutOfRange(this);
// 6th..10th
bits.hi = (bits.hi | (this.buf[this.pos] & 127) << i * 7 + 3) >>> 0;
if (this.buf[this.pos++] < 128)
return bits;
}
}
/* istanbul ignore next */
throw Error("invalid varint encoding");
}
/* eslint-enable no-invalid-this */
/**
* Reads a varint as a signed 64 bit value.
* @name Reader#int64
* @function
* @returns {Long} Value read
*/
/**
* Reads a varint as an unsigned 64 bit value.
* @name Reader#uint64
* @function
* @returns {Long} Value read
*/
/**
* Reads a zig-zag encoded varint as a signed 64 bit value.
* @name Reader#sint64
* @function
* @returns {Long} Value read
*/
/**
* Reads a varint as a boolean.
* @returns {boolean} Value read
*/
Reader$2.prototype.bool = function read_bool() {
return this.uint32() !== 0;
};
function readFixed32_end(buf, end) { // note that this uses `end`, not `pos`
return (buf[end - 4]
| buf[end - 3] << 8
| buf[end - 2] << 16
| buf[end - 1] << 24) >>> 0;
}
/**
* Reads fixed 32 bits as an unsigned 32 bit integer.
* @returns {number} Value read
*/
Reader$2.prototype.fixed32 = function read_fixed32() {
/* istanbul ignore if */
if (this.pos + 4 > this.len)
throw indexOutOfRange(this, 4);
return readFixed32_end(this.buf, this.pos += 4);
};
/**
* Reads fixed 32 bits as a signed 32 bit integer.
* @returns {number} Value read
*/
Reader$2.prototype.sfixed32 = function read_sfixed32() {
/* istanbul ignore if */
if (this.pos + 4 > this.len)
throw indexOutOfRange(this, 4);
return readFixed32_end(this.buf, this.pos += 4) | 0;
};
/* eslint-disable no-invalid-this */
function readFixed64(/* this: Reader */) {
/* istanbul ignore if */
if (this.pos + 8 > this.len)
throw indexOutOfRange(this, 8);
return new LongBits$1(readFixed32_end(this.buf, this.pos += 4), readFixed32_end(this.buf, this.pos += 4));
}
/* eslint-enable no-invalid-this */
/**
* Reads fixed 64 bits.
* @name Reader#fixed64
* @function
* @returns {Long} Value read
*/
/**
* Reads zig-zag encoded fixed 64 bits.
* @name Reader#sfixed64
* @function
* @returns {Long} Value read
*/
/**
* Reads a float (32 bit) as a number.
* @function
* @returns {number} Value read
*/
Reader$2.prototype.float = function read_float() {
/* istanbul ignore if */
if (this.pos + 4 > this.len)
throw indexOutOfRange(this, 4);
var value = util$7.float.readFloatLE(this.buf, this.pos);
this.pos += 4;
return value;
};
/**
* Reads a double (64 bit float) as a number.
* @function
* @returns {number} Value read
*/
Reader$2.prototype.double = function read_double() {
/* istanbul ignore if */
if (this.pos + 8 > this.len)
throw indexOutOfRange(this, 4);
var value = util$7.float.readDoubleLE(this.buf, this.pos);
this.pos += 8;
return value;
};
/**
* Reads a sequence of bytes preceeded by its length as a varint.
* @returns {Uint8Array} Value read
*/
Reader$2.prototype.bytes = function read_bytes() {
var length = this.uint32(),
start = this.pos,
end = this.pos + length;
/* istanbul ignore if */
if (end > this.len)
throw indexOutOfRange(this, length);
this.pos += length;
if (Array.isArray(this.buf)) // plain array
return this.buf.slice(start, end);
return start === end // fix for IE 10/Win8 and others' subarray returning array of size 1
? new this.buf.constructor(0)
: this._slice.call(this.buf, start, end);
};
/**
* Reads a string preceeded by its byte length as a varint.
* @returns {string} Value read
*/
Reader$2.prototype.string = function read_string() {
var bytes = this.bytes();
return utf8.read(bytes, 0, bytes.length);
};
/**
* Skips the specified number of bytes if specified, otherwise skips a varint.
* @param {number} [length] Length if known, otherwise a varint is assumed
* @returns {Reader} `this`
*/
Reader$2.prototype.skip = function skip(length) {
if (typeof length === "number") {
/* istanbul ignore if */
if (this.pos + length > this.len)
throw indexOutOfRange(this, length);
this.pos += length;
} else {
do {
/* istanbul ignore if */
if (this.pos >= this.len)
throw indexOutOfRange(this);
} while (this.buf[this.pos++] & 128);
}
return this;
};
/**
* Skips the next element of the specified wire type.
* @param {number} wireType Wire type received
* @returns {Reader} `this`
*/
Reader$2.prototype.skipType = function(wireType) {
switch (wireType) {
case 0:
this.skip();
break;
case 1:
this.skip(8);
break;
case 2:
this.skip(this.uint32());
break;
case 3:
while ((wireType = this.uint32() & 7) !== 4) {
this.skipType(wireType);
}
break;
case 5:
this.skip(4);
break;
/* istanbul ignore next */
default:
throw Error("invalid wire type " + wireType + " at offset " + this.pos);
}
return this;
};
Reader$2._configure = function(BufferReader_) {
BufferReader$1 = BufferReader_;
Reader$2.create = create$3();
BufferReader$1._configure();
var fn = util$7.Long ? "toLong" : /* istanbul ignore next */ "toNumber";
util$7.merge(Reader$2.prototype, {
int64: function read_int64() {
return readLongVarint.call(this)[fn](false);
},
uint64: function read_uint64() {
return readLongVarint.call(this)[fn](true);
},
sint64: function read_sint64() {
return readLongVarint.call(this).zzDecode()[fn](false);
},
fixed64: function read_fixed64() {
return readFixed64.call(this)[fn](true);
},
sfixed64: function read_sfixed64() {
return readFixed64.call(this)[fn](false);
}
});
};
var reader_buffer$1 = BufferReader;
// extends Reader
var Reader$1 = reader$1;
(BufferReader.prototype = Object.create(Reader$1.prototype)).constructor = BufferReader;
var util$6 = requireMinimal$2();
/**
* Constructs a new buffer reader instance.
* @classdesc Wire format reader using node buffers.
* @extends Reader
* @constructor
* @param {Buffer} buffer Buffer to read from
*/
function BufferReader(buffer) {
Reader$1.call(this, buffer);
/**
* Read buffer.
* @name BufferReader#buf
* @type {Buffer}
*/
}
BufferReader._configure = function () {
/* istanbul ignore else */
if (util$6.Buffer)
BufferReader.prototype._slice = util$6.Buffer.prototype.slice;
};
/**
* @override
*/
BufferReader.prototype.string = function read_string_buffer() {
var len = this.uint32(); // modifies pos
return this.buf.utf8Slice
? this.buf.utf8Slice(this.pos, this.pos = Math.min(this.pos + len, this.len))
: this.buf.toString("utf-8", this.pos, this.pos = Math.min(this.pos + len, this.len));
};
/**
* Reads a sequence of bytes preceeded by its length as a varint.
* @name BufferReader#bytes
* @function
* @returns {Buffer} Value read
*/
BufferReader._configure();
var rpc$2 = {};
var service$2 = Service$1;
var util$5 = requireMinimal$2();
// Extends EventEmitter
(Service$1.prototype = Object.create(util$5.EventEmitter.prototype)).constructor = Service$1;
/**
* A service method callback as used by {@link rpc.ServiceMethod|ServiceMethod}.
*
* Differs from {@link RPCImplCallback} in that it is an actual callback of a service method which may not return `response = null`.
* @typedef rpc.ServiceMethodCallback
* @template TRes extends Message<TRes>
* @type {function}
* @param {Error|null} error Error, if any
* @param {TRes} [response] Response message
* @returns {undefined}
*/
/**
* A service method part of a {@link rpc.Service} as created by {@link Service.create}.
* @typedef rpc.ServiceMethod
* @template TReq extends Message<TReq>
* @template TRes extends Message<TRes>
* @type {function}
* @param {TReq|Properties<TReq>} request Request message or plain object
* @param {rpc.ServiceMethodCallback<TRes>} [callback] Node-style callback called with the error, if any, and the response message
* @returns {Promise<Message<TRes>>} Promise if `callback` has been omitted, otherwise `undefined`
*/
/**
* Constructs a new RPC service instance.
* @classdesc An RPC service as returned by {@link Service#create}.
* @exports rpc.Service
* @extends util.EventEmitter
* @constructor
* @param {RPCImpl} rpcImpl RPC implementation
* @param {boolean} [requestDelimited=false] Whether requests are length-delimited
* @param {boolean} [responseDelimited=false] Whether responses are length-delimited
*/
function Service$1(rpcImpl, requestDelimited, responseDelimited) {
if (typeof rpcImpl !== "function")
throw TypeError("rpcImpl must be a function");
util$5.EventEmitter.call(this);
/**
* RPC implementation. Becomes `null` once the service is ended.
* @type {RPCImpl|null}
*/
this.rpcImpl = rpcImpl;
/**
* Whether requests are length-delimited.
* @type {boolean}
*/
this.requestDelimited = Boolean(requestDelimited);
/**
* Whether responses are length-delimited.
* @type {boolean}
*/
this.responseDelimited = Boolean(responseDelimited);
}
/**
* Calls a service method through {@link rpc.Service#rpcImpl|rpcImpl}.
* @param {Method|rpc.ServiceMethod<TReq,TRes>} method Reflected or static method
* @param {Constructor<TReq>} requestCtor Request constructor
* @param {Constructor<TRes>} responseCtor Response constructor
* @param {TReq|Properties<TReq>} request Request message or plain object
* @param {rpc.ServiceMethodCallback<TRes>} callback Service callback
* @returns {undefined}
* @template TReq extends Message<TReq>
* @template TRes extends Message<TRes>
*/
Service$1.prototype.rpcCall = function rpcCall(method, requestCtor, responseCtor, request, callback) {
if (!request)
throw TypeError("request must be specified");
var self = this;
if (!callback)
return util$5.asPromise(rpcCall, self, method, requestCtor, responseCtor, request);
if (!self.rpcImpl) {
setTimeout(function() { callback(Error("already ended")); }, 0);
return undefined;
}
try {
return self.rpcImpl(
method,
requestCtor[self.requestDelimited ? "encodeDelimited" : "encode"](request).finish(),
function rpcCallback(err, response) {
if (err) {
self.emit("error", err, method);
return callback(err);
}
if (response === null) {
self.end(/* endedByRPC */ true);
return undefined;
}
if (!(response instanceof responseCtor)) {
try {
response = responseCtor[self.responseDelimited ? "decodeDelimited" : "decode"](response);
} catch (err) {
self.emit("error", err, method);
return callback(err);
}
}
self.emit("data", response, method);
return callback(null, response);
}
);
} catch (err) {
self.emit("error", err, method);
setTimeout(function() { callback(err); }, 0);
return undefined;
}
};
/**
* Ends this service and emits the `end` event.
* @param {boolean} [endedByRPC=false] Whether the service has been ended by the RPC implementation.
* @returns {rpc.Service} `this`
*/
Service$1.prototype.end = function end(endedByRPC) {
if (this.rpcImpl) {
if (!endedByRPC) // signal end to rpcImpl
this.rpcImpl(null, null, null);
this.rpcImpl = null;
this.emit("end").off();
}
return this;
};
(function (exports) {
/**
* Streaming RPC helpers.
* @namespace
*/
var rpc = exports;
/**
* RPC implementation passed to {@link Service#create} performing a service request on network level, i.e. by utilizing http requests or websockets.
* @typedef RPCImpl
* @type {function}
* @param {Method|rpc.ServiceMethod<Message<{}>,Message<{}>>} method Reflected or static method being called
* @param {Uint8Array} requestData Request data
* @param {RPCImplCallback} callback Callback function
* @returns {undefined}
* @example
* function rpcImpl(method, requestData, callback) {
* if (protobuf.util.lcFirst(method.name) !== "myMethod") // compatible with static code
* throw Error("no such method");
* asynchronouslyObtainAResponse(requestData, function(err, responseData) {
* callback(err, responseData);
* });
* }
*/
/**
* Node-style callback as used by {@link RPCImpl}.
* @typedef RPCImplCallback
* @type {function}
* @param {Error|null} error Error, if any, otherwise `null`
* @param {Uint8Array|null} [response] Response data or `null` to signal end of stream, if there hasn't been an error
* @returns {undefined}
*/
rpc.Service = service$2;
} (rpc$2));
var roots$1 = {};
(function (exports) {
var protobuf = exports;
/**
* Build type, one of `"full"`, `"light"` or `"minimal"`.
* @name build
* @type {string}
* @const
*/
protobuf.build = "minimal";
// Serialization
protobuf.Writer = writer$1;
protobuf.BufferWriter = writer_buffer$1;
protobuf.Reader = reader$1;
protobuf.BufferReader = reader_buffer$1;
// Utility
protobuf.util = requireMinimal$2();
protobuf.rpc = rpc$2;
protobuf.roots = roots$1;
protobuf.configure = configure;
/* istanbul ignore next */
/**
* Reconfigures the library according to the environment.
* @returns {undefined}
*/
function configure() {
protobuf.util._configure();
protobuf.Writer._configure(protobuf.BufferWriter);
protobuf.Reader._configure(protobuf.BufferReader);
}
// Set up buffer utility according to the environment
configure();
} (indexMinimal$1));
var util$4 = {exports: {}};
var codegen_1;
var hasRequiredCodegen;
function requireCodegen () {
if (hasRequiredCodegen) return codegen_1;
hasRequiredCodegen = 1;
codegen_1 = codegen;
/**
* Begins generating a function.
* @memberof util
* @param {string[]} functionParams Function parameter names
* @param {string} [functionName] Function name if not anonymous
* @returns {Codegen} Appender that appends code to the function's body
*/
function codegen(functionParams, functionName) {
/* istanbul ignore if */
if (typeof functionParams === "string") {
functionName = functionParams;
functionParams = undefined;
}
var body = [];
/**
* Appends code to the function's body or finishes generation.
* @typedef Codegen
* @type {function}
* @param {string|Object.<string,*>} [formatStringOrScope] Format string or, to finish the function, an object of additional scope variables, if any
* @param {...*} [formatParams] Format parameters
* @returns {Codegen|Function} Itself or the generated function if finished
* @throws {Error} If format parameter counts do not match
*/
function Codegen(formatStringOrScope) {
// note that explicit array handling below makes this ~50% faster
// finish the function
if (typeof formatStringOrScope !== "string") {
var source = toString();
if (codegen.verbose)
console.log("codegen: " + source); // eslint-disable-line no-console
source = "return " + source;
if (formatStringOrScope) {
var scopeKeys = Object.keys(formatStringOrScope),
scopeParams = new Array(scopeKeys.length + 1),
scopeValues = new Array(scopeKeys.length),
scopeOffset = 0;
while (scopeOffset < scopeKeys.length) {
scopeParams[scopeOffset] = scopeKeys[scopeOffset];
scopeValues[scopeOffset] = formatStringOrScope[scopeKeys[scopeOffset++]];
}
scopeParams[scopeOffset] = source;
return Function.apply(null, scopeParams).apply(null, scopeValues); // eslint-disable-line no-new-func
}
return Function(source)(); // eslint-disable-line no-new-func
}
// otherwise append to body
var formatParams = new Array(arguments.length - 1),
formatOffset = 0;
while (formatOffset < formatParams.length)
formatParams[formatOffset] = arguments[++formatOffset];
formatOffset = 0;
formatStringOrScope = formatStringOrScope.replace(/%([%dfijs])/g, function replace($0, $1) {
var value = formatParams[formatOffset++];
switch ($1) {
case "d": case "f": return String(Number(value));
case "i": return String(Math.floor(value));
case "j": return JSON.stringify(value);
case "s": return String(value);
}
return "%";
});
if (formatOffset !== formatParams.length)
throw Error("parameter count mismatch");
body.push(formatStringOrScope);
return Codegen;
}
function toString(functionNameOverride) {
return "function " + (functionNameOverride || functionName || "") + "(" + (functionParams && functionParams.join(",") || "") + "){\n " + body.join("\n ") + "\n}";
}
Codegen.toString = toString;
return Codegen;
}
/**
* Begins generating a function.
* @memberof util
* @function codegen
* @param {string} [functionName] Function name if not anonymous
* @returns {Codegen} Appender that appends code to the function's body
* @variation 2
*/
/**
* When set to `true`, codegen will log generated code to console. Useful for debugging.
* @name util.codegen.verbose
* @type {boolean}
*/
codegen.verbose = false;
return codegen_1;
}
var fetch_1;
var hasRequiredFetch;
function requireFetch () {
if (hasRequiredFetch) return fetch_1;
hasRequiredFetch = 1;
fetch_1 = fetch;
var asPromise = requireAspromise(),
inquire = requireInquire();
var fs = inquire("fs");
/**
* Node-style callback as used by {@link util.fetch}.
* @typedef FetchCallback
* @type {function}
* @param {?Error} error Error, if any, otherwise `null`
* @param {string} [contents] File contents, if there hasn't been an error
* @returns {undefined}
*/
/**
* Options as used by {@link util.fetch}.
* @typedef FetchOptions
* @type {Object}
* @property {boolean} [binary=false] Whether expecting a binary response
* @property {boolean} [xhr=false] If `true`, forces the use of XMLHttpRequest
*/
/**
* Fetches the contents of a file.
* @memberof util
* @param {string} filename File path or url
* @param {FetchOptions} options Fetch options
* @param {FetchCallback} callback Callback function
* @returns {undefined}
*/
function fetch(filename, options, callback) {
if (typeof options === "function") {
callback = options;
options = {};
} else if (!options)
options = {};
if (!callback)
return asPromise(fetch, this, filename, options); // eslint-disable-line no-invalid-this
// if a node-like filesystem is present, try it first but fall back to XHR if nothing is found.
if (!options.xhr && fs && fs.readFile)
return fs.readFile(filename, function fetchReadFileCallback(err, contents) {
return err && typeof XMLHttpRequest !== "undefined"
? fetch.xhr(filename, options, callback)
: err
? callback(err)
: callback(null, options.binary ? contents : contents.toString("utf8"));
});
// use the XHR version otherwise.
return fetch.xhr(filename, options, callback);
}
/**
* Fetches the contents of a file.
* @name util.fetch
* @function
* @param {string} path File path or url
* @param {FetchCallback} callback Callback function
* @returns {undefined}
* @variation 2
*/
/**
* Fetches the contents of a file.
* @name util.fetch
* @function
* @param {string} path File path or url
* @param {FetchOptions} [options] Fetch options
* @returns {Promise<string|Uint8Array>} Promise
* @variation 3
*/
/**/
fetch.xhr = function fetch_xhr(filename, options, callback) {
var xhr = new XMLHttpRequest();
xhr.onreadystatechange /* works everywhere */ = function fetchOnReadyStateChange() {
if (xhr.readyState !== 4)
return undefined;
// local cors security errors return status 0 / empty string, too. afaik this cannot be
// reliably distinguished from an actually empty file for security reasons. feel free
// to send a pull request if you are aware of a solution.
if (xhr.status !== 0 && xhr.status !== 200)
return callback(Error("status " + xhr.status));
// if binary data is expected, make sure that some sort of array is returned, even if
// ArrayBuffers are not supported. the binary string fallback, however, is unsafe.
if (options.binary) {
var buffer = xhr.response;
if (!buffer) {
buffer = [];
for (var i = 0; i < xhr.responseText.length; ++i)
buffer.push(xhr.responseText.charCodeAt(i) & 255);
}
return callback(null, typeof Uint8Array !== "undefined" ? new Uint8Array(buffer) : buffer);
}
return callback(null, xhr.responseText);
};
if (options.binary) {
// ref: https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest/Sending_and_Receiving_Binary_Data#Receiving_binary_data_in_older_browsers
if ("overrideMimeType" in xhr)
xhr.overrideMimeType("text/plain; charset=x-user-defined");
xhr.responseType = "arraybuffer";
}
xhr.open("GET", filename);
xhr.send();
};
return fetch_1;
}
var path = {};
var hasRequiredPath;
function requirePath () {
if (hasRequiredPath) return path;
hasRequiredPath = 1;
(function (exports) {
/**
* A minimal path module to resolve Unix, Windows and URL paths alike.
* @memberof util
* @namespace
*/
var path = exports;
var isAbsolute =
/**
* Tests if the specified path is absolute.
* @param {string} path Path to test
* @returns {boolean} `true` if path is absolute
*/
path.isAbsolute = function isAbsolute(path) {
return /^(?:\/|\w+:)/.test(path);
};
var normalize =
/**
* Normalizes the specified path.
* @param {string} path Path to normalize
* @returns {string} Normalized path
*/
path.normalize = function normalize(path) {
path = path.replace(/\\/g, "/")
.replace(/\/{2,}/g, "/");
var parts = path.split("/"),
absolute = isAbsolute(path),
prefix = "";
if (absolute)
prefix = parts.shift() + "/";
for (var i = 0; i < parts.length;) {
if (parts[i] === "..") {
if (i > 0 && parts[i - 1] !== "..")
parts.splice(--i, 2);
else if (absolute)
parts.splice(i, 1);
else
++i;
} else if (parts[i] === ".")
parts.splice(i, 1);
else
++i;
}
return prefix + parts.join("/");
};
/**
* Resolves the specified include path against the specified origin path.
* @param {string} originPath Path to the origin file
* @param {string} includePath Include path relative to origin path
* @param {boolean} [alreadyNormalized=false] `true` if both paths are already known to be normalized
* @returns {string} Path to the include file
*/
path.resolve = function resolve(originPath, includePath, alreadyNormalized) {
if (!alreadyNormalized)
includePath = normalize(includePath);
if (isAbsolute(includePath))
return includePath;
if (!alreadyNormalized)
originPath = normalize(originPath);
return (originPath = originPath.replace(/(?:\/|^)[^/]+$/, "")).length ? normalize(originPath + "/" + includePath) : includePath;
};
} (path));
return path;
}
var types$1 = {};
var hasRequiredTypes;
function requireTypes () {
if (hasRequiredTypes) return types$1;
hasRequiredTypes = 1;
(function (exports) {
/**
* Common type constants.
* @namespace
*/
var types = exports;
var util = requireUtil();
var s = [
"double", // 0
"float", // 1
"int32", // 2
"uint32", // 3
"sint32", // 4
"fixed32", // 5
"sfixed32", // 6
"int64", // 7
"uint64", // 8
"sint64", // 9
"fixed64", // 10
"sfixed64", // 11
"bool", // 12
"string", // 13
"bytes" // 14
];
function bake(values, offset) {
var i = 0, o = {};
offset |= 0;
while (i < values.length) o[s[i + offset]] = values[i++];
return o;
}
/**
* Basic type wire types.
* @type {Object.<string,number>}
* @const
* @property {number} double=1 Fixed64 wire type
* @property {number} float=5 Fixed32 wire type
* @property {number} int32=0 Varint wire type
* @property {number} uint32=0 Varint wire type
* @property {number} sint32=0 Varint wire type
* @property {number} fixed32=5 Fixed32 wire type
* @property {number} sfixed32=5 Fixed32 wire type
* @property {number} int64=0 Varint wire type
* @property {number} uint64=0 Varint wire type
* @property {number} sint64=0 Varint wire type
* @property {number} fixed64=1 Fixed64 wire type
* @property {number} sfixed64=1 Fixed64 wire type
* @property {number} bool=0 Varint wire type
* @property {number} string=2 Ldelim wire type
* @property {number} bytes=2 Ldelim wire type
*/
types.basic = bake([
/* double */ 1,
/* float */ 5,
/* int32 */ 0,
/* uint32 */ 0,
/* sint32 */ 0,
/* fixed32 */ 5,
/* sfixed32 */ 5,
/* int64 */ 0,
/* uint64 */ 0,
/* sint64 */ 0,
/* fixed64 */ 1,
/* sfixed64 */ 1,
/* bool */ 0,
/* string */ 2,
/* bytes */ 2
]);
/**
* Basic type defaults.
* @type {Object.<string,*>}
* @const
* @property {number} double=0 Double default
* @property {number} float=0 Float default
* @property {number} int32=0 Int32 default
* @property {number} uint32=0 Uint32 default
* @property {number} sint32=0 Sint32 default
* @property {number} fixed32=0 Fixed32 default
* @property {number} sfixed32=0 Sfixed32 default
* @property {number} int64=0 Int64 default
* @property {number} uint64=0 Uint64 default
* @property {number} sint64=0 Sint32 default
* @property {number} fixed64=0 Fixed64 default
* @property {number} sfixed64=0 Sfixed64 default
* @property {boolean} bool=false Bool default
* @property {string} string="" String default
* @property {Array.<number>} bytes=Array(0) Bytes default
* @property {null} message=null Message default
*/
types.defaults = bake([
/* double */ 0,
/* float */ 0,
/* int32 */ 0,
/* uint32 */ 0,
/* sint32 */ 0,
/* fixed32 */ 0,
/* sfixed32 */ 0,
/* int64 */ 0,
/* uint64 */ 0,
/* sint64 */ 0,
/* fixed64 */ 0,
/* sfixed64 */ 0,
/* bool */ false,
/* string */ "",
/* bytes */ util.emptyArray,
/* message */ null
]);
/**
* Basic long type wire types.
* @type {Object.<string,number>}
* @const
* @property {number} int64=0 Varint wire type
* @property {number} uint64=0 Varint wire type
* @property {number} sint64=0 Varint wire type
* @property {number} fixed64=1 Fixed64 wire type
* @property {number} sfixed64=1 Fixed64 wire type
*/
types.long = bake([
/* int64 */ 0,
/* uint64 */ 0,
/* sint64 */ 0,
/* fixed64 */ 1,
/* sfixed64 */ 1
], 7);
/**
* Allowed types for map keys with their associated wire type.
* @type {Object.<string,number>}
* @const
* @property {number} int32=0 Varint wire type
* @property {number} uint32=0 Varint wire type
* @property {number} sint32=0 Varint wire type
* @property {number} fixed32=5 Fixed32 wire type
* @property {number} sfixed32=5 Fixed32 wire type
* @property {number} int64=0 Varint wire type
* @property {number} uint64=0 Varint wire type
* @property {number} sint64=0 Varint wire type
* @property {number} fixed64=1 Fixed64 wire type
* @property {number} sfixed64=1 Fixed64 wire type
* @property {number} bool=0 Varint wire type
* @property {number} string=2 Ldelim wire type
*/
types.mapKey = bake([
/* int32 */ 0,
/* uint32 */ 0,
/* sint32 */ 0,
/* fixed32 */ 5,
/* sfixed32 */ 5,
/* int64 */ 0,
/* uint64 */ 0,
/* sint64 */ 0,
/* fixed64 */ 1,
/* sfixed64 */ 1,
/* bool */ 0,
/* string */ 2
], 2);
/**
* Allowed types for packed repeated fields with their associated wire type.
* @type {Object.<string,number>}
* @const
* @property {number} double=1 Fixed64 wire type
* @property {number} float=5 Fixed32 wire type
* @property {number} int32=0 Varint wire type
* @property {number} uint32=0 Varint wire type
* @property {number} sint32=0 Varint wire type
* @property {number} fixed32=5 Fixed32 wire type
* @property {number} sfixed32=5 Fixed32 wire type
* @property {number} int64=0 Varint wire type
* @property {number} uint64=0 Varint wire type
* @property {number} sint64=0 Varint wire type
* @property {number} fixed64=1 Fixed64 wire type
* @property {number} sfixed64=1 Fixed64 wire type
* @property {number} bool=0 Varint wire type
*/
types.packed = bake([
/* double */ 1,
/* float */ 5,
/* int32 */ 0,
/* uint32 */ 0,
/* sint32 */ 0,
/* fixed32 */ 5,
/* sfixed32 */ 5,
/* int64 */ 0,
/* uint64 */ 0,
/* sint64 */ 0,
/* fixed64 */ 1,
/* sfixed64 */ 1,
/* bool */ 0
]);
} (types$1));
return types$1;
}
var field;
var hasRequiredField;
function requireField () {
if (hasRequiredField) return field;
hasRequiredField = 1;
field = Field;
// extends ReflectionObject
var ReflectionObject = requireObject();
((Field.prototype = Object.create(ReflectionObject.prototype)).constructor = Field).className = "Field";
var Enum = require_enum(),
types = requireTypes(),
util = requireUtil();
var Type; // cyclic
var ruleRe = /^required|optional|repeated$/;
/**
* Constructs a new message field instance. Note that {@link MapField|map fields} have their own class.
* @name Field
* @classdesc Reflected message field.
* @extends FieldBase
* @constructor
* @param {string} name Unique name within its namespace
* @param {number} id Unique id within its namespace
* @param {string} type Value type
* @param {string|Object.<string,*>} [rule="optional"] Field rule
* @param {string|Object.<string,*>} [extend] Extended type if different from parent
* @param {Object.<string,*>} [options] Declared options
*/
/**
* Constructs a field from a field descriptor.
* @param {string} name Field name
* @param {IField} json Field descriptor
* @returns {Field} Created field
* @throws {TypeError} If arguments are invalid
*/
Field.fromJSON = function fromJSON(name, json) {
return new Field(name, json.id, json.type, json.rule, json.extend, json.options, json.comment);
};
/**
* Not an actual constructor. Use {@link Field} instead.
* @classdesc Base class of all reflected message fields. This is not an actual class but here for the sake of having consistent type definitions.
* @exports FieldBase
* @extends ReflectionObject
* @constructor
* @param {string} name Unique name within its namespace
* @param {number} id Unique id within its namespace
* @param {string} type Value type
* @param {string|Object.<string,*>} [rule="optional"] Field rule
* @param {string|Object.<string,*>} [extend] Extended type if different from parent
* @param {Object.<string,*>} [options] Declared options
* @param {string} [comment] Comment associated with this field
*/
function Field(name, id, type, rule, extend, options, comment) {
if (util.isObject(rule)) {
comment = extend;
options = rule;
rule = extend = undefined;
} else if (util.isObject(extend)) {
comment = options;
options = extend;
extend = undefined;
}
ReflectionObject.call(this, name, options);
if (!util.isInteger(id) || id < 0)
throw TypeError("id must be a non-negative integer");
if (!util.isString(type))
throw TypeError("type must be a string");
if (rule !== undefined && !ruleRe.test(rule = rule.toString().toLowerCase()))
throw TypeError("rule must be a string rule");
if (extend !== undefined && !util.isString(extend))
throw TypeError("extend must be a string");
/**
* Field rule, if any.
* @type {string|undefined}
*/
if (rule === "proto3_optional") {
rule = "optional";
}
this.rule = rule && rule !== "optional" ? rule : undefined; // toJSON
/**
* Field type.
* @type {string}
*/
this.type = type; // toJSON
/**
* Unique field id.
* @type {number}
*/
this.id = id; // toJSON, marker
/**
* Extended type if different from parent.
* @type {string|undefined}
*/
this.extend = extend || undefined; // toJSON
/**
* Whether this field is required.
* @type {boolean}
*/
this.required = rule === "required";
/**
* Whether this field is optional.
* @type {boolean}
*/
this.optional = !this.required;
/**
* Whether this field is repeated.
* @type {boolean}
*/
this.repeated = rule === "repeated";
/**
* Whether this field is a map or not.
* @type {boolean}
*/
this.map = false;
/**
* Message this field belongs to.
* @type {Type|null}
*/
this.message = null;
/**
* OneOf this field belongs to, if any,
* @type {OneOf|null}
*/
this.partOf = null;
/**
* The field type's default value.
* @type {*}
*/
this.typeDefault = null;
/**
* The field's default value on prototypes.
* @type {*}
*/
this.defaultValue = null;
/**
* Whether this field's value should be treated as a long.
* @type {boolean}
*/
this.long = util.Long ? types.long[type] !== undefined : /* istanbul ignore next */ false;
/**
* Whether this field's value is a buffer.
* @type {boolean}
*/
this.bytes = type === "bytes";
/**
* Resolved type if not a basic type.
* @type {Type|Enum|null}
*/
this.resolvedType = null;
/**
* Sister-field within the extended type if a declaring extension field.
* @type {Field|null}
*/
this.extensionField = null;
/**
* Sister-field within the declaring namespace if an extended field.
* @type {Field|null}
*/
this.declaringField = null;
/**
* Internally remembers whether this field is packed.
* @type {boolean|null}
* @private
*/
this._packed = null;
/**
* Comment for this field.
* @type {string|null}
*/
this.comment = comment;
}
/**
* Determines whether this field is packed. Only relevant when repeated and working with proto2.
* @name Field#packed
* @type {boolean}
* @readonly
*/
Object.defineProperty(Field.prototype, "packed", {
get: function() {
// defaults to packed=true if not explicity set to false
if (this._packed === null)
this._packed = this.getOption("packed") !== false;
return this._packed;
}
});
/**
* @override
*/
Field.prototype.setOption = function setOption(name, value, ifNotSet) {
if (name === "packed") // clear cached before setting
this._packed = null;
return ReflectionObject.prototype.setOption.call(this, name, value, ifNotSet);
};
/**
* Field descriptor.
* @interface IField
* @property {string} [rule="optional"] Field rule
* @property {string} type Field type
* @property {number} id Field id
* @property {Object.<string,*>} [options] Field options
*/
/**
* Extension field descriptor.
* @interface IExtensionField
* @extends IField
* @property {string} extend Extended type
*/
/**
* Converts this field to a field descriptor.
* @param {IToJSONOptions} [toJSONOptions] JSON conversion options
* @returns {IField} Field descriptor
*/
Field.prototype.toJSON = function toJSON(toJSONOptions) {
var keepComments = toJSONOptions ? Boolean(toJSONOptions.keepComments) : false;
return util.toObject([
"rule" , this.rule !== "optional" && this.rule || undefined,
"type" , this.type,
"id" , this.id,
"extend" , this.extend,
"options" , this.options,
"comment" , keepComments ? this.comment : undefined
]);
};
/**
* Resolves this field's type references.
* @returns {Field} `this`
* @throws {Error} If any reference cannot be resolved
*/
Field.prototype.resolve = function resolve() {
if (this.resolved)
return this;
if ((this.typeDefault = types.defaults[this.type]) === undefined) { // if not a basic type, resolve it
this.resolvedType = (this.declaringField ? this.declaringField.parent : this.parent).lookupTypeOrEnum(this.type);
if (this.resolvedType instanceof Type)
this.typeDefault = null;
else // instanceof Enum
this.typeDefault = this.resolvedType.values[Object.keys(this.resolvedType.values)[0]]; // first defined
} else if (this.options && this.options.proto3_optional) {
// proto3 scalar value marked optional; should default to null
this.typeDefault = null;
}
// use explicitly set default value if present
if (this.options && this.options["default"] != null) {
this.typeDefault = this.options["default"];
if (this.resolvedType instanceof Enum && typeof this.typeDefault === "string")
this.typeDefault = this.resolvedType.values[this.typeDefault];
}
// remove unnecessary options
if (this.options) {
if (this.options.packed === true || this.options.packed !== undefined && this.resolvedType && !(this.resolvedType instanceof Enum))
delete this.options.packed;
if (!Object.keys(this.options).length)
this.options = undefined;
}
// convert to internal data type if necesssary
if (this.long) {
this.typeDefault = util.Long.fromNumber(this.typeDefault, this.type.charAt(0) === "u");
/* istanbul ignore else */
if (Object.freeze)
Object.freeze(this.typeDefault); // long instances are meant to be immutable anyway (i.e. use small int cache that even requires it)
} else if (this.bytes && typeof this.typeDefault === "string") {
var buf;
if (util.base64.test(this.typeDefault))
util.base64.decode(this.typeDefault, buf = util.newBuffer(util.base64.length(this.typeDefault)), 0);
else
util.utf8.write(this.typeDefault, buf = util.newBuffer(util.utf8.length(this.typeDefault)), 0);
this.typeDefault = buf;
}
// take special care of maps and repeated fields
if (this.map)
this.defaultValue = util.emptyObject;
else if (this.repeated)
this.defaultValue = util.emptyArray;
else
this.defaultValue = this.typeDefault;
// ensure proper value on prototype
if (this.parent instanceof Type)
this.parent.ctor.prototype[this.name] = this.defaultValue;
return ReflectionObject.prototype.resolve.call(this);
};
/**
* Decorator function as returned by {@link Field.d} and {@link MapField.d} (TypeScript).
* @typedef FieldDecorator
* @type {function}
* @param {Object} prototype Target prototype
* @param {string} fieldName Field name
* @returns {undefined}
*/
/**
* Field decorator (TypeScript).
* @name Field.d
* @function
* @param {number} fieldId Field id
* @param {"double"|"float"|"int32"|"uint32"|"sint32"|"fixed32"|"sfixed32"|"int64"|"uint64"|"sint64"|"fixed64"|"sfixed64"|"string"|"bool"|"bytes"|Object} fieldType Field type
* @param {"optional"|"required"|"repeated"} [fieldRule="optional"] Field rule
* @param {T} [defaultValue] Default value
* @returns {FieldDecorator} Decorator function
* @template T extends number | number[] | Long | Long[] | string | string[] | boolean | boolean[] | Uint8Array | Uint8Array[] | Buffer | Buffer[]
*/
Field.d = function decorateField(fieldId, fieldType, fieldRule, defaultValue) {
// submessage: decorate the submessage and use its name as the type
if (typeof fieldType === "function")
fieldType = util.decorateType(fieldType).name;
// enum reference: create a reflected copy of the enum and keep reuseing it
else if (fieldType && typeof fieldType === "object")
fieldType = util.decorateEnum(fieldType).name;
return function fieldDecorator(prototype, fieldName) {
util.decorateType(prototype.constructor)
.add(new Field(fieldName, fieldId, fieldType, fieldRule, { "default": defaultValue }));
};
};
/**
* Field decorator (TypeScript).
* @name Field.d
* @function
* @param {number} fieldId Field id
* @param {Constructor<T>|string} fieldType Field type
* @param {"optional"|"required"|"repeated"} [fieldRule="optional"] Field rule
* @returns {FieldDecorator} Decorator function
* @template T extends Message<T>
* @variation 2
*/
// like Field.d but without a default value
// Sets up cyclic dependencies (called in index-light)
Field._configure = function configure(Type_) {
Type = Type_;
};
return field;
}
var oneof;
var hasRequiredOneof;
function requireOneof () {
if (hasRequiredOneof) return oneof;
hasRequiredOneof = 1;
oneof = OneOf;
// extends ReflectionObject
var ReflectionObject = requireObject();
((OneOf.prototype = Object.create(ReflectionObject.prototype)).constructor = OneOf).className = "OneOf";
var Field = requireField(),
util = requireUtil();
/**
* Constructs a new oneof instance.
* @classdesc Reflected oneof.
* @extends ReflectionObject
* @constructor
* @param {string} name Oneof name
* @param {string[]|Object.<string,*>} [fieldNames] Field names
* @param {Object.<string,*>} [options] Declared options
* @param {string} [comment] Comment associated with this field
*/
function OneOf(name, fieldNames, options, comment) {
if (!Array.isArray(fieldNames)) {
options = fieldNames;
fieldNames = undefined;
}
ReflectionObject.call(this, name, options);
/* istanbul ignore if */
if (!(fieldNames === undefined || Array.isArray(fieldNames)))
throw TypeError("fieldNames must be an Array");
/**
* Field names that belong to this oneof.
* @type {string[]}
*/
this.oneof = fieldNames || []; // toJSON, marker
/**
* Fields that belong to this oneof as an array for iteration.
* @type {Field[]}
* @readonly
*/
this.fieldsArray = []; // declared readonly for conformance, possibly not yet added to parent
/**
* Comment for this field.
* @type {string|null}
*/
this.comment = comment;
}
/**
* Oneof descriptor.
* @interface IOneOf
* @property {Array.<string>} oneof Oneof field names
* @property {Object.<string,*>} [options] Oneof options
*/
/**
* Constructs a oneof from a oneof descriptor.
* @param {string} name Oneof name
* @param {IOneOf} json Oneof descriptor
* @returns {OneOf} Created oneof
* @throws {TypeError} If arguments are invalid
*/
OneOf.fromJSON = function fromJSON(name, json) {
return new OneOf(name, json.oneof, json.options, json.comment);
};
/**
* Converts this oneof to a oneof descriptor.
* @param {IToJSONOptions} [toJSONOptions] JSON conversion options
* @returns {IOneOf} Oneof descriptor
*/
OneOf.prototype.toJSON = function toJSON(toJSONOptions) {
var keepComments = toJSONOptions ? Boolean(toJSONOptions.keepComments) : false;
return util.toObject([
"options" , this.options,
"oneof" , this.oneof,
"comment" , keepComments ? this.comment : undefined
]);
};
/**
* Adds the fields of the specified oneof to the parent if not already done so.
* @param {OneOf} oneof The oneof
* @returns {undefined}
* @inner
* @ignore
*/
function addFieldsToParent(oneof) {
if (oneof.parent)
for (var i = 0; i < oneof.fieldsArray.length; ++i)
if (!oneof.fieldsArray[i].parent)
oneof.parent.add(oneof.fieldsArray[i]);
}
/**
* Adds a field to this oneof and removes it from its current parent, if any.
* @param {Field} field Field to add
* @returns {OneOf} `this`
*/
OneOf.prototype.add = function add(field) {
/* istanbul ignore if */
if (!(field instanceof Field))
throw TypeError("field must be a Field");
if (field.parent && field.parent !== this.parent)
field.parent.remove(field);
this.oneof.push(field.name);
this.fieldsArray.push(field);
field.partOf = this; // field.parent remains null
addFieldsToParent(this);
return this;
};
/**
* Removes a field from this oneof and puts it back to the oneof's parent.
* @param {Field} field Field to remove
* @returns {OneOf} `this`
*/
OneOf.prototype.remove = function remove(field) {
/* istanbul ignore if */
if (!(field instanceof Field))
throw TypeError("field must be a Field");
var index = this.fieldsArray.indexOf(field);
/* istanbul ignore if */
if (index < 0)
throw Error(field + " is not a member of " + this);
this.fieldsArray.splice(index, 1);
index = this.oneof.indexOf(field.name);
/* istanbul ignore else */
if (index > -1) // theoretical
this.oneof.splice(index, 1);
field.partOf = null;
return this;
};
/**
* @override
*/
OneOf.prototype.onAdd = function onAdd(parent) {
ReflectionObject.prototype.onAdd.call(this, parent);
var self = this;
// Collect present fields
for (var i = 0; i < this.oneof.length; ++i) {
var field = parent.get(this.oneof[i]);
if (field && !field.partOf) {
field.partOf = self;
self.fieldsArray.push(field);
}
}
// Add not yet present fields
addFieldsToParent(this);
};
/**
* @override
*/
OneOf.prototype.onRemove = function onRemove(parent) {
for (var i = 0, field; i < this.fieldsArray.length; ++i)
if ((field = this.fieldsArray[i]).parent)
field.parent.remove(field);
ReflectionObject.prototype.onRemove.call(this, parent);
};
/**
* Decorator function as returned by {@link OneOf.d} (TypeScript).
* @typedef OneOfDecorator
* @type {function}
* @param {Object} prototype Target prototype
* @param {string} oneofName OneOf name
* @returns {undefined}
*/
/**
* OneOf decorator (TypeScript).
* @function
* @param {...string} fieldNames Field names
* @returns {OneOfDecorator} Decorator function
* @template T extends string
*/
OneOf.d = function decorateOneOf() {
var fieldNames = new Array(arguments.length),
index = 0;
while (index < arguments.length)
fieldNames[index] = arguments[index++];
return function oneOfDecorator(prototype, oneofName) {
util.decorateType(prototype.constructor)
.add(new OneOf(oneofName, fieldNames));
Object.defineProperty(prototype, oneofName, {
get: util.oneOfGetter(fieldNames),
set: util.oneOfSetter(fieldNames)
});
};
};
return oneof;
}
var namespace;
var hasRequiredNamespace;
function requireNamespace () {
if (hasRequiredNamespace) return namespace;
hasRequiredNamespace = 1;
namespace = Namespace;
// extends ReflectionObject
var ReflectionObject = requireObject();
((Namespace.prototype = Object.create(ReflectionObject.prototype)).constructor = Namespace).className = "Namespace";
var Field = requireField(),
util = requireUtil(),
OneOf = requireOneof();
var Type, // cyclic
Service,
Enum;
/**
* Constructs a new namespace instance.
* @name Namespace
* @classdesc Reflected namespace.
* @extends NamespaceBase
* @constructor
* @param {string} name Namespace name
* @param {Object.<string,*>} [options] Declared options
*/
/**
* Constructs a namespace from JSON.
* @memberof Namespace
* @function
* @param {string} name Namespace name
* @param {Object.<string,*>} json JSON object
* @returns {Namespace} Created namespace
* @throws {TypeError} If arguments are invalid
*/
Namespace.fromJSON = function fromJSON(name, json) {
return new Namespace(name, json.options).addJSON(json.nested);
};
/**
* Converts an array of reflection objects to JSON.
* @memberof Namespace
* @param {ReflectionObject[]} array Object array
* @param {IToJSONOptions} [toJSONOptions] JSON conversion options
* @returns {Object.<string,*>|undefined} JSON object or `undefined` when array is empty
*/
function arrayToJSON(array, toJSONOptions) {
if (!(array && array.length))
return undefined;
var obj = {};
for (var i = 0; i < array.length; ++i)
obj[array[i].name] = array[i].toJSON(toJSONOptions);
return obj;
}
Namespace.arrayToJSON = arrayToJSON;
/**
* Tests if the specified id is reserved.
* @param {Array.<number[]|string>|undefined} reserved Array of reserved ranges and names
* @param {number} id Id to test
* @returns {boolean} `true` if reserved, otherwise `false`
*/
Namespace.isReservedId = function isReservedId(reserved, id) {
if (reserved)
for (var i = 0; i < reserved.length; ++i)
if (typeof reserved[i] !== "string" && reserved[i][0] <= id && reserved[i][1] > id)
return true;
return false;
};
/**
* Tests if the specified name is reserved.
* @param {Array.<number[]|string>|undefined} reserved Array of reserved ranges and names
* @param {string} name Name to test
* @returns {boolean} `true` if reserved, otherwise `false`
*/
Namespace.isReservedName = function isReservedName(reserved, name) {
if (reserved)
for (var i = 0; i < reserved.length; ++i)
if (reserved[i] === name)
return true;
return false;
};
/**
* Not an actual constructor. Use {@link Namespace} instead.
* @classdesc Base class of all reflection objects containing nested objects. This is not an actual class but here for the sake of having consistent type definitions.
* @exports NamespaceBase
* @extends ReflectionObject
* @abstract
* @constructor
* @param {string} name Namespace name
* @param {Object.<string,*>} [options] Declared options
* @see {@link Namespace}
*/
function Namespace(name, options) {
ReflectionObject.call(this, name, options);
/**
* Nested objects by name.
* @type {Object.<string,ReflectionObject>|undefined}
*/
this.nested = undefined; // toJSON
/**
* Cached nested objects as an array.
* @type {ReflectionObject[]|null}
* @private
*/
this._nestedArray = null;
}
function clearCache(namespace) {
namespace._nestedArray = null;
return namespace;
}
/**
* Nested objects of this namespace as an array for iteration.
* @name NamespaceBase#nestedArray
* @type {ReflectionObject[]}
* @readonly
*/
Object.defineProperty(Namespace.prototype, "nestedArray", {
get: function() {
return this._nestedArray || (this._nestedArray = util.toArray(this.nested));
}
});
/**
* Namespace descriptor.
* @interface INamespace
* @property {Object.<string,*>} [options] Namespace options
* @property {Object.<string,AnyNestedObject>} [nested] Nested object descriptors
*/
/**
* Any extension field descriptor.
* @typedef AnyExtensionField
* @type {IExtensionField|IExtensionMapField}
*/
/**
* Any nested object descriptor.
* @typedef AnyNestedObject
* @type {IEnum|IType|IService|AnyExtensionField|INamespace|IOneOf}
*/
/**
* Converts this namespace to a namespace descriptor.
* @param {IToJSONOptions} [toJSONOptions] JSON conversion options
* @returns {INamespace} Namespace descriptor
*/
Namespace.prototype.toJSON = function toJSON(toJSONOptions) {
return util.toObject([
"options" , this.options,
"nested" , arrayToJSON(this.nestedArray, toJSONOptions)
]);
};
/**
* Adds nested objects to this namespace from nested object descriptors.
* @param {Object.<string,AnyNestedObject>} nestedJson Any nested object descriptors
* @returns {Namespace} `this`
*/
Namespace.prototype.addJSON = function addJSON(nestedJson) {
var ns = this;
/* istanbul ignore else */
if (nestedJson) {
for (var names = Object.keys(nestedJson), i = 0, nested; i < names.length; ++i) {
nested = nestedJson[names[i]];
ns.add( // most to least likely
( nested.fields !== undefined
? Type.fromJSON
: nested.values !== undefined
? Enum.fromJSON
: nested.methods !== undefined
? Service.fromJSON
: nested.id !== undefined
? Field.fromJSON
: Namespace.fromJSON )(names[i], nested)
);
}
}
return this;
};
/**
* Gets the nested object of the specified name.
* @param {string} name Nested object name
* @returns {ReflectionObject|null} The reflection object or `null` if it doesn't exist
*/
Namespace.prototype.get = function get(name) {
return this.nested && this.nested[name]
|| null;
};
/**
* Gets the values of the nested {@link Enum|enum} of the specified name.
* This methods differs from {@link Namespace#get|get} in that it returns an enum's values directly and throws instead of returning `null`.
* @param {string} name Nested enum name
* @returns {Object.<string,number>} Enum values
* @throws {Error} If there is no such enum
*/
Namespace.prototype.getEnum = function getEnum(name) {
if (this.nested && this.nested[name] instanceof Enum)
return this.nested[name].values;
throw Error("no such enum: " + name);
};
/**
* Adds a nested object to this namespace.
* @param {ReflectionObject} object Nested object to add
* @returns {Namespace} `this`
* @throws {TypeError} If arguments are invalid
* @throws {Error} If there is already a nested object with this name
*/
Namespace.prototype.add = function add(object) {
if (!(object instanceof Field && object.extend !== undefined || object instanceof Type || object instanceof OneOf || object instanceof Enum || object instanceof Service || object instanceof Namespace))
throw TypeError("object must be a valid nested object");
if (!this.nested)
this.nested = {};
else {
var prev = this.get(object.name);
if (prev) {
if (prev instanceof Namespace && object instanceof Namespace && !(prev instanceof Type || prev instanceof Service)) {
// replace plain namespace but keep existing nested elements and options
var nested = prev.nestedArray;
for (var i = 0; i < nested.length; ++i)
object.add(nested[i]);
this.remove(prev);
if (!this.nested)
this.nested = {};
object.setOptions(prev.options, true);
} else
throw Error("duplicate name '" + object.name + "' in " + this);
}
}
this.nested[object.name] = object;
object.onAdd(this);
return clearCache(this);
};
/**
* Removes a nested object from this namespace.
* @param {ReflectionObject} object Nested object to remove
* @returns {Namespace} `this`
* @throws {TypeError} If arguments are invalid
* @throws {Error} If `object` is not a member of this namespace
*/
Namespace.prototype.remove = function remove(object) {
if (!(object instanceof ReflectionObject))
throw TypeError("object must be a ReflectionObject");
if (object.parent !== this)
throw Error(object + " is not a member of " + this);
delete this.nested[object.name];
if (!Object.keys(this.nested).length)
this.nested = undefined;
object.onRemove(this);
return clearCache(this);
};
/**
* Defines additial namespaces within this one if not yet existing.
* @param {string|string[]} path Path to create
* @param {*} [json] Nested types to create from JSON
* @returns {Namespace} Pointer to the last namespace created or `this` if path is empty
*/
Namespace.prototype.define = function define(path, json) {
if (util.isString(path))
path = path.split(".");
else if (!Array.isArray(path))
throw TypeError("illegal path");
if (path && path.length && path[0] === "")
throw Error("path must be relative");
var ptr = this;
while (path.length > 0) {
var part = path.shift();
if (ptr.nested && ptr.nested[part]) {
ptr = ptr.nested[part];
if (!(ptr instanceof Namespace))
throw Error("path conflicts with non-namespace objects");
} else
ptr.add(ptr = new Namespace(part));
}
if (json)
ptr.addJSON(json);
return ptr;
};
/**
* Resolves this namespace's and all its nested objects' type references. Useful to validate a reflection tree, but comes at a cost.
* @returns {Namespace} `this`
*/
Namespace.prototype.resolveAll = function resolveAll() {
var nested = this.nestedArray, i = 0;
while (i < nested.length)
if (nested[i] instanceof Namespace)
nested[i++].resolveAll();
else
nested[i++].resolve();
return this.resolve();
};
/**
* Recursively looks up the reflection object matching the specified path in the scope of this namespace.
* @param {string|string[]} path Path to look up
* @param {*|Array.<*>} filterTypes Filter types, any combination of the constructors of `protobuf.Type`, `protobuf.Enum`, `protobuf.Service` etc.
* @param {boolean} [parentAlreadyChecked=false] If known, whether the parent has already been checked
* @returns {ReflectionObject|null} Looked up object or `null` if none could be found
*/
Namespace.prototype.lookup = function lookup(path, filterTypes, parentAlreadyChecked) {
/* istanbul ignore next */
if (typeof filterTypes === "boolean") {
parentAlreadyChecked = filterTypes;
filterTypes = undefined;
} else if (filterTypes && !Array.isArray(filterTypes))
filterTypes = [ filterTypes ];
if (util.isString(path) && path.length) {
if (path === ".")
return this.root;
path = path.split(".");
} else if (!path.length)
return this;
// Start at root if path is absolute
if (path[0] === "")
return this.root.lookup(path.slice(1), filterTypes);
// Test if the first part matches any nested object, and if so, traverse if path contains more
var found = this.get(path[0]);
if (found) {
if (path.length === 1) {
if (!filterTypes || filterTypes.indexOf(found.constructor) > -1)
return found;
} else if (found instanceof Namespace && (found = found.lookup(path.slice(1), filterTypes, true)))
return found;
// Otherwise try each nested namespace
} else
for (var i = 0; i < this.nestedArray.length; ++i)
if (this._nestedArray[i] instanceof Namespace && (found = this._nestedArray[i].lookup(path, filterTypes, true)))
return found;
// If there hasn't been a match, try again at the parent
if (this.parent === null || parentAlreadyChecked)
return null;
return this.parent.lookup(path, filterTypes);
};
/**
* Looks up the reflection object at the specified path, relative to this namespace.
* @name NamespaceBase#lookup
* @function
* @param {string|string[]} path Path to look up
* @param {boolean} [parentAlreadyChecked=false] Whether the parent has already been checked
* @returns {ReflectionObject|null} Looked up object or `null` if none could be found
* @variation 2
*/
// lookup(path: string, [parentAlreadyChecked: boolean])
/**
* Looks up the {@link Type|type} at the specified path, relative to this namespace.
* Besides its signature, this methods differs from {@link Namespace#lookup|lookup} in that it throws instead of returning `null`.
* @param {string|string[]} path Path to look up
* @returns {Type} Looked up type
* @throws {Error} If `path` does not point to a type
*/
Namespace.prototype.lookupType = function lookupType(path) {
var found = this.lookup(path, [ Type ]);
if (!found)
throw Error("no such type: " + path);
return found;
};
/**
* Looks up the values of the {@link Enum|enum} at the specified path, relative to this namespace.
* Besides its signature, this methods differs from {@link Namespace#lookup|lookup} in that it throws instead of returning `null`.
* @param {string|string[]} path Path to look up
* @returns {Enum} Looked up enum
* @throws {Error} If `path` does not point to an enum
*/
Namespace.prototype.lookupEnum = function lookupEnum(path) {
var found = this.lookup(path, [ Enum ]);
if (!found)
throw Error("no such Enum '" + path + "' in " + this);
return found;
};
/**
* Looks up the {@link Type|type} or {@link Enum|enum} at the specified path, relative to this namespace.
* Besides its signature, this methods differs from {@link Namespace#lookup|lookup} in that it throws instead of returning `null`.
* @param {string|string[]} path Path to look up
* @returns {Type} Looked up type or enum
* @throws {Error} If `path` does not point to a type or enum
*/
Namespace.prototype.lookupTypeOrEnum = function lookupTypeOrEnum(path) {
var found = this.lookup(path, [ Type, Enum ]);
if (!found)
throw Error("no such Type or Enum '" + path + "' in " + this);
return found;
};
/**
* Looks up the {@link Service|service} at the specified path, relative to this namespace.
* Besides its signature, this methods differs from {@link Namespace#lookup|lookup} in that it throws instead of returning `null`.
* @param {string|string[]} path Path to look up
* @returns {Service} Looked up service
* @throws {Error} If `path` does not point to a service
*/
Namespace.prototype.lookupService = function lookupService(path) {
var found = this.lookup(path, [ Service ]);
if (!found)
throw Error("no such Service '" + path + "' in " + this);
return found;
};
// Sets up cyclic dependencies (called in index-light)
Namespace._configure = function(Type_, Service_, Enum_) {
Type = Type_;
Service = Service_;
Enum = Enum_;
};
return namespace;
}
var mapfield;
var hasRequiredMapfield;
function requireMapfield () {
if (hasRequiredMapfield) return mapfield;
hasRequiredMapfield = 1;
mapfield = MapField;
// extends Field
var Field = requireField();
((MapField.prototype = Object.create(Field.prototype)).constructor = MapField).className = "MapField";
var types = requireTypes(),
util = requireUtil();
/**
* Constructs a new map field instance.
* @classdesc Reflected map field.
* @extends FieldBase
* @constructor
* @param {string} name Unique name within its namespace
* @param {number} id Unique id within its namespace
* @param {string} keyType Key type
* @param {string} type Value type
* @param {Object.<string,*>} [options] Declared options
* @param {string} [comment] Comment associated with this field
*/
function MapField(name, id, keyType, type, options, comment) {
Field.call(this, name, id, type, undefined, undefined, options, comment);
/* istanbul ignore if */
if (!util.isString(keyType))
throw TypeError("keyType must be a string");
/**
* Key type.
* @type {string}
*/
this.keyType = keyType; // toJSON, marker
/**
* Resolved key type if not a basic type.
* @type {ReflectionObject|null}
*/
this.resolvedKeyType = null;
// Overrides Field#map
this.map = true;
}
/**
* Map field descriptor.
* @interface IMapField
* @extends {IField}
* @property {string} keyType Key type
*/
/**
* Extension map field descriptor.
* @interface IExtensionMapField
* @extends IMapField
* @property {string} extend Extended type
*/
/**
* Constructs a map field from a map field descriptor.
* @param {string} name Field name
* @param {IMapField} json Map field descriptor
* @returns {MapField} Created map field
* @throws {TypeError} If arguments are invalid
*/
MapField.fromJSON = function fromJSON(name, json) {
return new MapField(name, json.id, json.keyType, json.type, json.options, json.comment);
};
/**
* Converts this map field to a map field descriptor.
* @param {IToJSONOptions} [toJSONOptions] JSON conversion options
* @returns {IMapField} Map field descriptor
*/
MapField.prototype.toJSON = function toJSON(toJSONOptions) {
var keepComments = toJSONOptions ? Boolean(toJSONOptions.keepComments) : false;
return util.toObject([
"keyType" , this.keyType,
"type" , this.type,
"id" , this.id,
"extend" , this.extend,
"options" , this.options,
"comment" , keepComments ? this.comment : undefined
]);
};
/**
* @override
*/
MapField.prototype.resolve = function resolve() {
if (this.resolved)
return this;
// Besides a value type, map fields have a key type that may be "any scalar type except for floating point types and bytes"
if (types.mapKey[this.keyType] === undefined)
throw Error("invalid key type: " + this.keyType);
return Field.prototype.resolve.call(this);
};
/**
* Map field decorator (TypeScript).
* @name MapField.d
* @function
* @param {number} fieldId Field id
* @param {"int32"|"uint32"|"sint32"|"fixed32"|"sfixed32"|"int64"|"uint64"|"sint64"|"fixed64"|"sfixed64"|"bool"|"string"} fieldKeyType Field key type
* @param {"double"|"float"|"int32"|"uint32"|"sint32"|"fixed32"|"sfixed32"|"int64"|"uint64"|"sint64"|"fixed64"|"sfixed64"|"bool"|"string"|"bytes"|Object|Constructor<{}>} fieldValueType Field value type
* @returns {FieldDecorator} Decorator function
* @template T extends { [key: string]: number | Long | string | boolean | Uint8Array | Buffer | number[] | Message<{}> }
*/
MapField.d = function decorateMapField(fieldId, fieldKeyType, fieldValueType) {
// submessage value: decorate the submessage and use its name as the type
if (typeof fieldValueType === "function")
fieldValueType = util.decorateType(fieldValueType).name;
// enum reference value: create a reflected copy of the enum and keep reuseing it
else if (fieldValueType && typeof fieldValueType === "object")
fieldValueType = util.decorateEnum(fieldValueType).name;
return function mapFieldDecorator(prototype, fieldName) {
util.decorateType(prototype.constructor)
.add(new MapField(fieldName, fieldId, fieldKeyType, fieldValueType));
};
};
return mapfield;
}
var method;
var hasRequiredMethod;
function requireMethod () {
if (hasRequiredMethod) return method;
hasRequiredMethod = 1;
method = Method;
// extends ReflectionObject
var ReflectionObject = requireObject();
((Method.prototype = Object.create(ReflectionObject.prototype)).constructor = Method).className = "Method";
var util = requireUtil();
/**
* Constructs a new service method instance.
* @classdesc Reflected service method.
* @extends ReflectionObject
* @constructor
* @param {string} name Method name
* @param {string|undefined} type Method type, usually `"rpc"`
* @param {string} requestType Request message type
* @param {string} responseType Response message type
* @param {boolean|Object.<string,*>} [requestStream] Whether the request is streamed
* @param {boolean|Object.<string,*>} [responseStream] Whether the response is streamed
* @param {Object.<string,*>} [options] Declared options
* @param {string} [comment] The comment for this method
* @param {Object.<string,*>} [parsedOptions] Declared options, properly parsed into an object
*/
function Method(name, type, requestType, responseType, requestStream, responseStream, options, comment, parsedOptions) {
/* istanbul ignore next */
if (util.isObject(requestStream)) {
options = requestStream;
requestStream = responseStream = undefined;
} else if (util.isObject(responseStream)) {
options = responseStream;
responseStream = undefined;
}
/* istanbul ignore if */
if (!(type === undefined || util.isString(type)))
throw TypeError("type must be a string");
/* istanbul ignore if */
if (!util.isString(requestType))
throw TypeError("requestType must be a string");
/* istanbul ignore if */
if (!util.isString(responseType))
throw TypeError("responseType must be a string");
ReflectionObject.call(this, name, options);
/**
* Method type.
* @type {string}
*/
this.type = type || "rpc"; // toJSON
/**
* Request type.
* @type {string}
*/
this.requestType = requestType; // toJSON, marker
/**
* Whether requests are streamed or not.
* @type {boolean|undefined}
*/
this.requestStream = requestStream ? true : undefined; // toJSON
/**
* Response type.
* @type {string}
*/
this.responseType = responseType; // toJSON
/**
* Whether responses are streamed or not.
* @type {boolean|undefined}
*/
this.responseStream = responseStream ? true : undefined; // toJSON
/**
* Resolved request type.
* @type {Type|null}
*/
this.resolvedRequestType = null;
/**
* Resolved response type.
* @type {Type|null}
*/
this.resolvedResponseType = null;
/**
* Comment for this method
* @type {string|null}
*/
this.comment = comment;
/**
* Options properly parsed into an object
*/
this.parsedOptions = parsedOptions;
}
/**
* Method descriptor.
* @interface IMethod
* @property {string} [type="rpc"] Method type
* @property {string} requestType Request type
* @property {string} responseType Response type
* @property {boolean} [requestStream=false] Whether requests are streamed
* @property {boolean} [responseStream=false] Whether responses are streamed
* @property {Object.<string,*>} [options] Method options
* @property {string} comment Method comments
* @property {Object.<string,*>} [parsedOptions] Method options properly parsed into an object
*/
/**
* Constructs a method from a method descriptor.
* @param {string} name Method name
* @param {IMethod} json Method descriptor
* @returns {Method} Created method
* @throws {TypeError} If arguments are invalid
*/
Method.fromJSON = function fromJSON(name, json) {
return new Method(name, json.type, json.requestType, json.responseType, json.requestStream, json.responseStream, json.options, json.comment, json.parsedOptions);
};
/**
* Converts this method to a method descriptor.
* @param {IToJSONOptions} [toJSONOptions] JSON conversion options
* @returns {IMethod} Method descriptor
*/
Method.prototype.toJSON = function toJSON(toJSONOptions) {
var keepComments = toJSONOptions ? Boolean(toJSONOptions.keepComments) : false;
return util.toObject([
"type" , this.type !== "rpc" && /* istanbul ignore next */ this.type || undefined,
"requestType" , this.requestType,
"requestStream" , this.requestStream,
"responseType" , this.responseType,
"responseStream" , this.responseStream,
"options" , this.options,
"comment" , keepComments ? this.comment : undefined,
"parsedOptions" , this.parsedOptions,
]);
};
/**
* @override
*/
Method.prototype.resolve = function resolve() {
/* istanbul ignore if */
if (this.resolved)
return this;
this.resolvedRequestType = this.parent.lookupType(this.requestType);
this.resolvedResponseType = this.parent.lookupType(this.responseType);
return ReflectionObject.prototype.resolve.call(this);
};
return method;
}
var service$1;
var hasRequiredService$1;
function requireService$1 () {
if (hasRequiredService$1) return service$1;
hasRequiredService$1 = 1;
service$1 = Service;
// extends Namespace
var Namespace = requireNamespace();
((Service.prototype = Object.create(Namespace.prototype)).constructor = Service).className = "Service";
var Method = requireMethod(),
util = requireUtil(),
rpc = rpc$2;
/**
* Constructs a new service instance.
* @classdesc Reflected service.
* @extends NamespaceBase
* @constructor
* @param {string} name Service name
* @param {Object.<string,*>} [options] Service options
* @throws {TypeError} If arguments are invalid
*/
function Service(name, options) {
Namespace.call(this, name, options);
/**
* Service methods.
* @type {Object.<string,Method>}
*/
this.methods = {}; // toJSON, marker
/**
* Cached methods as an array.
* @type {Method[]|null}
* @private
*/
this._methodsArray = null;
}
/**
* Service descriptor.
* @interface IService
* @extends INamespace
* @property {Object.<string,IMethod>} methods Method descriptors
*/
/**
* Constructs a service from a service descriptor.
* @param {string} name Service name
* @param {IService} json Service descriptor
* @returns {Service} Created service
* @throws {TypeError} If arguments are invalid
*/
Service.fromJSON = function fromJSON(name, json) {
var service = new Service(name, json.options);
/* istanbul ignore else */
if (json.methods)
for (var names = Object.keys(json.methods), i = 0; i < names.length; ++i)
service.add(Method.fromJSON(names[i], json.methods[names[i]]));
if (json.nested)
service.addJSON(json.nested);
service.comment = json.comment;
return service;
};
/**
* Converts this service to a service descriptor.
* @param {IToJSONOptions} [toJSONOptions] JSON conversion options
* @returns {IService} Service descriptor
*/
Service.prototype.toJSON = function toJSON(toJSONOptions) {
var inherited = Namespace.prototype.toJSON.call(this, toJSONOptions);
var keepComments = toJSONOptions ? Boolean(toJSONOptions.keepComments) : false;
return util.toObject([
"options" , inherited && inherited.options || undefined,
"methods" , Namespace.arrayToJSON(this.methodsArray, toJSONOptions) || /* istanbul ignore next */ {},
"nested" , inherited && inherited.nested || undefined,
"comment" , keepComments ? this.comment : undefined
]);
};
/**
* Methods of this service as an array for iteration.
* @name Service#methodsArray
* @type {Method[]}
* @readonly
*/
Object.defineProperty(Service.prototype, "methodsArray", {
get: function() {
return this._methodsArray || (this._methodsArray = util.toArray(this.methods));
}
});
function clearCache(service) {
service._methodsArray = null;
return service;
}
/**
* @override
*/
Service.prototype.get = function get(name) {
return this.methods[name]
|| Namespace.prototype.get.call(this, name);
};
/**
* @override
*/
Service.prototype.resolveAll = function resolveAll() {
var methods = this.methodsArray;
for (var i = 0; i < methods.length; ++i)
methods[i].resolve();
return Namespace.prototype.resolve.call(this);
};
/**
* @override
*/
Service.prototype.add = function add(object) {
/* istanbul ignore if */
if (this.get(object.name))
throw Error("duplicate name '" + object.name + "' in " + this);
if (object instanceof Method) {
this.methods[object.name] = object;
object.parent = this;
return clearCache(this);
}
return Namespace.prototype.add.call(this, object);
};
/**
* @override
*/
Service.prototype.remove = function remove(object) {
if (object instanceof Method) {
/* istanbul ignore if */
if (this.methods[object.name] !== object)
throw Error(object + " is not a member of " + this);
delete this.methods[object.name];
object.parent = null;
return clearCache(this);
}
return Namespace.prototype.remove.call(this, object);
};
/**
* Creates a runtime service using the specified rpc implementation.
* @param {RPCImpl} rpcImpl RPC implementation
* @param {boolean} [requestDelimited=false] Whether requests are length-delimited
* @param {boolean} [responseDelimited=false] Whether responses are length-delimited
* @returns {rpc.Service} RPC service. Useful where requests and/or responses are streamed.
*/
Service.prototype.create = function create(rpcImpl, requestDelimited, responseDelimited) {
var rpcService = new rpc.Service(rpcImpl, requestDelimited, responseDelimited);
for (var i = 0, method; i < /* initializes */ this.methodsArray.length; ++i) {
var methodName = util.lcFirst((method = this._methodsArray[i]).resolve().name).replace(/[^$\w_]/g, "");
rpcService[methodName] = util.codegen(["r","c"], util.isReserved(methodName) ? methodName + "_" : methodName)("return this.rpcCall(m,q,s,r,c)")({
m: method,
q: method.resolvedRequestType.ctor,
s: method.resolvedResponseType.ctor
});
}
return rpcService;
};
return service$1;
}
var message$1 = Message;
var util$3 = requireMinimal$2();
/**
* Constructs a new message instance.
* @classdesc Abstract runtime message.
* @constructor
* @param {Properties<T>} [properties] Properties to set
* @template T extends object = object
*/
function Message(properties) {
// not used internally
if (properties)
for (var keys = Object.keys(properties), i = 0; i < keys.length; ++i)
this[keys[i]] = properties[keys[i]];
}
/**
* Reference to the reflected type.
* @name Message.$type
* @type {Type}
* @readonly
*/
/**
* Reference to the reflected type.
* @name Message#$type
* @type {Type}
* @readonly
*/
/*eslint-disable valid-jsdoc*/
/**
* Creates a new message of this type using the specified properties.
* @param {Object.<string,*>} [properties] Properties to set
* @returns {Message<T>} Message instance
* @template T extends Message<T>
* @this Constructor<T>
*/
Message.create = function create(properties) {
return this.$type.create(properties);
};
/**
* Encodes a message of this type.
* @param {T|Object.<string,*>} message Message to encode
* @param {Writer} [writer] Writer to use
* @returns {Writer} Writer
* @template T extends Message<T>
* @this Constructor<T>
*/
Message.encode = function encode(message, writer) {
return this.$type.encode(message, writer);
};
/**
* Encodes a message of this type preceeded by its length as a varint.
* @param {T|Object.<string,*>} message Message to encode
* @param {Writer} [writer] Writer to use
* @returns {Writer} Writer
* @template T extends Message<T>
* @this Constructor<T>
*/
Message.encodeDelimited = function encodeDelimited(message, writer) {
return this.$type.encodeDelimited(message, writer);
};
/**
* Decodes a message of this type.
* @name Message.decode
* @function
* @param {Reader|Uint8Array} reader Reader or buffer to decode
* @returns {T} Decoded message
* @template T extends Message<T>
* @this Constructor<T>
*/
Message.decode = function decode(reader) {
return this.$type.decode(reader);
};
/**
* Decodes a message of this type preceeded by its length as a varint.
* @name Message.decodeDelimited
* @function
* @param {Reader|Uint8Array} reader Reader or buffer to decode
* @returns {T} Decoded message
* @template T extends Message<T>
* @this Constructor<T>
*/
Message.decodeDelimited = function decodeDelimited(reader) {
return this.$type.decodeDelimited(reader);
};
/**
* Verifies a message of this type.
* @name Message.verify
* @function
* @param {Object.<string,*>} message Plain object to verify
* @returns {string|null} `null` if valid, otherwise the reason why it is not
*/
Message.verify = function verify(message) {
return this.$type.verify(message);
};
/**
* Creates a new message of this type from a plain object. Also converts values to their respective internal types.
* @param {Object.<string,*>} object Plain object
* @returns {T} Message instance
* @template T extends Message<T>
* @this Constructor<T>
*/
Message.fromObject = function fromObject(object) {
return this.$type.fromObject(object);
};
/**
* Creates a plain object from a message of this type. Also converts values to other types if specified.
* @param {T} message Message instance
* @param {IConversionOptions} [options] Conversion options
* @returns {Object.<string,*>} Plain object
* @template T extends Message<T>
* @this Constructor<T>
*/
Message.toObject = function toObject(message, options) {
return this.$type.toObject(message, options);
};
/**
* Converts this message to JSON.
* @returns {Object.<string,*>} JSON object
*/
Message.prototype.toJSON = function toJSON() {
return this.$type.toObject(this, util$3.toJSONOptions);
};
var decoder_1;
var hasRequiredDecoder;
function requireDecoder () {
if (hasRequiredDecoder) return decoder_1;
hasRequiredDecoder = 1;
decoder_1 = decoder;
var Enum = require_enum(),
types = requireTypes(),
util = requireUtil();
function missing(field) {
return "missing required '" + field.name + "'";
}
/**
* Generates a decoder specific to the specified message type.
* @param {Type} mtype Message type
* @returns {Codegen} Codegen instance
*/
function decoder(mtype) {
/* eslint-disable no-unexpected-multiline */
var gen = util.codegen(["r", "l"], mtype.name + "$decode")
("if(!(r instanceof Reader))")
("r=Reader.create(r)")
("var c=l===undefined?r.len:r.pos+l,m=new this.ctor" + (mtype.fieldsArray.filter(function(field) { return field.map; }).length ? ",k,value" : ""))
("while(r.pos<c){")
("var t=r.uint32()");
if (mtype.group) gen
("if((t&7)===4)")
("break");
gen
("switch(t>>>3){");
var i = 0;
for (; i < /* initializes */ mtype.fieldsArray.length; ++i) {
var field = mtype._fieldsArray[i].resolve(),
type = field.resolvedType instanceof Enum ? "int32" : field.type,
ref = "m" + util.safeProp(field.name); gen
("case %i: {", field.id);
// Map fields
if (field.map) { gen
("if(%s===util.emptyObject)", ref)
("%s={}", ref)
("var c2 = r.uint32()+r.pos");
if (types.defaults[field.keyType] !== undefined) gen
("k=%j", types.defaults[field.keyType]);
else gen
("k=null");
if (types.defaults[type] !== undefined) gen
("value=%j", types.defaults[type]);
else gen
("value=null");
gen
("while(r.pos<c2){")
("var tag2=r.uint32()")
("switch(tag2>>>3){")
("case 1: k=r.%s(); break", field.keyType)
("case 2:");
if (types.basic[type] === undefined) gen
("value=types[%i].decode(r,r.uint32())", i); // can't be groups
else gen
("value=r.%s()", type);
gen
("break")
("default:")
("r.skipType(tag2&7)")
("break")
("}")
("}");
if (types.long[field.keyType] !== undefined) gen
("%s[typeof k===\"object\"?util.longToHash(k):k]=value", ref);
else gen
("%s[k]=value", ref);
// Repeated fields
} else if (field.repeated) { gen
("if(!(%s&&%s.length))", ref, ref)
("%s=[]", ref);
// Packable (always check for forward and backward compatiblity)
if (types.packed[type] !== undefined) gen
("if((t&7)===2){")
("var c2=r.uint32()+r.pos")
("while(r.pos<c2)")
("%s.push(r.%s())", ref, type)
("}else");
// Non-packed
if (types.basic[type] === undefined) gen(field.resolvedType.group
? "%s.push(types[%i].decode(r))"
: "%s.push(types[%i].decode(r,r.uint32()))", ref, i);
else gen
("%s.push(r.%s())", ref, type);
// Non-repeated
} else if (types.basic[type] === undefined) gen(field.resolvedType.group
? "%s=types[%i].decode(r)"
: "%s=types[%i].decode(r,r.uint32())", ref, i);
else gen
("%s=r.%s()", ref, type);
gen
("break")
("}");
// Unknown fields
} gen
("default:")
("r.skipType(t&7)")
("break")
("}")
("}");
// Field presence
for (i = 0; i < mtype._fieldsArray.length; ++i) {
var rfield = mtype._fieldsArray[i];
if (rfield.required) gen
("if(!m.hasOwnProperty(%j))", rfield.name)
("throw util.ProtocolError(%j,{instance:m})", missing(rfield));
}
return gen
("return m");
/* eslint-enable no-unexpected-multiline */
}
return decoder_1;
}
var verifier_1;
var hasRequiredVerifier;
function requireVerifier () {
if (hasRequiredVerifier) return verifier_1;
hasRequiredVerifier = 1;
verifier_1 = verifier;
var Enum = require_enum(),
util = requireUtil();
function invalid(field, expected) {
return field.name + ": " + expected + (field.repeated && expected !== "array" ? "[]" : field.map && expected !== "object" ? "{k:"+field.keyType+"}" : "") + " expected";
}
/**
* Generates a partial value verifier.
* @param {Codegen} gen Codegen instance
* @param {Field} field Reflected field
* @param {number} fieldIndex Field index
* @param {string} ref Variable reference
* @returns {Codegen} Codegen instance
* @ignore
*/
function genVerifyValue(gen, field, fieldIndex, ref) {
/* eslint-disable no-unexpected-multiline */
if (field.resolvedType) {
if (field.resolvedType instanceof Enum) { gen
("switch(%s){", ref)
("default:")
("return%j", invalid(field, "enum value"));
for (var keys = Object.keys(field.resolvedType.values), j = 0; j < keys.length; ++j) gen
("case %i:", field.resolvedType.values[keys[j]]);
gen
("break")
("}");
} else {
gen
("{")
("var e=types[%i].verify(%s);", fieldIndex, ref)
("if(e)")
("return%j+e", field.name + ".")
("}");
}
} else {
switch (field.type) {
case "int32":
case "uint32":
case "sint32":
case "fixed32":
case "sfixed32": gen
("if(!util.isInteger(%s))", ref)
("return%j", invalid(field, "integer"));
break;
case "int64":
case "uint64":
case "sint64":
case "fixed64":
case "sfixed64": gen
("if(!util.isInteger(%s)&&!(%s&&util.isInteger(%s.low)&&util.isInteger(%s.high)))", ref, ref, ref, ref)
("return%j", invalid(field, "integer|Long"));
break;
case "float":
case "double": gen
("if(typeof %s!==\"number\")", ref)
("return%j", invalid(field, "number"));
break;
case "bool": gen
("if(typeof %s!==\"boolean\")", ref)
("return%j", invalid(field, "boolean"));
break;
case "string": gen
("if(!util.isString(%s))", ref)
("return%j", invalid(field, "string"));
break;
case "bytes": gen
("if(!(%s&&typeof %s.length===\"number\"||util.isString(%s)))", ref, ref, ref)
("return%j", invalid(field, "buffer"));
break;
}
}
return gen;
/* eslint-enable no-unexpected-multiline */
}
/**
* Generates a partial key verifier.
* @param {Codegen} gen Codegen instance
* @param {Field} field Reflected field
* @param {string} ref Variable reference
* @returns {Codegen} Codegen instance
* @ignore
*/
function genVerifyKey(gen, field, ref) {
/* eslint-disable no-unexpected-multiline */
switch (field.keyType) {
case "int32":
case "uint32":
case "sint32":
case "fixed32":
case "sfixed32": gen
("if(!util.key32Re.test(%s))", ref)
("return%j", invalid(field, "integer key"));
break;
case "int64":
case "uint64":
case "sint64":
case "fixed64":
case "sfixed64": gen
("if(!util.key64Re.test(%s))", ref) // see comment above: x is ok, d is not
("return%j", invalid(field, "integer|Long key"));
break;
case "bool": gen
("if(!util.key2Re.test(%s))", ref)
("return%j", invalid(field, "boolean key"));
break;
}
return gen;
/* eslint-enable no-unexpected-multiline */
}
/**
* Generates a verifier specific to the specified message type.
* @param {Type} mtype Message type
* @returns {Codegen} Codegen instance
*/
function verifier(mtype) {
/* eslint-disable no-unexpected-multiline */
var gen = util.codegen(["m"], mtype.name + "$verify")
("if(typeof m!==\"object\"||m===null)")
("return%j", "object expected");
var oneofs = mtype.oneofsArray,
seenFirstField = {};
if (oneofs.length) gen
("var p={}");
for (var i = 0; i < /* initializes */ mtype.fieldsArray.length; ++i) {
var field = mtype._fieldsArray[i].resolve(),
ref = "m" + util.safeProp(field.name);
if (field.optional) gen
("if(%s!=null&&m.hasOwnProperty(%j)){", ref, field.name); // !== undefined && !== null
// map fields
if (field.map) { gen
("if(!util.isObject(%s))", ref)
("return%j", invalid(field, "object"))
("var k=Object.keys(%s)", ref)
("for(var i=0;i<k.length;++i){");
genVerifyKey(gen, field, "k[i]");
genVerifyValue(gen, field, i, ref + "[k[i]]")
("}");
// repeated fields
} else if (field.repeated) { gen
("if(!Array.isArray(%s))", ref)
("return%j", invalid(field, "array"))
("for(var i=0;i<%s.length;++i){", ref);
genVerifyValue(gen, field, i, ref + "[i]")
("}");
// required or present fields
} else {
if (field.partOf) {
var oneofProp = util.safeProp(field.partOf.name);
if (seenFirstField[field.partOf.name] === 1) gen
("if(p%s===1)", oneofProp)
("return%j", field.partOf.name + ": multiple values");
seenFirstField[field.partOf.name] = 1;
gen
("p%s=1", oneofProp);
}
genVerifyValue(gen, field, i, ref);
}
if (field.optional) gen
("}");
}
return gen
("return null");
/* eslint-enable no-unexpected-multiline */
}
return verifier_1;
}
var converter = {};
var hasRequiredConverter;
function requireConverter () {
if (hasRequiredConverter) return converter;
hasRequiredConverter = 1;
(function (exports) {
/**
* Runtime message from/to plain object converters.
* @namespace
*/
var converter = exports;
var Enum = require_enum(),
util = requireUtil();
/**
* Generates a partial value fromObject conveter.
* @param {Codegen} gen Codegen instance
* @param {Field} field Reflected field
* @param {number} fieldIndex Field index
* @param {string} prop Property reference
* @returns {Codegen} Codegen instance
* @ignore
*/
function genValuePartial_fromObject(gen, field, fieldIndex, prop) {
var defaultAlreadyEmitted = false;
/* eslint-disable no-unexpected-multiline, block-scoped-var, no-redeclare */
if (field.resolvedType) {
if (field.resolvedType instanceof Enum) { gen
("switch(d%s){", prop);
for (var values = field.resolvedType.values, keys = Object.keys(values), i = 0; i < keys.length; ++i) {
// enum unknown values passthrough
if (values[keys[i]] === field.typeDefault && !defaultAlreadyEmitted) { gen
("default:")
("if(typeof(d%s)===\"number\"){m%s=d%s;break}", prop, prop, prop);
if (!field.repeated) gen // fallback to default value only for
// arrays, to avoid leaving holes.
("break"); // for non-repeated fields, just ignore
defaultAlreadyEmitted = true;
}
gen
("case%j:", keys[i])
("case %i:", values[keys[i]])
("m%s=%j", prop, values[keys[i]])
("break");
} gen
("}");
} else gen
("if(typeof d%s!==\"object\")", prop)
("throw TypeError(%j)", field.fullName + ": object expected")
("m%s=types[%i].fromObject(d%s)", prop, fieldIndex, prop);
} else {
var isUnsigned = false;
switch (field.type) {
case "double":
case "float": gen
("m%s=Number(d%s)", prop, prop); // also catches "NaN", "Infinity"
break;
case "uint32":
case "fixed32": gen
("m%s=d%s>>>0", prop, prop);
break;
case "int32":
case "sint32":
case "sfixed32": gen
("m%s=d%s|0", prop, prop);
break;
case "uint64":
isUnsigned = true;
// eslint-disable-line no-fallthrough
case "int64":
case "sint64":
case "fixed64":
case "sfixed64": gen
("if(util.Long)")
("(m%s=util.Long.fromValue(d%s)).unsigned=%j", prop, prop, isUnsigned)
("else if(typeof d%s===\"string\")", prop)
("m%s=parseInt(d%s,10)", prop, prop)
("else if(typeof d%s===\"number\")", prop)
("m%s=d%s", prop, prop)
("else if(typeof d%s===\"object\")", prop)
("m%s=new util.LongBits(d%s.low>>>0,d%s.high>>>0).toNumber(%s)", prop, prop, prop, isUnsigned ? "true" : "");
break;
case "bytes": gen
("if(typeof d%s===\"string\")", prop)
("util.base64.decode(d%s,m%s=util.newBuffer(util.base64.length(d%s)),0)", prop, prop, prop)
("else if(d%s.length >= 0)", prop)
("m%s=d%s", prop, prop);
break;
case "string": gen
("m%s=String(d%s)", prop, prop);
break;
case "bool": gen
("m%s=Boolean(d%s)", prop, prop);
break;
/* default: gen
("m%s=d%s", prop, prop);
break; */
}
}
return gen;
/* eslint-enable no-unexpected-multiline, block-scoped-var, no-redeclare */
}
/**
* Generates a plain object to runtime message converter specific to the specified message type.
* @param {Type} mtype Message type
* @returns {Codegen} Codegen instance
*/
converter.fromObject = function fromObject(mtype) {
/* eslint-disable no-unexpected-multiline, block-scoped-var, no-redeclare */
var fields = mtype.fieldsArray;
var gen = util.codegen(["d"], mtype.name + "$fromObject")
("if(d instanceof this.ctor)")
("return d");
if (!fields.length) return gen
("return new this.ctor");
gen
("var m=new this.ctor");
for (var i = 0; i < fields.length; ++i) {
var field = fields[i].resolve(),
prop = util.safeProp(field.name);
// Map fields
if (field.map) { gen
("if(d%s){", prop)
("if(typeof d%s!==\"object\")", prop)
("throw TypeError(%j)", field.fullName + ": object expected")
("m%s={}", prop)
("for(var ks=Object.keys(d%s),i=0;i<ks.length;++i){", prop);
genValuePartial_fromObject(gen, field, /* not sorted */ i, prop + "[ks[i]]")
("}")
("}");
// Repeated fields
} else if (field.repeated) { gen
("if(d%s){", prop)
("if(!Array.isArray(d%s))", prop)
("throw TypeError(%j)", field.fullName + ": array expected")
("m%s=[]", prop)
("for(var i=0;i<d%s.length;++i){", prop);
genValuePartial_fromObject(gen, field, /* not sorted */ i, prop + "[i]")
("}")
("}");
// Non-repeated fields
} else {
if (!(field.resolvedType instanceof Enum)) gen // no need to test for null/undefined if an enum (uses switch)
("if(d%s!=null){", prop); // !== undefined && !== null
genValuePartial_fromObject(gen, field, /* not sorted */ i, prop);
if (!(field.resolvedType instanceof Enum)) gen
("}");
}
} return gen
("return m");
/* eslint-enable no-unexpected-multiline, block-scoped-var, no-redeclare */
};
/**
* Generates a partial value toObject converter.
* @param {Codegen} gen Codegen instance
* @param {Field} field Reflected field
* @param {number} fieldIndex Field index
* @param {string} prop Property reference
* @returns {Codegen} Codegen instance
* @ignore
*/
function genValuePartial_toObject(gen, field, fieldIndex, prop) {
/* eslint-disable no-unexpected-multiline, block-scoped-var, no-redeclare */
if (field.resolvedType) {
if (field.resolvedType instanceof Enum) gen
("d%s=o.enums===String?(types[%i].values[m%s]===undefined?m%s:types[%i].values[m%s]):m%s", prop, fieldIndex, prop, prop, fieldIndex, prop, prop);
else gen
("d%s=types[%i].toObject(m%s,o)", prop, fieldIndex, prop);
} else {
var isUnsigned = false;
switch (field.type) {
case "double":
case "float": gen
("d%s=o.json&&!isFinite(m%s)?String(m%s):m%s", prop, prop, prop, prop);
break;
case "uint64":
isUnsigned = true;
// eslint-disable-line no-fallthrough
case "int64":
case "sint64":
case "fixed64":
case "sfixed64": gen
("if(typeof m%s===\"number\")", prop)
("d%s=o.longs===String?String(m%s):m%s", prop, prop, prop)
("else") // Long-like
("d%s=o.longs===String?util.Long.prototype.toString.call(m%s):o.longs===Number?new util.LongBits(m%s.low>>>0,m%s.high>>>0).toNumber(%s):m%s", prop, prop, prop, prop, isUnsigned ? "true": "", prop);
break;
case "bytes": gen
("d%s=o.bytes===String?util.base64.encode(m%s,0,m%s.length):o.bytes===Array?Array.prototype.slice.call(m%s):m%s", prop, prop, prop, prop, prop);
break;
default: gen
("d%s=m%s", prop, prop);
break;
}
}
return gen;
/* eslint-enable no-unexpected-multiline, block-scoped-var, no-redeclare */
}
/**
* Generates a runtime message to plain object converter specific to the specified message type.
* @param {Type} mtype Message type
* @returns {Codegen} Codegen instance
*/
converter.toObject = function toObject(mtype) {
/* eslint-disable no-unexpected-multiline, block-scoped-var, no-redeclare */
var fields = mtype.fieldsArray.slice().sort(util.compareFieldsById);
if (!fields.length)
return util.codegen()("return {}");
var gen = util.codegen(["m", "o"], mtype.name + "$toObject")
("if(!o)")
("o={}")
("var d={}");
var repeatedFields = [],
mapFields = [],
normalFields = [],
i = 0;
for (; i < fields.length; ++i)
if (!fields[i].partOf)
( fields[i].resolve().repeated ? repeatedFields
: fields[i].map ? mapFields
: normalFields).push(fields[i]);
if (repeatedFields.length) { gen
("if(o.arrays||o.defaults){");
for (i = 0; i < repeatedFields.length; ++i) gen
("d%s=[]", util.safeProp(repeatedFields[i].name));
gen
("}");
}
if (mapFields.length) { gen
("if(o.objects||o.defaults){");
for (i = 0; i < mapFields.length; ++i) gen
("d%s={}", util.safeProp(mapFields[i].name));
gen
("}");
}
if (normalFields.length) { gen
("if(o.defaults){");
for (i = 0; i < normalFields.length; ++i) {
var field = normalFields[i],
prop = util.safeProp(field.name);
if (field.resolvedType instanceof Enum) gen
("d%s=o.enums===String?%j:%j", prop, field.resolvedType.valuesById[field.typeDefault], field.typeDefault);
else if (field.long) gen
("if(util.Long){")
("var n=new util.Long(%i,%i,%j)", field.typeDefault.low, field.typeDefault.high, field.typeDefault.unsigned)
("d%s=o.longs===String?n.toString():o.longs===Number?n.toNumber():n", prop)
("}else")
("d%s=o.longs===String?%j:%i", prop, field.typeDefault.toString(), field.typeDefault.toNumber());
else if (field.bytes) {
var arrayDefault = "[" + Array.prototype.slice.call(field.typeDefault).join(",") + "]";
gen
("if(o.bytes===String)d%s=%j", prop, String.fromCharCode.apply(String, field.typeDefault))
("else{")
("d%s=%s", prop, arrayDefault)
("if(o.bytes!==Array)d%s=util.newBuffer(d%s)", prop, prop)
("}");
} else gen
("d%s=%j", prop, field.typeDefault); // also messages (=null)
} gen
("}");
}
var hasKs2 = false;
for (i = 0; i < fields.length; ++i) {
var field = fields[i],
index = mtype._fieldsArray.indexOf(field),
prop = util.safeProp(field.name);
if (field.map) {
if (!hasKs2) { hasKs2 = true; gen
("var ks2");
} gen
("if(m%s&&(ks2=Object.keys(m%s)).length){", prop, prop)
("d%s={}", prop)
("for(var j=0;j<ks2.length;++j){");
genValuePartial_toObject(gen, field, /* sorted */ index, prop + "[ks2[j]]")
("}");
} else if (field.repeated) { gen
("if(m%s&&m%s.length){", prop, prop)
("d%s=[]", prop)
("for(var j=0;j<m%s.length;++j){", prop);
genValuePartial_toObject(gen, field, /* sorted */ index, prop + "[j]")
("}");
} else { gen
("if(m%s!=null&&m.hasOwnProperty(%j)){", prop, field.name); // !== undefined && !== null
genValuePartial_toObject(gen, field, /* sorted */ index, prop);
if (field.partOf) gen
("if(o.oneofs)")
("d%s=%j", util.safeProp(field.partOf.name), field.name);
}
gen
("}");
}
return gen
("return d");
/* eslint-enable no-unexpected-multiline, block-scoped-var, no-redeclare */
};
} (converter));
return converter;
}
var wrappers = {};
(function (exports) {
/**
* Wrappers for common types.
* @type {Object.<string,IWrapper>}
* @const
*/
var wrappers = exports;
var Message = message$1;
/**
* From object converter part of an {@link IWrapper}.
* @typedef WrapperFromObjectConverter
* @type {function}
* @param {Object.<string,*>} object Plain object
* @returns {Message<{}>} Message instance
* @this Type
*/
/**
* To object converter part of an {@link IWrapper}.
* @typedef WrapperToObjectConverter
* @type {function}
* @param {Message<{}>} message Message instance
* @param {IConversionOptions} [options] Conversion options
* @returns {Object.<string,*>} Plain object
* @this Type
*/
/**
* Common type wrapper part of {@link wrappers}.
* @interface IWrapper
* @property {WrapperFromObjectConverter} [fromObject] From object converter
* @property {WrapperToObjectConverter} [toObject] To object converter
*/
// Custom wrapper for Any
wrappers[".google.protobuf.Any"] = {
fromObject: function(object) {
// unwrap value type if mapped
if (object && object["@type"]) {
// Only use fully qualified type name after the last '/'
var name = object["@type"].substring(object["@type"].lastIndexOf("/") + 1);
var type = this.lookup(name);
/* istanbul ignore else */
if (type) {
// type_url does not accept leading "."
var type_url = object["@type"].charAt(0) === "." ?
object["@type"].slice(1) : object["@type"];
// type_url prefix is optional, but path seperator is required
if (type_url.indexOf("/") === -1) {
type_url = "/" + type_url;
}
return this.create({
type_url: type_url,
value: type.encode(type.fromObject(object)).finish()
});
}
}
return this.fromObject(object);
},
toObject: function(message, options) {
// Default prefix
var googleApi = "type.googleapis.com/";
var prefix = "";
var name = "";
// decode value if requested and unmapped
if (options && options.json && message.type_url && message.value) {
// Only use fully qualified type name after the last '/'
name = message.type_url.substring(message.type_url.lastIndexOf("/") + 1);
// Separate the prefix used
prefix = message.type_url.substring(0, message.type_url.lastIndexOf("/") + 1);
var type = this.lookup(name);
/* istanbul ignore else */
if (type)
message = type.decode(message.value);
}
// wrap value if unmapped
if (!(message instanceof this.ctor) && message instanceof Message) {
var object = message.$type.toObject(message, options);
var messageName = message.$type.fullName[0] === "." ?
message.$type.fullName.slice(1) : message.$type.fullName;
// Default to type.googleapis.com prefix if no prefix is used
if (prefix === "") {
prefix = googleApi;
}
name = prefix + messageName;
object["@type"] = name;
return object;
}
return this.toObject(message, options);
}
};
} (wrappers));
var type;
var hasRequiredType;
function requireType () {
if (hasRequiredType) return type;
hasRequiredType = 1;
type = Type;
// extends Namespace
var Namespace = requireNamespace();
((Type.prototype = Object.create(Namespace.prototype)).constructor = Type).className = "Type";
var Enum = require_enum(),
OneOf = requireOneof(),
Field = requireField(),
MapField = requireMapfield(),
Service = requireService$1(),
Message = message$1,
Reader = reader$1,
Writer = writer$1,
util = requireUtil(),
encoder = requireEncoder(),
decoder = requireDecoder(),
verifier = requireVerifier(),
converter = requireConverter(),
wrappers$1 = wrappers;
/**
* Constructs a new reflected message type instance.
* @classdesc Reflected message type.
* @extends NamespaceBase
* @constructor
* @param {string} name Message name
* @param {Object.<string,*>} [options] Declared options
*/
function Type(name, options) {
Namespace.call(this, name, options);
/**
* Message fields.
* @type {Object.<string,Field>}
*/
this.fields = {}; // toJSON, marker
/**
* Oneofs declared within this namespace, if any.
* @type {Object.<string,OneOf>}
*/
this.oneofs = undefined; // toJSON
/**
* Extension ranges, if any.
* @type {number[][]}
*/
this.extensions = undefined; // toJSON
/**
* Reserved ranges, if any.
* @type {Array.<number[]|string>}
*/
this.reserved = undefined; // toJSON
/*?
* Whether this type is a legacy group.
* @type {boolean|undefined}
*/
this.group = undefined; // toJSON
/**
* Cached fields by id.
* @type {Object.<number,Field>|null}
* @private
*/
this._fieldsById = null;
/**
* Cached fields as an array.
* @type {Field[]|null}
* @private
*/
this._fieldsArray = null;
/**
* Cached oneofs as an array.
* @type {OneOf[]|null}
* @private
*/
this._oneofsArray = null;
/**
* Cached constructor.
* @type {Constructor<{}>}
* @private
*/
this._ctor = null;
}
Object.defineProperties(Type.prototype, {
/**
* Message fields by id.
* @name Type#fieldsById
* @type {Object.<number,Field>}
* @readonly
*/
fieldsById: {
get: function() {
/* istanbul ignore if */
if (this._fieldsById)
return this._fieldsById;
this._fieldsById = {};
for (var names = Object.keys(this.fields), i = 0; i < names.length; ++i) {
var field = this.fields[names[i]],
id = field.id;
/* istanbul ignore if */
if (this._fieldsById[id])
throw Error("duplicate id " + id + " in " + this);
this._fieldsById[id] = field;
}
return this._fieldsById;
}
},
/**
* Fields of this message as an array for iteration.
* @name Type#fieldsArray
* @type {Field[]}
* @readonly
*/
fieldsArray: {
get: function() {
return this._fieldsArray || (this._fieldsArray = util.toArray(this.fields));
}
},
/**
* Oneofs of this message as an array for iteration.
* @name Type#oneofsArray
* @type {OneOf[]}
* @readonly
*/
oneofsArray: {
get: function() {
return this._oneofsArray || (this._oneofsArray = util.toArray(this.oneofs));
}
},
/**
* The registered constructor, if any registered, otherwise a generic constructor.
* Assigning a function replaces the internal constructor. If the function does not extend {@link Message} yet, its prototype will be setup accordingly and static methods will be populated. If it already extends {@link Message}, it will just replace the internal constructor.
* @name Type#ctor
* @type {Constructor<{}>}
*/
ctor: {
get: function() {
return this._ctor || (this.ctor = Type.generateConstructor(this)());
},
set: function(ctor) {
// Ensure proper prototype
var prototype = ctor.prototype;
if (!(prototype instanceof Message)) {
(ctor.prototype = new Message()).constructor = ctor;
util.merge(ctor.prototype, prototype);
}
// Classes and messages reference their reflected type
ctor.$type = ctor.prototype.$type = this;
// Mix in static methods
util.merge(ctor, Message, true);
this._ctor = ctor;
// Messages have non-enumerable default values on their prototype
var i = 0;
for (; i < /* initializes */ this.fieldsArray.length; ++i)
this._fieldsArray[i].resolve(); // ensures a proper value
// Messages have non-enumerable getters and setters for each virtual oneof field
var ctorProperties = {};
for (i = 0; i < /* initializes */ this.oneofsArray.length; ++i)
ctorProperties[this._oneofsArray[i].resolve().name] = {
get: util.oneOfGetter(this._oneofsArray[i].oneof),
set: util.oneOfSetter(this._oneofsArray[i].oneof)
};
if (i)
Object.defineProperties(ctor.prototype, ctorProperties);
}
}
});
/**
* Generates a constructor function for the specified type.
* @param {Type} mtype Message type
* @returns {Codegen} Codegen instance
*/
Type.generateConstructor = function generateConstructor(mtype) {
/* eslint-disable no-unexpected-multiline */
var gen = util.codegen(["p"], mtype.name);
// explicitly initialize mutable object/array fields so that these aren't just inherited from the prototype
for (var i = 0, field; i < mtype.fieldsArray.length; ++i)
if ((field = mtype._fieldsArray[i]).map) gen
("this%s={}", util.safeProp(field.name));
else if (field.repeated) gen
("this%s=[]", util.safeProp(field.name));
return gen
("if(p)for(var ks=Object.keys(p),i=0;i<ks.length;++i)if(p[ks[i]]!=null)") // omit undefined or null
("this[ks[i]]=p[ks[i]]");
/* eslint-enable no-unexpected-multiline */
};
function clearCache(type) {
type._fieldsById = type._fieldsArray = type._oneofsArray = null;
delete type.encode;
delete type.decode;
delete type.verify;
return type;
}
/**
* Message type descriptor.
* @interface IType
* @extends INamespace
* @property {Object.<string,IOneOf>} [oneofs] Oneof descriptors
* @property {Object.<string,IField>} fields Field descriptors
* @property {number[][]} [extensions] Extension ranges
* @property {number[][]} [reserved] Reserved ranges
* @property {boolean} [group=false] Whether a legacy group or not
*/
/**
* Creates a message type from a message type descriptor.
* @param {string} name Message name
* @param {IType} json Message type descriptor
* @returns {Type} Created message type
*/
Type.fromJSON = function fromJSON(name, json) {
var type = new Type(name, json.options);
type.extensions = json.extensions;
type.reserved = json.reserved;
var names = Object.keys(json.fields),
i = 0;
for (; i < names.length; ++i)
type.add(
( typeof json.fields[names[i]].keyType !== "undefined"
? MapField.fromJSON
: Field.fromJSON )(names[i], json.fields[names[i]])
);
if (json.oneofs)
for (names = Object.keys(json.oneofs), i = 0; i < names.length; ++i)
type.add(OneOf.fromJSON(names[i], json.oneofs[names[i]]));
if (json.nested)
for (names = Object.keys(json.nested), i = 0; i < names.length; ++i) {
var nested = json.nested[names[i]];
type.add( // most to least likely
( nested.id !== undefined
? Field.fromJSON
: nested.fields !== undefined
? Type.fromJSON
: nested.values !== undefined
? Enum.fromJSON
: nested.methods !== undefined
? Service.fromJSON
: Namespace.fromJSON )(names[i], nested)
);
}
if (json.extensions && json.extensions.length)
type.extensions = json.extensions;
if (json.reserved && json.reserved.length)
type.reserved = json.reserved;
if (json.group)
type.group = true;
if (json.comment)
type.comment = json.comment;
return type;
};
/**
* Converts this message type to a message type descriptor.
* @param {IToJSONOptions} [toJSONOptions] JSON conversion options
* @returns {IType} Message type descriptor
*/
Type.prototype.toJSON = function toJSON(toJSONOptions) {
var inherited = Namespace.prototype.toJSON.call(this, toJSONOptions);
var keepComments = toJSONOptions ? Boolean(toJSONOptions.keepComments) : false;
return util.toObject([
"options" , inherited && inherited.options || undefined,
"oneofs" , Namespace.arrayToJSON(this.oneofsArray, toJSONOptions),
"fields" , Namespace.arrayToJSON(this.fieldsArray.filter(function(obj) { return !obj.declaringField; }), toJSONOptions) || {},
"extensions" , this.extensions && this.extensions.length ? this.extensions : undefined,
"reserved" , this.reserved && this.reserved.length ? this.reserved : undefined,
"group" , this.group || undefined,
"nested" , inherited && inherited.nested || undefined,
"comment" , keepComments ? this.comment : undefined
]);
};
/**
* @override
*/
Type.prototype.resolveAll = function resolveAll() {
var fields = this.fieldsArray, i = 0;
while (i < fields.length)
fields[i++].resolve();
var oneofs = this.oneofsArray; i = 0;
while (i < oneofs.length)
oneofs[i++].resolve();
return Namespace.prototype.resolveAll.call(this);
};
/**
* @override
*/
Type.prototype.get = function get(name) {
return this.fields[name]
|| this.oneofs && this.oneofs[name]
|| this.nested && this.nested[name]
|| null;
};
/**
* Adds a nested object to this type.
* @param {ReflectionObject} object Nested object to add
* @returns {Type} `this`
* @throws {TypeError} If arguments are invalid
* @throws {Error} If there is already a nested object with this name or, if a field, when there is already a field with this id
*/
Type.prototype.add = function add(object) {
if (this.get(object.name))
throw Error("duplicate name '" + object.name + "' in " + this);
if (object instanceof Field && object.extend === undefined) {
// NOTE: Extension fields aren't actual fields on the declaring type, but nested objects.
// The root object takes care of adding distinct sister-fields to the respective extended
// type instead.
// avoids calling the getter if not absolutely necessary because it's called quite frequently
if (this._fieldsById ? /* istanbul ignore next */ this._fieldsById[object.id] : this.fieldsById[object.id])
throw Error("duplicate id " + object.id + " in " + this);
if (this.isReservedId(object.id))
throw Error("id " + object.id + " is reserved in " + this);
if (this.isReservedName(object.name))
throw Error("name '" + object.name + "' is reserved in " + this);
if (object.parent)
object.parent.remove(object);
this.fields[object.name] = object;
object.message = this;
object.onAdd(this);
return clearCache(this);
}
if (object instanceof OneOf) {
if (!this.oneofs)
this.oneofs = {};
this.oneofs[object.name] = object;
object.onAdd(this);
return clearCache(this);
}
return Namespace.prototype.add.call(this, object);
};
/**
* Removes a nested object from this type.
* @param {ReflectionObject} object Nested object to remove
* @returns {Type} `this`
* @throws {TypeError} If arguments are invalid
* @throws {Error} If `object` is not a member of this type
*/
Type.prototype.remove = function remove(object) {
if (object instanceof Field && object.extend === undefined) {
// See Type#add for the reason why extension fields are excluded here.
/* istanbul ignore if */
if (!this.fields || this.fields[object.name] !== object)
throw Error(object + " is not a member of " + this);
delete this.fields[object.name];
object.parent = null;
object.onRemove(this);
return clearCache(this);
}
if (object instanceof OneOf) {
/* istanbul ignore if */
if (!this.oneofs || this.oneofs[object.name] !== object)
throw Error(object + " is not a member of " + this);
delete this.oneofs[object.name];
object.parent = null;
object.onRemove(this);
return clearCache(this);
}
return Namespace.prototype.remove.call(this, object);
};
/**
* Tests if the specified id is reserved.
* @param {number} id Id to test
* @returns {boolean} `true` if reserved, otherwise `false`
*/
Type.prototype.isReservedId = function isReservedId(id) {
return Namespace.isReservedId(this.reserved, id);
};
/**
* Tests if the specified name is reserved.
* @param {string} name Name to test
* @returns {boolean} `true` if reserved, otherwise `false`
*/
Type.prototype.isReservedName = function isReservedName(name) {
return Namespace.isReservedName(this.reserved, name);
};
/**
* Creates a new message of this type using the specified properties.
* @param {Object.<string,*>} [properties] Properties to set
* @returns {Message<{}>} Message instance
*/
Type.prototype.create = function create(properties) {
return new this.ctor(properties);
};
/**
* Sets up {@link Type#encode|encode}, {@link Type#decode|decode} and {@link Type#verify|verify}.
* @returns {Type} `this`
*/
Type.prototype.setup = function setup() {
// Sets up everything at once so that the prototype chain does not have to be re-evaluated
// multiple times (V8, soft-deopt prototype-check).
var fullName = this.fullName,
types = [];
for (var i = 0; i < /* initializes */ this.fieldsArray.length; ++i)
types.push(this._fieldsArray[i].resolve().resolvedType);
// Replace setup methods with type-specific generated functions
this.encode = encoder(this)({
Writer : Writer,
types : types,
util : util
});
this.decode = decoder(this)({
Reader : Reader,
types : types,
util : util
});
this.verify = verifier(this)({
types : types,
util : util
});
this.fromObject = converter.fromObject(this)({
types : types,
util : util
});
this.toObject = converter.toObject(this)({
types : types,
util : util
});
// Inject custom wrappers for common types
var wrapper = wrappers$1[fullName];
if (wrapper) {
var originalThis = Object.create(this);
// if (wrapper.fromObject) {
originalThis.fromObject = this.fromObject;
this.fromObject = wrapper.fromObject.bind(originalThis);
// }
// if (wrapper.toObject) {
originalThis.toObject = this.toObject;
this.toObject = wrapper.toObject.bind(originalThis);
// }
}
return this;
};
/**
* Encodes a message of this type. Does not implicitly {@link Type#verify|verify} messages.
* @param {Message<{}>|Object.<string,*>} message Message instance or plain object
* @param {Writer} [writer] Writer to encode to
* @returns {Writer} writer
*/
Type.prototype.encode = function encode_setup(message, writer) {
return this.setup().encode(message, writer); // overrides this method
};
/**
* Encodes a message of this type preceeded by its byte length as a varint. Does not implicitly {@link Type#verify|verify} messages.
* @param {Message<{}>|Object.<string,*>} message Message instance or plain object
* @param {Writer} [writer] Writer to encode to
* @returns {Writer} writer
*/
Type.prototype.encodeDelimited = function encodeDelimited(message, writer) {
return this.encode(message, writer && writer.len ? writer.fork() : writer).ldelim();
};
/**
* Decodes a message of this type.
* @param {Reader|Uint8Array} reader Reader or buffer to decode from
* @param {number} [length] Length of the message, if known beforehand
* @returns {Message<{}>} Decoded message
* @throws {Error} If the payload is not a reader or valid buffer
* @throws {util.ProtocolError<{}>} If required fields are missing
*/
Type.prototype.decode = function decode_setup(reader, length) {
return this.setup().decode(reader, length); // overrides this method
};
/**
* Decodes a message of this type preceeded by its byte length as a varint.
* @param {Reader|Uint8Array} reader Reader or buffer to decode from
* @returns {Message<{}>} Decoded message
* @throws {Error} If the payload is not a reader or valid buffer
* @throws {util.ProtocolError} If required fields are missing
*/
Type.prototype.decodeDelimited = function decodeDelimited(reader) {
if (!(reader instanceof Reader))
reader = Reader.create(reader);
return this.decode(reader, reader.uint32());
};
/**
* Verifies that field values are valid and that required fields are present.
* @param {Object.<string,*>} message Plain object to verify
* @returns {null|string} `null` if valid, otherwise the reason why it is not
*/
Type.prototype.verify = function verify_setup(message) {
return this.setup().verify(message); // overrides this method
};
/**
* Creates a new message of this type from a plain object. Also converts values to their respective internal types.
* @param {Object.<string,*>} object Plain object to convert
* @returns {Message<{}>} Message instance
*/
Type.prototype.fromObject = function fromObject(object) {
return this.setup().fromObject(object);
};
/**
* Conversion options as used by {@link Type#toObject} and {@link Message.toObject}.
* @interface IConversionOptions
* @property {Function} [longs] Long conversion type.
* Valid values are `String` and `Number` (the global types).
* Defaults to copy the present value, which is a possibly unsafe number without and a {@link Long} with a long library.
* @property {Function} [enums] Enum value conversion type.
* Only valid value is `String` (the global type).
* Defaults to copy the present value, which is the numeric id.
* @property {Function} [bytes] Bytes value conversion type.
* Valid values are `Array` and (a base64 encoded) `String` (the global types).
* Defaults to copy the present value, which usually is a Buffer under node and an Uint8Array in the browser.
* @property {boolean} [defaults=false] Also sets default values on the resulting object
* @property {boolean} [arrays=false] Sets empty arrays for missing repeated fields even if `defaults=false`
* @property {boolean} [objects=false] Sets empty objects for missing map fields even if `defaults=false`
* @property {boolean} [oneofs=false] Includes virtual oneof properties set to the present field's name, if any
* @property {boolean} [json=false] Performs additional JSON compatibility conversions, i.e. NaN and Infinity to strings
*/
/**
* Creates a plain object from a message of this type. Also converts values to other types if specified.
* @param {Message<{}>} message Message instance
* @param {IConversionOptions} [options] Conversion options
* @returns {Object.<string,*>} Plain object
*/
Type.prototype.toObject = function toObject(message, options) {
return this.setup().toObject(message, options);
};
/**
* Decorator function as returned by {@link Type.d} (TypeScript).
* @typedef TypeDecorator
* @type {function}
* @param {Constructor<T>} target Target constructor
* @returns {undefined}
* @template T extends Message<T>
*/
/**
* Type decorator (TypeScript).
* @param {string} [typeName] Type name, defaults to the constructor's name
* @returns {TypeDecorator<T>} Decorator function
* @template T extends Message<T>
*/
Type.d = function decorateType(typeName) {
return function typeDecorator(target) {
util.decorateType(target, typeName);
};
};
return type;
}
var root;
var hasRequiredRoot;
function requireRoot () {
if (hasRequiredRoot) return root;
hasRequiredRoot = 1;
root = Root;
// extends Namespace
var Namespace = requireNamespace();
((Root.prototype = Object.create(Namespace.prototype)).constructor = Root).className = "Root";
var Field = requireField(),
Enum = require_enum(),
OneOf = requireOneof(),
util = requireUtil();
var Type, // cyclic
parse, // might be excluded
common; // "
/**
* Constructs a new root namespace instance.
* @classdesc Root namespace wrapping all types, enums, services, sub-namespaces etc. that belong together.
* @extends NamespaceBase
* @constructor
* @param {Object.<string,*>} [options] Top level options
*/
function Root(options) {
Namespace.call(this, "", options);
/**
* Deferred extension fields.
* @type {Field[]}
*/
this.deferred = [];
/**
* Resolved file names of loaded files.
* @type {string[]}
*/
this.files = [];
}
/**
* Loads a namespace descriptor into a root namespace.
* @param {INamespace} json Nameespace descriptor
* @param {Root} [root] Root namespace, defaults to create a new one if omitted
* @returns {Root} Root namespace
*/
Root.fromJSON = function fromJSON(json, root) {
if (!root)
root = new Root();
if (json.options)
root.setOptions(json.options);
return root.addJSON(json.nested);
};
/**
* Resolves the path of an imported file, relative to the importing origin.
* This method exists so you can override it with your own logic in case your imports are scattered over multiple directories.
* @function
* @param {string} origin The file name of the importing file
* @param {string} target The file name being imported
* @returns {string|null} Resolved path to `target` or `null` to skip the file
*/
Root.prototype.resolvePath = util.path.resolve;
/**
* Fetch content from file path or url
* This method exists so you can override it with your own logic.
* @function
* @param {string} path File path or url
* @param {FetchCallback} callback Callback function
* @returns {undefined}
*/
Root.prototype.fetch = util.fetch;
// A symbol-like function to safely signal synchronous loading
/* istanbul ignore next */
function SYNC() {} // eslint-disable-line no-empty-function
/**
* Loads one or multiple .proto or preprocessed .json files into this root namespace and calls the callback.
* @param {string|string[]} filename Names of one or multiple files to load
* @param {IParseOptions} options Parse options
* @param {LoadCallback} callback Callback function
* @returns {undefined}
*/
Root.prototype.load = function load(filename, options, callback) {
if (typeof options === "function") {
callback = options;
options = undefined;
}
var self = this;
if (!callback)
return util.asPromise(load, self, filename, options);
var sync = callback === SYNC; // undocumented
// Finishes loading by calling the callback (exactly once)
function finish(err, root) {
/* istanbul ignore if */
if (!callback)
return;
var cb = callback;
callback = null;
if (sync)
throw err;
cb(err, root);
}
// Bundled definition existence checking
function getBundledFileName(filename) {
var idx = filename.lastIndexOf("google/protobuf/");
if (idx > -1) {
var altname = filename.substring(idx);
if (altname in common) return altname;
}
return null;
}
// Processes a single file
function process(filename, source) {
try {
if (util.isString(source) && source.charAt(0) === "{")
source = JSON.parse(source);
if (!util.isString(source))
self.setOptions(source.options).addJSON(source.nested);
else {
parse.filename = filename;
var parsed = parse(source, self, options),
resolved,
i = 0;
if (parsed.imports)
for (; i < parsed.imports.length; ++i)
if (resolved = getBundledFileName(parsed.imports[i]) || self.resolvePath(filename, parsed.imports[i]))
fetch(resolved);
if (parsed.weakImports)
for (i = 0; i < parsed.weakImports.length; ++i)
if (resolved = getBundledFileName(parsed.weakImports[i]) || self.resolvePath(filename, parsed.weakImports[i]))
fetch(resolved, true);
}
} catch (err) {
finish(err);
}
if (!sync && !queued)
finish(null, self); // only once anyway
}
// Fetches a single file
function fetch(filename, weak) {
// Skip if already loaded / attempted
if (self.files.indexOf(filename) > -1)
return;
self.files.push(filename);
// Shortcut bundled definitions
if (filename in common) {
if (sync)
process(filename, common[filename]);
else {
++queued;
setTimeout(function() {
--queued;
process(filename, common[filename]);
});
}
return;
}
// Otherwise fetch from disk or network
if (sync) {
var source;
try {
source = util.fs.readFileSync(filename).toString("utf8");
} catch (err) {
if (!weak)
finish(err);
return;
}
process(filename, source);
} else {
++queued;
self.fetch(filename, function(err, source) {
--queued;
/* istanbul ignore if */
if (!callback)
return; // terminated meanwhile
if (err) {
/* istanbul ignore else */
if (!weak)
finish(err);
else if (!queued) // can't be covered reliably
finish(null, self);
return;
}
process(filename, source);
});
}
}
var queued = 0;
// Assembling the root namespace doesn't require working type
// references anymore, so we can load everything in parallel
if (util.isString(filename))
filename = [ filename ];
for (var i = 0, resolved; i < filename.length; ++i)
if (resolved = self.resolvePath("", filename[i]))
fetch(resolved);
if (sync)
return self;
if (!queued)
finish(null, self);
return undefined;
};
// function load(filename:string, options:IParseOptions, callback:LoadCallback):undefined
/**
* Loads one or multiple .proto or preprocessed .json files into this root namespace and calls the callback.
* @function Root#load
* @param {string|string[]} filename Names of one or multiple files to load
* @param {LoadCallback} callback Callback function
* @returns {undefined}
* @variation 2
*/
// function load(filename:string, callback:LoadCallback):undefined
/**
* Loads one or multiple .proto or preprocessed .json files into this root namespace and returns a promise.
* @function Root#load
* @param {string|string[]} filename Names of one or multiple files to load
* @param {IParseOptions} [options] Parse options. Defaults to {@link parse.defaults} when omitted.
* @returns {Promise<Root>} Promise
* @variation 3
*/
// function load(filename:string, [options:IParseOptions]):Promise<Root>
/**
* Synchronously loads one or multiple .proto or preprocessed .json files into this root namespace (node only).
* @function Root#loadSync
* @param {string|string[]} filename Names of one or multiple files to load
* @param {IParseOptions} [options] Parse options. Defaults to {@link parse.defaults} when omitted.
* @returns {Root} Root namespace
* @throws {Error} If synchronous fetching is not supported (i.e. in browsers) or if a file's syntax is invalid
*/
Root.prototype.loadSync = function loadSync(filename, options) {
if (!util.isNode)
throw Error("not supported");
return this.load(filename, options, SYNC);
};
/**
* @override
*/
Root.prototype.resolveAll = function resolveAll() {
if (this.deferred.length)
throw Error("unresolvable extensions: " + this.deferred.map(function(field) {
return "'extend " + field.extend + "' in " + field.parent.fullName;
}).join(", "));
return Namespace.prototype.resolveAll.call(this);
};
// only uppercased (and thus conflict-free) children are exposed, see below
var exposeRe = /^[A-Z]/;
/**
* Handles a deferred declaring extension field by creating a sister field to represent it within its extended type.
* @param {Root} root Root instance
* @param {Field} field Declaring extension field witin the declaring type
* @returns {boolean} `true` if successfully added to the extended type, `false` otherwise
* @inner
* @ignore
*/
function tryHandleExtension(root, field) {
var extendedType = field.parent.lookup(field.extend);
if (extendedType) {
var sisterField = new Field(field.fullName, field.id, field.type, field.rule, undefined, field.options);
sisterField.declaringField = field;
field.extensionField = sisterField;
extendedType.add(sisterField);
return true;
}
return false;
}
/**
* Called when any object is added to this root or its sub-namespaces.
* @param {ReflectionObject} object Object added
* @returns {undefined}
* @private
*/
Root.prototype._handleAdd = function _handleAdd(object) {
if (object instanceof Field) {
if (/* an extension field (implies not part of a oneof) */ object.extend !== undefined && /* not already handled */ !object.extensionField)
if (!tryHandleExtension(this, object))
this.deferred.push(object);
} else if (object instanceof Enum) {
if (exposeRe.test(object.name))
object.parent[object.name] = object.values; // expose enum values as property of its parent
} else if (!(object instanceof OneOf)) /* everything else is a namespace */ {
if (object instanceof Type) // Try to handle any deferred extensions
for (var i = 0; i < this.deferred.length;)
if (tryHandleExtension(this, this.deferred[i]))
this.deferred.splice(i, 1);
else
++i;
for (var j = 0; j < /* initializes */ object.nestedArray.length; ++j) // recurse into the namespace
this._handleAdd(object._nestedArray[j]);
if (exposeRe.test(object.name))
object.parent[object.name] = object; // expose namespace as property of its parent
}
// The above also adds uppercased (and thus conflict-free) nested types, services and enums as
// properties of namespaces just like static code does. This allows using a .d.ts generated for
// a static module with reflection-based solutions where the condition is met.
};
/**
* Called when any object is removed from this root or its sub-namespaces.
* @param {ReflectionObject} object Object removed
* @returns {undefined}
* @private
*/
Root.prototype._handleRemove = function _handleRemove(object) {
if (object instanceof Field) {
if (/* an extension field */ object.extend !== undefined) {
if (/* already handled */ object.extensionField) { // remove its sister field
object.extensionField.parent.remove(object.extensionField);
object.extensionField = null;
} else { // cancel the extension
var index = this.deferred.indexOf(object);
/* istanbul ignore else */
if (index > -1)
this.deferred.splice(index, 1);
}
}
} else if (object instanceof Enum) {
if (exposeRe.test(object.name))
delete object.parent[object.name]; // unexpose enum values
} else if (object instanceof Namespace) {
for (var i = 0; i < /* initializes */ object.nestedArray.length; ++i) // recurse into the namespace
this._handleRemove(object._nestedArray[i]);
if (exposeRe.test(object.name))
delete object.parent[object.name]; // unexpose namespaces
}
};
// Sets up cyclic dependencies (called in index-light)
Root._configure = function(Type_, parse_, common_) {
Type = Type_;
parse = parse_;
common = common_;
};
return root;
}
var hasRequiredUtil;
function requireUtil () {
if (hasRequiredUtil) return util$4.exports;
hasRequiredUtil = 1;
(function (module) {
/**
* Various utility functions.
* @namespace
*/
var util = module.exports = requireMinimal$2();
var roots = roots$1;
var Type, // cyclic
Enum;
util.codegen = requireCodegen();
util.fetch = requireFetch();
util.path = requirePath();
/**
* Node's fs module if available.
* @type {Object.<string,*>}
*/
util.fs = util.inquire("fs");
/**
* Converts an object's values to an array.
* @param {Object.<string,*>} object Object to convert
* @returns {Array.<*>} Converted array
*/
util.toArray = function toArray(object) {
if (object) {
var keys = Object.keys(object),
array = new Array(keys.length),
index = 0;
while (index < keys.length)
array[index] = object[keys[index++]];
return array;
}
return [];
};
/**
* Converts an array of keys immediately followed by their respective value to an object, omitting undefined values.
* @param {Array.<*>} array Array to convert
* @returns {Object.<string,*>} Converted object
*/
util.toObject = function toObject(array) {
var object = {},
index = 0;
while (index < array.length) {
var key = array[index++],
val = array[index++];
if (val !== undefined)
object[key] = val;
}
return object;
};
var safePropBackslashRe = /\\/g,
safePropQuoteRe = /"/g;
/**
* Tests whether the specified name is a reserved word in JS.
* @param {string} name Name to test
* @returns {boolean} `true` if reserved, otherwise `false`
*/
util.isReserved = function isReserved(name) {
return /^(?:do|if|in|for|let|new|try|var|case|else|enum|eval|false|null|this|true|void|with|break|catch|class|const|super|throw|while|yield|delete|export|import|public|return|static|switch|typeof|default|extends|finally|package|private|continue|debugger|function|arguments|interface|protected|implements|instanceof)$/.test(name);
};
/**
* Returns a safe property accessor for the specified property name.
* @param {string} prop Property name
* @returns {string} Safe accessor
*/
util.safeProp = function safeProp(prop) {
if (!/^[$\w_]+$/.test(prop) || util.isReserved(prop))
return "[\"" + prop.replace(safePropBackslashRe, "\\\\").replace(safePropQuoteRe, "\\\"") + "\"]";
return "." + prop;
};
/**
* Converts the first character of a string to upper case.
* @param {string} str String to convert
* @returns {string} Converted string
*/
util.ucFirst = function ucFirst(str) {
return str.charAt(0).toUpperCase() + str.substring(1);
};
var camelCaseRe = /_([a-z])/g;
/**
* Converts a string to camel case.
* @param {string} str String to convert
* @returns {string} Converted string
*/
util.camelCase = function camelCase(str) {
return str.substring(0, 1)
+ str.substring(1)
.replace(camelCaseRe, function($0, $1) { return $1.toUpperCase(); });
};
/**
* Compares reflected fields by id.
* @param {Field} a First field
* @param {Field} b Second field
* @returns {number} Comparison value
*/
util.compareFieldsById = function compareFieldsById(a, b) {
return a.id - b.id;
};
/**
* Decorator helper for types (TypeScript).
* @param {Constructor<T>} ctor Constructor function
* @param {string} [typeName] Type name, defaults to the constructor's name
* @returns {Type} Reflected type
* @template T extends Message<T>
* @property {Root} root Decorators root
*/
util.decorateType = function decorateType(ctor, typeName) {
/* istanbul ignore if */
if (ctor.$type) {
if (typeName && ctor.$type.name !== typeName) {
util.decorateRoot.remove(ctor.$type);
ctor.$type.name = typeName;
util.decorateRoot.add(ctor.$type);
}
return ctor.$type;
}
/* istanbul ignore next */
if (!Type)
Type = requireType();
var type = new Type(typeName || ctor.name);
util.decorateRoot.add(type);
type.ctor = ctor; // sets up .encode, .decode etc.
Object.defineProperty(ctor, "$type", { value: type, enumerable: false });
Object.defineProperty(ctor.prototype, "$type", { value: type, enumerable: false });
return type;
};
var decorateEnumIndex = 0;
/**
* Decorator helper for enums (TypeScript).
* @param {Object} object Enum object
* @returns {Enum} Reflected enum
*/
util.decorateEnum = function decorateEnum(object) {
/* istanbul ignore if */
if (object.$type)
return object.$type;
/* istanbul ignore next */
if (!Enum)
Enum = require_enum();
var enm = new Enum("Enum" + decorateEnumIndex++, object);
util.decorateRoot.add(enm);
Object.defineProperty(object, "$type", { value: enm, enumerable: false });
return enm;
};
/**
* Sets the value of a property by property path. If a value already exists, it is turned to an array
* @param {Object.<string,*>} dst Destination object
* @param {string} path dot '.' delimited path of the property to set
* @param {Object} value the value to set
* @returns {Object.<string,*>} Destination object
*/
util.setProperty = function setProperty(dst, path, value) {
function setProp(dst, path, value) {
var part = path.shift();
if (part === "__proto__") {
return dst;
}
if (path.length > 0) {
dst[part] = setProp(dst[part] || {}, path, value);
} else {
var prevValue = dst[part];
if (prevValue)
value = [].concat(prevValue).concat(value);
dst[part] = value;
}
return dst;
}
if (typeof dst !== "object")
throw TypeError("dst must be an object");
if (!path)
throw TypeError("path must be specified");
path = path.split(".");
return setProp(dst, path, value);
};
/**
* Decorator root (TypeScript).
* @name util.decorateRoot
* @type {Root}
* @readonly
*/
Object.defineProperty(util, "decorateRoot", {
get: function() {
return roots["decorated"] || (roots["decorated"] = new (requireRoot())());
}
});
} (util$4));
return util$4.exports;
}
var object;
var hasRequiredObject;
function requireObject () {
if (hasRequiredObject) return object;
hasRequiredObject = 1;
object = ReflectionObject;
ReflectionObject.className = "ReflectionObject";
var util = requireUtil();
var Root; // cyclic
/**
* Constructs a new reflection object instance.
* @classdesc Base class of all reflection objects.
* @constructor
* @param {string} name Object name
* @param {Object.<string,*>} [options] Declared options
* @abstract
*/
function ReflectionObject(name, options) {
if (!util.isString(name))
throw TypeError("name must be a string");
if (options && !util.isObject(options))
throw TypeError("options must be an object");
/**
* Options.
* @type {Object.<string,*>|undefined}
*/
this.options = options; // toJSON
/**
* Parsed Options.
* @type {Array.<Object.<string,*>>|undefined}
*/
this.parsedOptions = null;
/**
* Unique name within its namespace.
* @type {string}
*/
this.name = name;
/**
* Parent namespace.
* @type {Namespace|null}
*/
this.parent = null;
/**
* Whether already resolved or not.
* @type {boolean}
*/
this.resolved = false;
/**
* Comment text, if any.
* @type {string|null}
*/
this.comment = null;
/**
* Defining file name.
* @type {string|null}
*/
this.filename = null;
}
Object.defineProperties(ReflectionObject.prototype, {
/**
* Reference to the root namespace.
* @name ReflectionObject#root
* @type {Root}
* @readonly
*/
root: {
get: function() {
var ptr = this;
while (ptr.parent !== null)
ptr = ptr.parent;
return ptr;
}
},
/**
* Full name including leading dot.
* @name ReflectionObject#fullName
* @type {string}
* @readonly
*/
fullName: {
get: function() {
var path = [ this.name ],
ptr = this.parent;
while (ptr) {
path.unshift(ptr.name);
ptr = ptr.parent;
}
return path.join(".");
}
}
});
/**
* Converts this reflection object to its descriptor representation.
* @returns {Object.<string,*>} Descriptor
* @abstract
*/
ReflectionObject.prototype.toJSON = /* istanbul ignore next */ function toJSON() {
throw Error(); // not implemented, shouldn't happen
};
/**
* Called when this object is added to a parent.
* @param {ReflectionObject} parent Parent added to
* @returns {undefined}
*/
ReflectionObject.prototype.onAdd = function onAdd(parent) {
if (this.parent && this.parent !== parent)
this.parent.remove(this);
this.parent = parent;
this.resolved = false;
var root = parent.root;
if (root instanceof Root)
root._handleAdd(this);
};
/**
* Called when this object is removed from a parent.
* @param {ReflectionObject} parent Parent removed from
* @returns {undefined}
*/
ReflectionObject.prototype.onRemove = function onRemove(parent) {
var root = parent.root;
if (root instanceof Root)
root._handleRemove(this);
this.parent = null;
this.resolved = false;
};
/**
* Resolves this objects type references.
* @returns {ReflectionObject} `this`
*/
ReflectionObject.prototype.resolve = function resolve() {
if (this.resolved)
return this;
if (this.root instanceof Root)
this.resolved = true; // only if part of a root
return this;
};
/**
* Gets an option value.
* @param {string} name Option name
* @returns {*} Option value or `undefined` if not set
*/
ReflectionObject.prototype.getOption = function getOption(name) {
if (this.options)
return this.options[name];
return undefined;
};
/**
* Sets an option.
* @param {string} name Option name
* @param {*} value Option value
* @param {boolean} [ifNotSet] Sets the option only if it isn't currently set
* @returns {ReflectionObject} `this`
*/
ReflectionObject.prototype.setOption = function setOption(name, value, ifNotSet) {
if (!ifNotSet || !this.options || this.options[name] === undefined)
(this.options || (this.options = {}))[name] = value;
return this;
};
/**
* Sets a parsed option.
* @param {string} name parsed Option name
* @param {*} value Option value
* @param {string} propName dot '.' delimited full path of property within the option to set. if undefined\empty, will add a new option with that value
* @returns {ReflectionObject} `this`
*/
ReflectionObject.prototype.setParsedOption = function setParsedOption(name, value, propName) {
if (!this.parsedOptions) {
this.parsedOptions = [];
}
var parsedOptions = this.parsedOptions;
if (propName) {
// If setting a sub property of an option then try to merge it
// with an existing option
var opt = parsedOptions.find(function (opt) {
return Object.prototype.hasOwnProperty.call(opt, name);
});
if (opt) {
// If we found an existing option - just merge the property value
var newValue = opt[name];
util.setProperty(newValue, propName, value);
} else {
// otherwise, create a new option, set it's property and add it to the list
opt = {};
opt[name] = util.setProperty({}, propName, value);
parsedOptions.push(opt);
}
} else {
// Always create a new option when setting the value of the option itself
var newOpt = {};
newOpt[name] = value;
parsedOptions.push(newOpt);
}
return this;
};
/**
* Sets multiple options.
* @param {Object.<string,*>} options Options to set
* @param {boolean} [ifNotSet] Sets an option only if it isn't currently set
* @returns {ReflectionObject} `this`
*/
ReflectionObject.prototype.setOptions = function setOptions(options, ifNotSet) {
if (options)
for (var keys = Object.keys(options), i = 0; i < keys.length; ++i)
this.setOption(keys[i], options[keys[i]], ifNotSet);
return this;
};
/**
* Converts this instance to its string representation.
* @returns {string} Class name[, space, full name]
*/
ReflectionObject.prototype.toString = function toString() {
var className = this.constructor.className,
fullName = this.fullName;
if (fullName.length)
return className + " " + fullName;
return className;
};
// Sets up cyclic dependencies (called in index-light)
ReflectionObject._configure = function(Root_) {
Root = Root_;
};
return object;
}
var _enum;
var hasRequired_enum;
function require_enum () {
if (hasRequired_enum) return _enum;
hasRequired_enum = 1;
_enum = Enum;
// extends ReflectionObject
var ReflectionObject = requireObject();
((Enum.prototype = Object.create(ReflectionObject.prototype)).constructor = Enum).className = "Enum";
var Namespace = requireNamespace(),
util = requireUtil();
/**
* Constructs a new enum instance.
* @classdesc Reflected enum.
* @extends ReflectionObject
* @constructor
* @param {string} name Unique name within its namespace
* @param {Object.<string,number>} [values] Enum values as an object, by name
* @param {Object.<string,*>} [options] Declared options
* @param {string} [comment] The comment for this enum
* @param {Object.<string,string>} [comments] The value comments for this enum
* @param {Object.<string,Object<string,*>>|undefined} [valuesOptions] The value options for this enum
*/
function Enum(name, values, options, comment, comments, valuesOptions) {
ReflectionObject.call(this, name, options);
if (values && typeof values !== "object")
throw TypeError("values must be an object");
/**
* Enum values by id.
* @type {Object.<number,string>}
*/
this.valuesById = {};
/**
* Enum values by name.
* @type {Object.<string,number>}
*/
this.values = Object.create(this.valuesById); // toJSON, marker
/**
* Enum comment text.
* @type {string|null}
*/
this.comment = comment;
/**
* Value comment texts, if any.
* @type {Object.<string,string>}
*/
this.comments = comments || {};
/**
* Values options, if any
* @type {Object<string, Object<string, *>>|undefined}
*/
this.valuesOptions = valuesOptions;
/**
* Reserved ranges, if any.
* @type {Array.<number[]|string>}
*/
this.reserved = undefined; // toJSON
// Note that values inherit valuesById on their prototype which makes them a TypeScript-
// compatible enum. This is used by pbts to write actual enum definitions that work for
// static and reflection code alike instead of emitting generic object definitions.
if (values)
for (var keys = Object.keys(values), i = 0; i < keys.length; ++i)
if (typeof values[keys[i]] === "number") // use forward entries only
this.valuesById[ this.values[keys[i]] = values[keys[i]] ] = keys[i];
}
/**
* Enum descriptor.
* @interface IEnum
* @property {Object.<string,number>} values Enum values
* @property {Object.<string,*>} [options] Enum options
*/
/**
* Constructs an enum from an enum descriptor.
* @param {string} name Enum name
* @param {IEnum} json Enum descriptor
* @returns {Enum} Created enum
* @throws {TypeError} If arguments are invalid
*/
Enum.fromJSON = function fromJSON(name, json) {
var enm = new Enum(name, json.values, json.options, json.comment, json.comments);
enm.reserved = json.reserved;
return enm;
};
/**
* Converts this enum to an enum descriptor.
* @param {IToJSONOptions} [toJSONOptions] JSON conversion options
* @returns {IEnum} Enum descriptor
*/
Enum.prototype.toJSON = function toJSON(toJSONOptions) {
var keepComments = toJSONOptions ? Boolean(toJSONOptions.keepComments) : false;
return util.toObject([
"options" , this.options,
"valuesOptions" , this.valuesOptions,
"values" , this.values,
"reserved" , this.reserved && this.reserved.length ? this.reserved : undefined,
"comment" , keepComments ? this.comment : undefined,
"comments" , keepComments ? this.comments : undefined
]);
};
/**
* Adds a value to this enum.
* @param {string} name Value name
* @param {number} id Value id
* @param {string} [comment] Comment, if any
* @param {Object.<string, *>|undefined} [options] Options, if any
* @returns {Enum} `this`
* @throws {TypeError} If arguments are invalid
* @throws {Error} If there is already a value with this name or id
*/
Enum.prototype.add = function add(name, id, comment, options) {
// utilized by the parser but not by .fromJSON
if (!util.isString(name))
throw TypeError("name must be a string");
if (!util.isInteger(id))
throw TypeError("id must be an integer");
if (this.values[name] !== undefined)
throw Error("duplicate name '" + name + "' in " + this);
if (this.isReservedId(id))
throw Error("id " + id + " is reserved in " + this);
if (this.isReservedName(name))
throw Error("name '" + name + "' is reserved in " + this);
if (this.valuesById[id] !== undefined) {
if (!(this.options && this.options.allow_alias))
throw Error("duplicate id " + id + " in " + this);
this.values[name] = id;
} else
this.valuesById[this.values[name] = id] = name;
if (options) {
if (this.valuesOptions === undefined)
this.valuesOptions = {};
this.valuesOptions[name] = options || null;
}
this.comments[name] = comment || null;
return this;
};
/**
* Removes a value from this enum
* @param {string} name Value name
* @returns {Enum} `this`
* @throws {TypeError} If arguments are invalid
* @throws {Error} If `name` is not a name of this enum
*/
Enum.prototype.remove = function remove(name) {
if (!util.isString(name))
throw TypeError("name must be a string");
var val = this.values[name];
if (val == null)
throw Error("name '" + name + "' does not exist in " + this);
delete this.valuesById[val];
delete this.values[name];
delete this.comments[name];
if (this.valuesOptions)
delete this.valuesOptions[name];
return this;
};
/**
* Tests if the specified id is reserved.
* @param {number} id Id to test
* @returns {boolean} `true` if reserved, otherwise `false`
*/
Enum.prototype.isReservedId = function isReservedId(id) {
return Namespace.isReservedId(this.reserved, id);
};
/**
* Tests if the specified name is reserved.
* @param {string} name Name to test
* @returns {boolean} `true` if reserved, otherwise `false`
*/
Enum.prototype.isReservedName = function isReservedName(name) {
return Namespace.isReservedName(this.reserved, name);
};
return _enum;
}
var encoder_1;
var hasRequiredEncoder;
function requireEncoder () {
if (hasRequiredEncoder) return encoder_1;
hasRequiredEncoder = 1;
encoder_1 = encoder;
var Enum = require_enum(),
types = requireTypes(),
util = requireUtil();
/**
* Generates a partial message type encoder.
* @param {Codegen} gen Codegen instance
* @param {Field} field Reflected field
* @param {number} fieldIndex Field index
* @param {string} ref Variable reference
* @returns {Codegen} Codegen instance
* @ignore
*/
function genTypePartial(gen, field, fieldIndex, ref) {
return field.resolvedType.group
? gen("types[%i].encode(%s,w.uint32(%i)).uint32(%i)", fieldIndex, ref, (field.id << 3 | 3) >>> 0, (field.id << 3 | 4) >>> 0)
: gen("types[%i].encode(%s,w.uint32(%i).fork()).ldelim()", fieldIndex, ref, (field.id << 3 | 2) >>> 0);
}
/**
* Generates an encoder specific to the specified message type.
* @param {Type} mtype Message type
* @returns {Codegen} Codegen instance
*/
function encoder(mtype) {
/* eslint-disable no-unexpected-multiline, block-scoped-var, no-redeclare */
var gen = util.codegen(["m", "w"], mtype.name + "$encode")
("if(!w)")
("w=Writer.create()");
var i, ref;
// "when a message is serialized its known fields should be written sequentially by field number"
var fields = /* initializes */ mtype.fieldsArray.slice().sort(util.compareFieldsById);
for (var i = 0; i < fields.length; ++i) {
var field = fields[i].resolve(),
index = mtype._fieldsArray.indexOf(field),
type = field.resolvedType instanceof Enum ? "int32" : field.type,
wireType = types.basic[type];
ref = "m" + util.safeProp(field.name);
// Map fields
if (field.map) {
gen
("if(%s!=null&&Object.hasOwnProperty.call(m,%j)){", ref, field.name) // !== undefined && !== null
("for(var ks=Object.keys(%s),i=0;i<ks.length;++i){", ref)
("w.uint32(%i).fork().uint32(%i).%s(ks[i])", (field.id << 3 | 2) >>> 0, 8 | types.mapKey[field.keyType], field.keyType);
if (wireType === undefined) gen
("types[%i].encode(%s[ks[i]],w.uint32(18).fork()).ldelim().ldelim()", index, ref); // can't be groups
else gen
(".uint32(%i).%s(%s[ks[i]]).ldelim()", 16 | wireType, type, ref);
gen
("}")
("}");
// Repeated fields
} else if (field.repeated) { gen
("if(%s!=null&&%s.length){", ref, ref); // !== undefined && !== null
// Packed repeated
if (field.packed && types.packed[type] !== undefined) { gen
("w.uint32(%i).fork()", (field.id << 3 | 2) >>> 0)
("for(var i=0;i<%s.length;++i)", ref)
("w.%s(%s[i])", type, ref)
("w.ldelim()");
// Non-packed
} else { gen
("for(var i=0;i<%s.length;++i)", ref);
if (wireType === undefined)
genTypePartial(gen, field, index, ref + "[i]");
else gen
("w.uint32(%i).%s(%s[i])", (field.id << 3 | wireType) >>> 0, type, ref);
} gen
("}");
// Non-repeated
} else {
if (field.optional) gen
("if(%s!=null&&Object.hasOwnProperty.call(m,%j))", ref, field.name); // !== undefined && !== null
if (wireType === undefined)
genTypePartial(gen, field, index, ref);
else gen
("w.uint32(%i).%s(%s)", (field.id << 3 | wireType) >>> 0, type, ref);
}
}
return gen
("return w");
/* eslint-enable no-unexpected-multiline, block-scoped-var, no-redeclare */
}
return encoder_1;
}
(function (module) {
var protobuf = module.exports = indexMinimal$1;
protobuf.build = "light";
/**
* A node-style callback as used by {@link load} and {@link Root#load}.
* @typedef LoadCallback
* @type {function}
* @param {Error|null} error Error, if any, otherwise `null`
* @param {Root} [root] Root, if there hasn't been an error
* @returns {undefined}
*/
/**
* Loads one or multiple .proto or preprocessed .json files into a common root namespace and calls the callback.
* @param {string|string[]} filename One or multiple files to load
* @param {Root} root Root namespace, defaults to create a new one if omitted.
* @param {LoadCallback} callback Callback function
* @returns {undefined}
* @see {@link Root#load}
*/
function load(filename, root, callback) {
if (typeof root === "function") {
callback = root;
root = new protobuf.Root();
} else if (!root)
root = new protobuf.Root();
return root.load(filename, callback);
}
/**
* Loads one or multiple .proto or preprocessed .json files into a common root namespace and calls the callback.
* @name load
* @function
* @param {string|string[]} filename One or multiple files to load
* @param {LoadCallback} callback Callback function
* @returns {undefined}
* @see {@link Root#load}
* @variation 2
*/
// function load(filename:string, callback:LoadCallback):undefined
/**
* Loads one or multiple .proto or preprocessed .json files into a common root namespace and returns a promise.
* @name load
* @function
* @param {string|string[]} filename One or multiple files to load
* @param {Root} [root] Root namespace, defaults to create a new one if omitted.
* @returns {Promise<Root>} Promise
* @see {@link Root#load}
* @variation 3
*/
// function load(filename:string, [root:Root]):Promise<Root>
protobuf.load = load;
/**
* Synchronously loads one or multiple .proto or preprocessed .json files into a common root namespace (node only).
* @param {string|string[]} filename One or multiple files to load
* @param {Root} [root] Root namespace, defaults to create a new one if omitted.
* @returns {Root} Root namespace
* @throws {Error} If synchronous fetching is not supported (i.e. in browsers) or if a file's syntax is invalid
* @see {@link Root#loadSync}
*/
function loadSync(filename, root) {
if (!root)
root = new protobuf.Root();
return root.loadSync(filename);
}
protobuf.loadSync = loadSync;
// Serialization
protobuf.encoder = requireEncoder();
protobuf.decoder = requireDecoder();
protobuf.verifier = requireVerifier();
protobuf.converter = requireConverter();
// Reflection
protobuf.ReflectionObject = requireObject();
protobuf.Namespace = requireNamespace();
protobuf.Root = requireRoot();
protobuf.Enum = require_enum();
protobuf.Type = requireType();
protobuf.Field = requireField();
protobuf.OneOf = requireOneof();
protobuf.MapField = requireMapfield();
protobuf.Service = requireService$1();
protobuf.Method = requireMethod();
// Runtime
protobuf.Message = message$1;
protobuf.wrappers = wrappers;
// Utility
protobuf.types = requireTypes();
protobuf.util = requireUtil();
// Set up possibly cyclic reflection dependencies
protobuf.ReflectionObject._configure(protobuf.Root);
protobuf.Namespace._configure(protobuf.Type, protobuf.Service, protobuf.Enum);
protobuf.Root._configure(protobuf.Type);
protobuf.Field._configure(protobuf.Type);
} (indexLight));
var tokenize_1 = tokenize$1;
var delimRe = /[\s{}=;:[\],'"()<>]/g,
stringDoubleRe = /(?:"([^"\\]*(?:\\.[^"\\]*)*)")/g,
stringSingleRe = /(?:'([^'\\]*(?:\\.[^'\\]*)*)')/g;
var setCommentRe = /^ *[*/]+ */,
setCommentAltRe = /^\s*\*?\/*/,
setCommentSplitRe = /\n/g,
whitespaceRe = /\s/,
unescapeRe = /\\(.?)/g;
var unescapeMap = {
"0": "\0",
"r": "\r",
"n": "\n",
"t": "\t"
};
/**
* Unescapes a string.
* @param {string} str String to unescape
* @returns {string} Unescaped string
* @property {Object.<string,string>} map Special characters map
* @memberof tokenize
*/
function unescape$1(str) {
return str.replace(unescapeRe, function($0, $1) {
switch ($1) {
case "\\":
case "":
return $1;
default:
return unescapeMap[$1] || "";
}
});
}
tokenize$1.unescape = unescape$1;
/**
* Gets the next token and advances.
* @typedef TokenizerHandleNext
* @type {function}
* @returns {string|null} Next token or `null` on eof
*/
/**
* Peeks for the next token.
* @typedef TokenizerHandlePeek
* @type {function}
* @returns {string|null} Next token or `null` on eof
*/
/**
* Pushes a token back to the stack.
* @typedef TokenizerHandlePush
* @type {function}
* @param {string} token Token
* @returns {undefined}
*/
/**
* Skips the next token.
* @typedef TokenizerHandleSkip
* @type {function}
* @param {string} expected Expected token
* @param {boolean} [optional=false] If optional
* @returns {boolean} Whether the token matched
* @throws {Error} If the token didn't match and is not optional
*/
/**
* Gets the comment on the previous line or, alternatively, the line comment on the specified line.
* @typedef TokenizerHandleCmnt
* @type {function}
* @param {number} [line] Line number
* @returns {string|null} Comment text or `null` if none
*/
/**
* Handle object returned from {@link tokenize}.
* @interface ITokenizerHandle
* @property {TokenizerHandleNext} next Gets the next token and advances (`null` on eof)
* @property {TokenizerHandlePeek} peek Peeks for the next token (`null` on eof)
* @property {TokenizerHandlePush} push Pushes a token back to the stack
* @property {TokenizerHandleSkip} skip Skips a token, returns its presence and advances or, if non-optional and not present, throws
* @property {TokenizerHandleCmnt} cmnt Gets the comment on the previous line or the line comment on the specified line, if any
* @property {number} line Current line number
*/
/**
* Tokenizes the given .proto source and returns an object with useful utility functions.
* @param {string} source Source contents
* @param {boolean} alternateCommentMode Whether we should activate alternate comment parsing mode.
* @returns {ITokenizerHandle} Tokenizer handle
*/
function tokenize$1(source, alternateCommentMode) {
/* eslint-disable callback-return */
source = source.toString();
var offset = 0,
length = source.length,
line = 1,
lastCommentLine = 0,
comments = {};
var stack = [];
var stringDelim = null;
/* istanbul ignore next */
/**
* Creates an error for illegal syntax.
* @param {string} subject Subject
* @returns {Error} Error created
* @inner
*/
function illegal(subject) {
return Error("illegal " + subject + " (line " + line + ")");
}
/**
* Reads a string till its end.
* @returns {string} String read
* @inner
*/
function readString() {
var re = stringDelim === "'" ? stringSingleRe : stringDoubleRe;
re.lastIndex = offset - 1;
var match = re.exec(source);
if (!match)
throw illegal("string");
offset = re.lastIndex;
push(stringDelim);
stringDelim = null;
return unescape$1(match[1]);
}
/**
* Gets the character at `pos` within the source.
* @param {number} pos Position
* @returns {string} Character
* @inner
*/
function charAt(pos) {
return source.charAt(pos);
}
/**
* Sets the current comment text.
* @param {number} start Start offset
* @param {number} end End offset
* @param {boolean} isLeading set if a leading comment
* @returns {undefined}
* @inner
*/
function setComment(start, end, isLeading) {
var comment = {
type: source.charAt(start++),
lineEmpty: false,
leading: isLeading,
};
var lookback;
if (alternateCommentMode) {
lookback = 2; // alternate comment parsing: "//" or "/*"
} else {
lookback = 3; // "///" or "/**"
}
var commentOffset = start - lookback,
c;
do {
if (--commentOffset < 0 ||
(c = source.charAt(commentOffset)) === "\n") {
comment.lineEmpty = true;
break;
}
} while (c === " " || c === "\t");
var lines = source
.substring(start, end)
.split(setCommentSplitRe);
for (var i = 0; i < lines.length; ++i)
lines[i] = lines[i]
.replace(alternateCommentMode ? setCommentAltRe : setCommentRe, "")
.trim();
comment.text = lines
.join("\n")
.trim();
comments[line] = comment;
lastCommentLine = line;
}
function isDoubleSlashCommentLine(startOffset) {
var endOffset = findEndOfLine(startOffset);
// see if remaining line matches comment pattern
var lineText = source.substring(startOffset, endOffset);
// look for 1 or 2 slashes since startOffset would already point past
// the first slash that started the comment.
var isComment = /^\s*\/{1,2}/.test(lineText);
return isComment;
}
function findEndOfLine(cursor) {
// find end of cursor's line
var endOffset = cursor;
while (endOffset < length && charAt(endOffset) !== "\n") {
endOffset++;
}
return endOffset;
}
/**
* Obtains the next token.
* @returns {string|null} Next token or `null` on eof
* @inner
*/
function next() {
if (stack.length > 0)
return stack.shift();
if (stringDelim)
return readString();
var repeat,
prev,
curr,
start,
isDoc,
isLeadingComment = offset === 0;
do {
if (offset === length)
return null;
repeat = false;
while (whitespaceRe.test(curr = charAt(offset))) {
if (curr === "\n") {
isLeadingComment = true;
++line;
}
if (++offset === length)
return null;
}
if (charAt(offset) === "/") {
if (++offset === length) {
throw illegal("comment");
}
if (charAt(offset) === "/") { // Line
if (!alternateCommentMode) {
// check for triple-slash comment
isDoc = charAt(start = offset + 1) === "/";
while (charAt(++offset) !== "\n") {
if (offset === length) {
return null;
}
}
++offset;
if (isDoc) {
setComment(start, offset - 1, isLeadingComment);
// Trailing comment cannot not be multi-line,
// so leading comment state should be reset to handle potential next comments
isLeadingComment = true;
}
++line;
repeat = true;
} else {
// check for double-slash comments, consolidating consecutive lines
start = offset;
isDoc = false;
if (isDoubleSlashCommentLine(offset)) {
isDoc = true;
do {
offset = findEndOfLine(offset);
if (offset === length) {
break;
}
offset++;
if (!isLeadingComment) {
// Trailing comment cannot not be multi-line
break;
}
} while (isDoubleSlashCommentLine(offset));
} else {
offset = Math.min(length, findEndOfLine(offset) + 1);
}
if (isDoc) {
setComment(start, offset, isLeadingComment);
isLeadingComment = true;
}
line++;
repeat = true;
}
} else if ((curr = charAt(offset)) === "*") { /* Block */
// check for /** (regular comment mode) or /* (alternate comment mode)
start = offset + 1;
isDoc = alternateCommentMode || charAt(start) === "*";
do {
if (curr === "\n") {
++line;
}
if (++offset === length) {
throw illegal("comment");
}
prev = curr;
curr = charAt(offset);
} while (prev !== "*" || curr !== "/");
++offset;
if (isDoc) {
setComment(start, offset - 2, isLeadingComment);
isLeadingComment = true;
}
repeat = true;
} else {
return "/";
}
}
} while (repeat);
// offset !== length if we got here
var end = offset;
delimRe.lastIndex = 0;
var delim = delimRe.test(charAt(end++));
if (!delim)
while (end < length && !delimRe.test(charAt(end)))
++end;
var token = source.substring(offset, offset = end);
if (token === "\"" || token === "'")
stringDelim = token;
return token;
}
/**
* Pushes a token back to the stack.
* @param {string} token Token
* @returns {undefined}
* @inner
*/
function push(token) {
stack.push(token);
}
/**
* Peeks for the next token.
* @returns {string|null} Token or `null` on eof
* @inner
*/
function peek() {
if (!stack.length) {
var token = next();
if (token === null)
return null;
push(token);
}
return stack[0];
}
/**
* Skips a token.
* @param {string} expected Expected token
* @param {boolean} [optional=false] Whether the token is optional
* @returns {boolean} `true` when skipped, `false` if not
* @throws {Error} When a required token is not present
* @inner
*/
function skip(expected, optional) {
var actual = peek(),
equals = actual === expected;
if (equals) {
next();
return true;
}
if (!optional)
throw illegal("token '" + actual + "', '" + expected + "' expected");
return false;
}
/**
* Gets a comment.
* @param {number} [trailingLine] Line number if looking for a trailing comment
* @returns {string|null} Comment text
* @inner
*/
function cmnt(trailingLine) {
var ret = null;
var comment;
if (trailingLine === undefined) {
comment = comments[line - 1];
delete comments[line - 1];
if (comment && (alternateCommentMode || comment.type === "*" || comment.lineEmpty)) {
ret = comment.leading ? comment.text : null;
}
} else {
/* istanbul ignore else */
if (lastCommentLine < trailingLine) {
peek();
}
comment = comments[trailingLine];
delete comments[trailingLine];
if (comment && !comment.lineEmpty && (alternateCommentMode || comment.type === "/")) {
ret = comment.leading ? null : comment.text;
}
}
return ret;
}
return Object.defineProperty({
next: next,
peek: peek,
push: push,
skip: skip,
cmnt: cmnt
}, "line", {
get: function() { return line; }
});
/* eslint-enable callback-return */
}
var parse_1 = parse$1;
parse$1.filename = null;
parse$1.defaults = { keepCase: false };
var tokenize = tokenize_1,
Root = requireRoot(),
Type = requireType(),
Field = requireField(),
MapField = requireMapfield(),
OneOf = requireOneof(),
Enum = require_enum(),
Service = requireService$1(),
Method = requireMethod(),
types = requireTypes(),
util$2 = requireUtil();
var base10Re = /^[1-9][0-9]*$/,
base10NegRe = /^-?[1-9][0-9]*$/,
base16Re = /^0[x][0-9a-fA-F]+$/,
base16NegRe = /^-?0[x][0-9a-fA-F]+$/,
base8Re = /^0[0-7]+$/,
base8NegRe = /^-?0[0-7]+$/,
numberRe = /^(?![eE])[0-9]*(?:\.[0-9]*)?(?:[eE][+-]?[0-9]+)?$/,
nameRe = /^[a-zA-Z_][a-zA-Z_0-9]*$/,
typeRefRe = /^(?:\.?[a-zA-Z_][a-zA-Z_0-9]*)(?:\.[a-zA-Z_][a-zA-Z_0-9]*)*$/,
fqTypeRefRe = /^(?:\.[a-zA-Z_][a-zA-Z_0-9]*)+$/;
/**
* Result object returned from {@link parse}.
* @interface IParserResult
* @property {string|undefined} package Package name, if declared
* @property {string[]|undefined} imports Imports, if any
* @property {string[]|undefined} weakImports Weak imports, if any
* @property {string|undefined} syntax Syntax, if specified (either `"proto2"` or `"proto3"`)
* @property {Root} root Populated root instance
*/
/**
* Options modifying the behavior of {@link parse}.
* @interface IParseOptions
* @property {boolean} [keepCase=false] Keeps field casing instead of converting to camel case
* @property {boolean} [alternateCommentMode=false] Recognize double-slash comments in addition to doc-block comments.
* @property {boolean} [preferTrailingComment=false] Use trailing comment when both leading comment and trailing comment exist.
*/
/**
* Options modifying the behavior of JSON serialization.
* @interface IToJSONOptions
* @property {boolean} [keepComments=false] Serializes comments.
*/
/**
* Parses the given .proto source and returns an object with the parsed contents.
* @param {string} source Source contents
* @param {Root} root Root to populate
* @param {IParseOptions} [options] Parse options. Defaults to {@link parse.defaults} when omitted.
* @returns {IParserResult} Parser result
* @property {string} filename=null Currently processing file name for error reporting, if known
* @property {IParseOptions} defaults Default {@link IParseOptions}
*/
function parse$1(source, root, options) {
/* eslint-disable callback-return */
if (!(root instanceof Root)) {
options = root;
root = new Root();
}
if (!options)
options = parse$1.defaults;
var preferTrailingComment = options.preferTrailingComment || false;
var tn = tokenize(source, options.alternateCommentMode || false),
next = tn.next,
push = tn.push,
peek = tn.peek,
skip = tn.skip,
cmnt = tn.cmnt;
var head = true,
pkg,
imports,
weakImports,
syntax,
isProto3 = false;
var ptr = root;
var applyCase = options.keepCase ? function(name) { return name; } : util$2.camelCase;
/* istanbul ignore next */
function illegal(token, name, insideTryCatch) {
var filename = parse$1.filename;
if (!insideTryCatch)
parse$1.filename = null;
return Error("illegal " + (name || "token") + " '" + token + "' (" + (filename ? filename + ", " : "") + "line " + tn.line + ")");
}
function readString() {
var values = [],
token;
do {
/* istanbul ignore if */
if ((token = next()) !== "\"" && token !== "'")
throw illegal(token);
values.push(next());
skip(token);
token = peek();
} while (token === "\"" || token === "'");
return values.join("");
}
function readValue(acceptTypeRef) {
var token = next();
switch (token) {
case "'":
case "\"":
push(token);
return readString();
case "true": case "TRUE":
return true;
case "false": case "FALSE":
return false;
}
try {
return parseNumber(token, /* insideTryCatch */ true);
} catch (e) {
/* istanbul ignore else */
if (acceptTypeRef && typeRefRe.test(token))
return token;
/* istanbul ignore next */
throw illegal(token, "value");
}
}
function readRanges(target, acceptStrings) {
var token, start;
do {
if (acceptStrings && ((token = peek()) === "\"" || token === "'"))
target.push(readString());
else
target.push([ start = parseId(next()), skip("to", true) ? parseId(next()) : start ]);
} while (skip(",", true));
skip(";");
}
function parseNumber(token, insideTryCatch) {
var sign = 1;
if (token.charAt(0) === "-") {
sign = -1;
token = token.substring(1);
}
switch (token) {
case "inf": case "INF": case "Inf":
return sign * Infinity;
case "nan": case "NAN": case "Nan": case "NaN":
return NaN;
case "0":
return 0;
}
if (base10Re.test(token))
return sign * parseInt(token, 10);
if (base16Re.test(token))
return sign * parseInt(token, 16);
if (base8Re.test(token))
return sign * parseInt(token, 8);
/* istanbul ignore else */
if (numberRe.test(token))
return sign * parseFloat(token);
/* istanbul ignore next */
throw illegal(token, "number", insideTryCatch);
}
function parseId(token, acceptNegative) {
switch (token) {
case "max": case "MAX": case "Max":
return 536870911;
case "0":
return 0;
}
/* istanbul ignore if */
if (!acceptNegative && token.charAt(0) === "-")
throw illegal(token, "id");
if (base10NegRe.test(token))
return parseInt(token, 10);
if (base16NegRe.test(token))
return parseInt(token, 16);
/* istanbul ignore else */
if (base8NegRe.test(token))
return parseInt(token, 8);
/* istanbul ignore next */
throw illegal(token, "id");
}
function parsePackage() {
/* istanbul ignore if */
if (pkg !== undefined)
throw illegal("package");
pkg = next();
/* istanbul ignore if */
if (!typeRefRe.test(pkg))
throw illegal(pkg, "name");
ptr = ptr.define(pkg);
skip(";");
}
function parseImport() {
var token = peek();
var whichImports;
switch (token) {
case "weak":
whichImports = weakImports || (weakImports = []);
next();
break;
case "public":
next();
// eslint-disable-line no-fallthrough
default:
whichImports = imports || (imports = []);
break;
}
token = readString();
skip(";");
whichImports.push(token);
}
function parseSyntax() {
skip("=");
syntax = readString();
isProto3 = syntax === "proto3";
/* istanbul ignore if */
if (!isProto3 && syntax !== "proto2")
throw illegal(syntax, "syntax");
skip(";");
}
function parseCommon(parent, token) {
switch (token) {
case "option":
parseOption(parent, token);
skip(";");
return true;
case "message":
parseType(parent, token);
return true;
case "enum":
parseEnum(parent, token);
return true;
case "service":
parseService(parent, token);
return true;
case "extend":
parseExtension(parent, token);
return true;
}
return false;
}
function ifBlock(obj, fnIf, fnElse) {
var trailingLine = tn.line;
if (obj) {
if(typeof obj.comment !== "string") {
obj.comment = cmnt(); // try block-type comment
}
obj.filename = parse$1.filename;
}
if (skip("{", true)) {
var token;
while ((token = next()) !== "}")
fnIf(token);
skip(";", true);
} else {
if (fnElse)
fnElse();
skip(";");
if (obj && (typeof obj.comment !== "string" || preferTrailingComment))
obj.comment = cmnt(trailingLine) || obj.comment; // try line-type comment
}
}
function parseType(parent, token) {
/* istanbul ignore if */
if (!nameRe.test(token = next()))
throw illegal(token, "type name");
var type = new Type(token);
ifBlock(type, function parseType_block(token) {
if (parseCommon(type, token))
return;
switch (token) {
case "map":
parseMapField(type);
break;
case "required":
case "repeated":
parseField(type, token);
break;
case "optional":
/* istanbul ignore if */
if (isProto3) {
parseField(type, "proto3_optional");
} else {
parseField(type, "optional");
}
break;
case "oneof":
parseOneOf(type, token);
break;
case "extensions":
readRanges(type.extensions || (type.extensions = []));
break;
case "reserved":
readRanges(type.reserved || (type.reserved = []), true);
break;
default:
/* istanbul ignore if */
if (!isProto3 || !typeRefRe.test(token))
throw illegal(token);
push(token);
parseField(type, "optional");
break;
}
});
parent.add(type);
}
function parseField(parent, rule, extend) {
var type = next();
if (type === "group") {
parseGroup(parent, rule);
return;
}
/* istanbul ignore if */
if (!typeRefRe.test(type))
throw illegal(type, "type");
var name = next();
/* istanbul ignore if */
if (!nameRe.test(name))
throw illegal(name, "name");
name = applyCase(name);
skip("=");
var field = new Field(name, parseId(next()), type, rule, extend);
ifBlock(field, function parseField_block(token) {
/* istanbul ignore else */
if (token === "option") {
parseOption(field, token);
skip(";");
} else
throw illegal(token);
}, function parseField_line() {
parseInlineOptions(field);
});
if (rule === "proto3_optional") {
// for proto3 optional fields, we create a single-member Oneof to mimic "optional" behavior
var oneof = new OneOf("_" + name);
field.setOption("proto3_optional", true);
oneof.add(field);
parent.add(oneof);
} else {
parent.add(field);
}
// JSON defaults to packed=true if not set so we have to set packed=false explicity when
// parsing proto2 descriptors without the option, where applicable. This must be done for
// all known packable types and anything that could be an enum (= is not a basic type).
if (!isProto3 && field.repeated && (types.packed[type] !== undefined || types.basic[type] === undefined))
field.setOption("packed", false, /* ifNotSet */ true);
}
function parseGroup(parent, rule) {
var name = next();
/* istanbul ignore if */
if (!nameRe.test(name))
throw illegal(name, "name");
var fieldName = util$2.lcFirst(name);
if (name === fieldName)
name = util$2.ucFirst(name);
skip("=");
var id = parseId(next());
var type = new Type(name);
type.group = true;
var field = new Field(fieldName, id, name, rule);
field.filename = parse$1.filename;
ifBlock(type, function parseGroup_block(token) {
switch (token) {
case "option":
parseOption(type, token);
skip(";");
break;
case "required":
case "repeated":
parseField(type, token);
break;
case "optional":
/* istanbul ignore if */
if (isProto3) {
parseField(type, "proto3_optional");
} else {
parseField(type, "optional");
}
break;
case "message":
parseType(type, token);
break;
case "enum":
parseEnum(type, token);
break;
/* istanbul ignore next */
default:
throw illegal(token); // there are no groups with proto3 semantics
}
});
parent.add(type)
.add(field);
}
function parseMapField(parent) {
skip("<");
var keyType = next();
/* istanbul ignore if */
if (types.mapKey[keyType] === undefined)
throw illegal(keyType, "type");
skip(",");
var valueType = next();
/* istanbul ignore if */
if (!typeRefRe.test(valueType))
throw illegal(valueType, "type");
skip(">");
var name = next();
/* istanbul ignore if */
if (!nameRe.test(name))
throw illegal(name, "name");
skip("=");
var field = new MapField(applyCase(name), parseId(next()), keyType, valueType);
ifBlock(field, function parseMapField_block(token) {
/* istanbul ignore else */
if (token === "option") {
parseOption(field, token);
skip(";");
} else
throw illegal(token);
}, function parseMapField_line() {
parseInlineOptions(field);
});
parent.add(field);
}
function parseOneOf(parent, token) {
/* istanbul ignore if */
if (!nameRe.test(token = next()))
throw illegal(token, "name");
var oneof = new OneOf(applyCase(token));
ifBlock(oneof, function parseOneOf_block(token) {
if (token === "option") {
parseOption(oneof, token);
skip(";");
} else {
push(token);
parseField(oneof, "optional");
}
});
parent.add(oneof);
}
function parseEnum(parent, token) {
/* istanbul ignore if */
if (!nameRe.test(token = next()))
throw illegal(token, "name");
var enm = new Enum(token);
ifBlock(enm, function parseEnum_block(token) {
switch(token) {
case "option":
parseOption(enm, token);
skip(";");
break;
case "reserved":
readRanges(enm.reserved || (enm.reserved = []), true);
break;
default:
parseEnumValue(enm, token);
}
});
parent.add(enm);
}
function parseEnumValue(parent, token) {
/* istanbul ignore if */
if (!nameRe.test(token))
throw illegal(token, "name");
skip("=");
var value = parseId(next(), true),
dummy = {
options: undefined
};
dummy.setOption = function(name, value) {
if (this.options === undefined)
this.options = {};
this.options[name] = value;
};
ifBlock(dummy, function parseEnumValue_block(token) {
/* istanbul ignore else */
if (token === "option") {
parseOption(dummy, token); // skip
skip(";");
} else
throw illegal(token);
}, function parseEnumValue_line() {
parseInlineOptions(dummy); // skip
});
parent.add(token, value, dummy.comment, dummy.options);
}
function parseOption(parent, token) {
var isCustom = skip("(", true);
/* istanbul ignore if */
if (!typeRefRe.test(token = next()))
throw illegal(token, "name");
var name = token;
var option = name;
var propName;
if (isCustom) {
skip(")");
name = "(" + name + ")";
option = name;
token = peek();
if (fqTypeRefRe.test(token)) {
propName = token.slice(1); //remove '.' before property name
name += token;
next();
}
}
skip("=");
var optionValue = parseOptionValue(parent, name);
setParsedOption(parent, option, optionValue, propName);
}
function parseOptionValue(parent, name) {
// { a: "foo" b { c: "bar" } }
if (skip("{", true)) {
var objectResult = {};
while (!skip("}", true)) {
/* istanbul ignore if */
if (!nameRe.test(token = next())) {
throw illegal(token, "name");
}
var value;
var propName = token;
skip(":", true);
if (peek() === "{")
value = parseOptionValue(parent, name + "." + token);
else if (peek() === "[") {
// option (my_option) = {
// repeated_value: [ "foo", "bar" ]
// };
value = [];
var lastValue;
if (skip("[", true)) {
do {
lastValue = readValue(true);
value.push(lastValue);
} while (skip(",", true));
skip("]");
if (typeof lastValue !== "undefined") {
setOption(parent, name + "." + token, lastValue);
}
}
} else {
value = readValue(true);
setOption(parent, name + "." + token, value);
}
var prevValue = objectResult[propName];
if (prevValue)
value = [].concat(prevValue).concat(value);
objectResult[propName] = value;
// Semicolons and commas can be optional
skip(",", true);
skip(";", true);
}
return objectResult;
}
var simpleValue = readValue(true);
setOption(parent, name, simpleValue);
return simpleValue;
// Does not enforce a delimiter to be universal
}
function setOption(parent, name, value) {
if (parent.setOption)
parent.setOption(name, value);
}
function setParsedOption(parent, name, value, propName) {
if (parent.setParsedOption)
parent.setParsedOption(name, value, propName);
}
function parseInlineOptions(parent) {
if (skip("[", true)) {
do {
parseOption(parent, "option");
} while (skip(",", true));
skip("]");
}
return parent;
}
function parseService(parent, token) {
/* istanbul ignore if */
if (!nameRe.test(token = next()))
throw illegal(token, "service name");
var service = new Service(token);
ifBlock(service, function parseService_block(token) {
if (parseCommon(service, token))
return;
/* istanbul ignore else */
if (token === "rpc")
parseMethod(service, token);
else
throw illegal(token);
});
parent.add(service);
}
function parseMethod(parent, token) {
// Get the comment of the preceding line now (if one exists) in case the
// method is defined across multiple lines.
var commentText = cmnt();
var type = token;
/* istanbul ignore if */
if (!nameRe.test(token = next()))
throw illegal(token, "name");
var name = token,
requestType, requestStream,
responseType, responseStream;
skip("(");
if (skip("stream", true))
requestStream = true;
/* istanbul ignore if */
if (!typeRefRe.test(token = next()))
throw illegal(token);
requestType = token;
skip(")"); skip("returns"); skip("(");
if (skip("stream", true))
responseStream = true;
/* istanbul ignore if */
if (!typeRefRe.test(token = next()))
throw illegal(token);
responseType = token;
skip(")");
var method = new Method(name, type, requestType, responseType, requestStream, responseStream);
method.comment = commentText;
ifBlock(method, function parseMethod_block(token) {
/* istanbul ignore else */
if (token === "option") {
parseOption(method, token);
skip(";");
} else
throw illegal(token);
});
parent.add(method);
}
function parseExtension(parent, token) {
/* istanbul ignore if */
if (!typeRefRe.test(token = next()))
throw illegal(token, "reference");
var reference = token;
ifBlock(null, function parseExtension_block(token) {
switch (token) {
case "required":
case "repeated":
parseField(parent, token, reference);
break;
case "optional":
/* istanbul ignore if */
if (isProto3) {
parseField(parent, "proto3_optional", reference);
} else {
parseField(parent, "optional", reference);
}
break;
default:
/* istanbul ignore if */
if (!isProto3 || !typeRefRe.test(token))
throw illegal(token);
push(token);
parseField(parent, "optional", reference);
break;
}
});
}
var token;
while ((token = next()) !== null) {
switch (token) {
case "package":
/* istanbul ignore if */
if (!head)
throw illegal(token);
parsePackage();
break;
case "import":
/* istanbul ignore if */
if (!head)
throw illegal(token);
parseImport();
break;
case "syntax":
/* istanbul ignore if */
if (!head)
throw illegal(token);
parseSyntax();
break;
case "option":
parseOption(ptr, token);
skip(";");
break;
default:
/* istanbul ignore else */
if (parseCommon(ptr, token)) {
head = false;
continue;
}
/* istanbul ignore next */
throw illegal(token);
}
}
parse$1.filename = null;
return {
"package" : pkg,
"imports" : imports,
weakImports : weakImports,
syntax : syntax,
root : root
};
}
var common_1 = common;
var commonRe = /\/|\./;
/**
* Provides common type definitions.
* Can also be used to provide additional google types or your own custom types.
* @param {string} name Short name as in `google/protobuf/[name].proto` or full file name
* @param {Object.<string,*>} json JSON definition within `google.protobuf` if a short name, otherwise the file's root definition
* @returns {undefined}
* @property {INamespace} google/protobuf/any.proto Any
* @property {INamespace} google/protobuf/duration.proto Duration
* @property {INamespace} google/protobuf/empty.proto Empty
* @property {INamespace} google/protobuf/field_mask.proto FieldMask
* @property {INamespace} google/protobuf/struct.proto Struct, Value, NullValue and ListValue
* @property {INamespace} google/protobuf/timestamp.proto Timestamp
* @property {INamespace} google/protobuf/wrappers.proto Wrappers
* @example
* // manually provides descriptor.proto (assumes google/protobuf/ namespace and .proto extension)
* protobuf.common("descriptor", descriptorJson);
*
* // manually provides a custom definition (uses my.foo namespace)
* protobuf.common("my/foo/bar.proto", myFooBarJson);
*/
function common(name, json) {
if (!commonRe.test(name)) {
name = "google/protobuf/" + name + ".proto";
json = { nested: { google: { nested: { protobuf: { nested: json } } } } };
}
common[name] = json;
}
// Not provided because of limited use (feel free to discuss or to provide yourself):
//
// google/protobuf/descriptor.proto
// google/protobuf/source_context.proto
// google/protobuf/type.proto
//
// Stripped and pre-parsed versions of these non-bundled files are instead available as part of
// the repository or package within the google/protobuf directory.
common("any", {
/**
* Properties of a google.protobuf.Any message.
* @interface IAny
* @type {Object}
* @property {string} [typeUrl]
* @property {Uint8Array} [bytes]
* @memberof common
*/
Any: {
fields: {
type_url: {
type: "string",
id: 1
},
value: {
type: "bytes",
id: 2
}
}
}
});
var timeType;
common("duration", {
/**
* Properties of a google.protobuf.Duration message.
* @interface IDuration
* @type {Object}
* @property {number|Long} [seconds]
* @property {number} [nanos]
* @memberof common
*/
Duration: timeType = {
fields: {
seconds: {
type: "int64",
id: 1
},
nanos: {
type: "int32",
id: 2
}
}
}
});
common("timestamp", {
/**
* Properties of a google.protobuf.Timestamp message.
* @interface ITimestamp
* @type {Object}
* @property {number|Long} [seconds]
* @property {number} [nanos]
* @memberof common
*/
Timestamp: timeType
});
common("empty", {
/**
* Properties of a google.protobuf.Empty message.
* @interface IEmpty
* @memberof common
*/
Empty: {
fields: {}
}
});
common("struct", {
/**
* Properties of a google.protobuf.Struct message.
* @interface IStruct
* @type {Object}
* @property {Object.<string,IValue>} [fields]
* @memberof common
*/
Struct: {
fields: {
fields: {
keyType: "string",
type: "Value",
id: 1
}
}
},
/**
* Properties of a google.protobuf.Value message.
* @interface IValue
* @type {Object}
* @property {string} [kind]
* @property {0} [nullValue]
* @property {number} [numberValue]
* @property {string} [stringValue]
* @property {boolean} [boolValue]
* @property {IStruct} [structValue]
* @property {IListValue} [listValue]
* @memberof common
*/
Value: {
oneofs: {
kind: {
oneof: [
"nullValue",
"numberValue",
"stringValue",
"boolValue",
"structValue",
"listValue"
]
}
},
fields: {
nullValue: {
type: "NullValue",
id: 1
},
numberValue: {
type: "double",
id: 2
},
stringValue: {
type: "string",
id: 3
},
boolValue: {
type: "bool",
id: 4
},
structValue: {
type: "Struct",
id: 5
},
listValue: {
type: "ListValue",
id: 6
}
}
},
NullValue: {
values: {
NULL_VALUE: 0
}
},
/**
* Properties of a google.protobuf.ListValue message.
* @interface IListValue
* @type {Object}
* @property {Array.<IValue>} [values]
* @memberof common
*/
ListValue: {
fields: {
values: {
rule: "repeated",
type: "Value",
id: 1
}
}
}
});
common("wrappers", {
/**
* Properties of a google.protobuf.DoubleValue message.
* @interface IDoubleValue
* @type {Object}
* @property {number} [value]
* @memberof common
*/
DoubleValue: {
fields: {
value: {
type: "double",
id: 1
}
}
},
/**
* Properties of a google.protobuf.FloatValue message.
* @interface IFloatValue
* @type {Object}
* @property {number} [value]
* @memberof common
*/
FloatValue: {
fields: {
value: {
type: "float",
id: 1
}
}
},
/**
* Properties of a google.protobuf.Int64Value message.
* @interface IInt64Value
* @type {Object}
* @property {number|Long} [value]
* @memberof common
*/
Int64Value: {
fields: {
value: {
type: "int64",
id: 1
}
}
},
/**
* Properties of a google.protobuf.UInt64Value message.
* @interface IUInt64Value
* @type {Object}
* @property {number|Long} [value]
* @memberof common
*/
UInt64Value: {
fields: {
value: {
type: "uint64",
id: 1
}
}
},
/**
* Properties of a google.protobuf.Int32Value message.
* @interface IInt32Value
* @type {Object}
* @property {number} [value]
* @memberof common
*/
Int32Value: {
fields: {
value: {
type: "int32",
id: 1
}
}
},
/**
* Properties of a google.protobuf.UInt32Value message.
* @interface IUInt32Value
* @type {Object}
* @property {number} [value]
* @memberof common
*/
UInt32Value: {
fields: {
value: {
type: "uint32",
id: 1
}
}
},
/**
* Properties of a google.protobuf.BoolValue message.
* @interface IBoolValue
* @type {Object}
* @property {boolean} [value]
* @memberof common
*/
BoolValue: {
fields: {
value: {
type: "bool",
id: 1
}
}
},
/**
* Properties of a google.protobuf.StringValue message.
* @interface IStringValue
* @type {Object}
* @property {string} [value]
* @memberof common
*/
StringValue: {
fields: {
value: {
type: "string",
id: 1
}
}
},
/**
* Properties of a google.protobuf.BytesValue message.
* @interface IBytesValue
* @type {Object}
* @property {Uint8Array} [value]
* @memberof common
*/
BytesValue: {
fields: {
value: {
type: "bytes",
id: 1
}
}
}
});
common("field_mask", {
/**
* Properties of a google.protobuf.FieldMask message.
* @interface IDoubleValue
* @type {Object}
* @property {number} [value]
* @memberof common
*/
FieldMask: {
fields: {
paths: {
rule: "repeated",
type: "string",
id: 1
}
}
}
});
/**
* Gets the root definition of the specified common proto file.
*
* Bundled definitions are:
* - google/protobuf/any.proto
* - google/protobuf/duration.proto
* - google/protobuf/empty.proto
* - google/protobuf/field_mask.proto
* - google/protobuf/struct.proto
* - google/protobuf/timestamp.proto
* - google/protobuf/wrappers.proto
*
* @param {string} file Proto file name
* @returns {INamespace|null} Root definition or `null` if not defined
*/
common.get = function get(file) {
return common[file] || null;
};
(function (module) {
var protobuf = module.exports = indexLight.exports;
protobuf.build = "full";
// Parser
protobuf.tokenize = tokenize_1;
protobuf.parse = parse_1;
protobuf.common = common_1;
// Configure parser
protobuf.Root._configure(protobuf.Type, protobuf.parse, protobuf.common);
} (src));
(function (module) {
module.exports = src.exports;
} (protobufjs));
var pb = /*@__PURE__*/getDefaultExportFromCjs(protobufjs.exports);
const Reader = pb.Reader;
// monkey patch the reader to add native bigint support
const methods$1 = [
'uint64', 'int64', 'sint64', 'fixed64', 'sfixed64'
];
methods$1.forEach(method => {
// @ts-expect-error
const original = Reader.prototype[method];
// @ts-expect-error
Reader.prototype[method] = function () {
return BigInt(original.call(this).toString());
};
});
function decodeMessage(buf, codec) {
const reader = Reader.create(buf instanceof Uint8Array ? buf : buf.subarray());
// @ts-expect-error
return codec.decode(reader);
}
const Writer = pb.Writer;
// monkey patch the writer to add native bigint support
const methods = [
'uint64', 'int64', 'sint64', 'fixed64', 'sfixed64'
];
methods.forEach(method => {
// @ts-expect-error
const original = Writer.prototype[method];
// @ts-expect-error
Writer.prototype[method] = function (val) {
return original.call(this, val.toString());
};
});
function encodeMessage(message, codec) {
const w = Writer.create();
// @ts-expect-error
codec.encode(message, w, {
lengthDelimited: false
});
return w.finish();
}
// https://developers.google.com/protocol-buffers/docs/encoding#structure
var CODEC_TYPES;
(function (CODEC_TYPES) {
CODEC_TYPES[CODEC_TYPES["VARINT"] = 0] = "VARINT";
CODEC_TYPES[CODEC_TYPES["BIT64"] = 1] = "BIT64";
CODEC_TYPES[CODEC_TYPES["LENGTH_DELIMITED"] = 2] = "LENGTH_DELIMITED";
CODEC_TYPES[CODEC_TYPES["START_GROUP"] = 3] = "START_GROUP";
CODEC_TYPES[CODEC_TYPES["END_GROUP"] = 4] = "END_GROUP";
CODEC_TYPES[CODEC_TYPES["BIT32"] = 5] = "BIT32";
})(CODEC_TYPES || (CODEC_TYPES = {}));
function createCodec(name, type, encode, decode) {
return {
name,
type,
encode,
decode
};
}
function enumeration(v) {
function findValue(val) {
// Use the reverse mapping to look up the enum key for the stored value
// https://www.typescriptlang.org/docs/handbook/enums.html#reverse-mappings
if (v[val.toString()] == null) {
throw new Error('Invalid enum value');
}
return v[val];
}
const encode = function enumEncode(val, writer) {
const enumValue = findValue(val);
writer.int32(enumValue);
};
const decode = function enumDecode(reader) {
const val = reader.uint32();
return findValue(val);
};
// @ts-expect-error yeah yeah
return createCodec('enum', CODEC_TYPES.VARINT, encode, decode);
}
function message(encode, decode) {
return createCodec('message', CODEC_TYPES.LENGTH_DELIMITED, encode, decode);
}
/* eslint-disable import/export */
var KeyType;
(function (KeyType) {
KeyType["RSA"] = "RSA";
KeyType["Ed25519"] = "Ed25519";
KeyType["Secp256k1"] = "Secp256k1";
})(KeyType || (KeyType = {}));
var __KeyTypeValues;
(function (__KeyTypeValues) {
__KeyTypeValues[__KeyTypeValues["RSA"] = 0] = "RSA";
__KeyTypeValues[__KeyTypeValues["Ed25519"] = 1] = "Ed25519";
__KeyTypeValues[__KeyTypeValues["Secp256k1"] = 2] = "Secp256k1";
})(__KeyTypeValues || (__KeyTypeValues = {}));
(function (KeyType) {
KeyType.codec = () => {
return enumeration(__KeyTypeValues);
};
})(KeyType || (KeyType = {}));
var PublicKey;
(function (PublicKey) {
let _codec;
PublicKey.codec = () => {
if (_codec == null) {
_codec = message((obj, writer, opts = {}) => {
if (opts.lengthDelimited !== false) {
writer.fork();
}
if (obj.Type != null) {
writer.uint32(8);
KeyType.codec().encode(obj.Type, writer);
}
else {
throw new Error('Protocol error: required field "Type" was not found in object');
}
if (obj.Data != null) {
writer.uint32(18);
writer.bytes(obj.Data);
}
else {
throw new Error('Protocol error: required field "Data" was not found in object');
}
if (opts.lengthDelimited !== false) {
writer.ldelim();
}
}, (reader, length) => {
const obj = {
Type: KeyType.RSA,
Data: new Uint8Array(0)
};
const end = length == null ? reader.len : reader.pos + length;
while (reader.pos < end) {
const tag = reader.uint32();
switch (tag >>> 3) {
case 1:
obj.Type = KeyType.codec().decode(reader);
break;
case 2:
obj.Data = reader.bytes();
break;
default:
reader.skipType(tag & 7);
break;
}
}
if (obj.Type == null) {
throw new Error('Protocol error: value for required field "Type" was not found in protobuf');
}
if (obj.Data == null) {
throw new Error('Protocol error: value for required field "Data" was not found in protobuf');
}
return obj;
});
}
return _codec;
};
PublicKey.encode = (obj) => {
return encodeMessage(obj, PublicKey.codec());
};
PublicKey.decode = (buf) => {
return decodeMessage(buf, PublicKey.codec());
};
})(PublicKey || (PublicKey = {}));
var PrivateKey;
(function (PrivateKey) {
let _codec;
PrivateKey.codec = () => {
if (_codec == null) {
_codec = message((obj, writer, opts = {}) => {
if (opts.lengthDelimited !== false) {
writer.fork();
}
if (obj.Type != null) {
writer.uint32(8);
KeyType.codec().encode(obj.Type, writer);
}
else {
throw new Error('Protocol error: required field "Type" was not found in object');
}
if (obj.Data != null) {
writer.uint32(18);
writer.bytes(obj.Data);
}
else {
throw new Error('Protocol error: required field "Data" was not found in object');
}
if (opts.lengthDelimited !== false) {
writer.ldelim();
}
}, (reader, length) => {
const obj = {
Type: KeyType.RSA,
Data: new Uint8Array(0)
};
const end = length == null ? reader.len : reader.pos + length;
while (reader.pos < end) {
const tag = reader.uint32();
switch (tag >>> 3) {
case 1:
obj.Type = KeyType.codec().decode(reader);
break;
case 2:
obj.Data = reader.bytes();
break;
default:
reader.skipType(tag & 7);
break;
}
}
if (obj.Type == null) {
throw new Error('Protocol error: value for required field "Type" was not found in protobuf');
}
if (obj.Data == null) {
throw new Error('Protocol error: value for required field "Data" was not found in protobuf');
}
return obj;
});
}
return _codec;
};
PrivateKey.encode = (obj) => {
return encodeMessage(obj, PrivateKey.codec());
};
PrivateKey.decode = (buf) => {
return decodeMessage(buf, PrivateKey.codec());
};
})(PrivateKey || (PrivateKey = {}));
/**
* Node.js module for Forge.
*
* @author Dave Longley
*
* Copyright 2011-2016 Digital Bazaar, Inc.
*/
var forge$m = {
// default options
options: {
usePureJavaScript: false
}
};
/**
* Base-N/Base-X encoding/decoding functions.
*
* Original implementation from base-x:
* https://github.com/cryptocoinjs/base-x
*
* Which is MIT licensed:
*
* The MIT License (MIT)
*
* Copyright base-x contributors (c) 2016
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
var api = {};
var baseN$1 = api;
// baseN alphabet indexes
var _reverseAlphabets = {};
/**
* BaseN-encodes a Uint8Array using the given alphabet.
*
* @param input the Uint8Array to encode.
* @param maxline the maximum number of encoded characters per line to use,
* defaults to none.
*
* @return the baseN-encoded output string.
*/
api.encode = function(input, alphabet, maxline) {
if(typeof alphabet !== 'string') {
throw new TypeError('"alphabet" must be a string.');
}
if(maxline !== undefined && typeof maxline !== 'number') {
throw new TypeError('"maxline" must be a number.');
}
var output = '';
if(!(input instanceof Uint8Array)) {
// assume forge byte buffer
output = _encodeWithByteBuffer(input, alphabet);
} else {
var i = 0;
var base = alphabet.length;
var first = alphabet.charAt(0);
var digits = [0];
for(i = 0; i < input.length; ++i) {
for(var j = 0, carry = input[i]; j < digits.length; ++j) {
carry += digits[j] << 8;
digits[j] = carry % base;
carry = (carry / base) | 0;
}
while(carry > 0) {
digits.push(carry % base);
carry = (carry / base) | 0;
}
}
// deal with leading zeros
for(i = 0; input[i] === 0 && i < input.length - 1; ++i) {
output += first;
}
// convert digits to a string
for(i = digits.length - 1; i >= 0; --i) {
output += alphabet[digits[i]];
}
}
if(maxline) {
var regex = new RegExp('.{1,' + maxline + '}', 'g');
output = output.match(regex).join('\r\n');
}
return output;
};
/**
* Decodes a baseN-encoded (using the given alphabet) string to a
* Uint8Array.
*
* @param input the baseN-encoded input string.
*
* @return the Uint8Array.
*/
api.decode = function(input, alphabet) {
if(typeof input !== 'string') {
throw new TypeError('"input" must be a string.');
}
if(typeof alphabet !== 'string') {
throw new TypeError('"alphabet" must be a string.');
}
var table = _reverseAlphabets[alphabet];
if(!table) {
// compute reverse alphabet
table = _reverseAlphabets[alphabet] = [];
for(var i = 0; i < alphabet.length; ++i) {
table[alphabet.charCodeAt(i)] = i;
}
}
// remove whitespace characters
input = input.replace(/\s/g, '');
var base = alphabet.length;
var first = alphabet.charAt(0);
var bytes = [0];
for(var i = 0; i < input.length; i++) {
var value = table[input.charCodeAt(i)];
if(value === undefined) {
return;
}
for(var j = 0, carry = value; j < bytes.length; ++j) {
carry += bytes[j] * base;
bytes[j] = carry & 0xff;
carry >>= 8;
}
while(carry > 0) {
bytes.push(carry & 0xff);
carry >>= 8;
}
}
// deal with leading zeros
for(var k = 0; input[k] === first && k < input.length - 1; ++k) {
bytes.push(0);
}
if(typeof Buffer !== 'undefined') {
return Buffer.from(bytes.reverse());
}
return new Uint8Array(bytes.reverse());
};
function _encodeWithByteBuffer(input, alphabet) {
var i = 0;
var base = alphabet.length;
var first = alphabet.charAt(0);
var digits = [0];
for(i = 0; i < input.length(); ++i) {
for(var j = 0, carry = input.at(i); j < digits.length; ++j) {
carry += digits[j] << 8;
digits[j] = carry % base;
carry = (carry / base) | 0;
}
while(carry > 0) {
digits.push(carry % base);
carry = (carry / base) | 0;
}
}
var output = '';
// deal with leading zeros
for(i = 0; input.at(i) === 0 && i < input.length() - 1; ++i) {
output += first;
}
// convert digits to a string
for(i = digits.length - 1; i >= 0; --i) {
output += alphabet[digits[i]];
}
return output;
}
/**
* Utility functions for web applications.
*
* @author Dave Longley
*
* Copyright (c) 2010-2018 Digital Bazaar, Inc.
*/
var forge$l = forge$m;
var baseN = baseN$1;
/* Utilities API */
var util$1 = forge$l.util = forge$l.util || {};
// define setImmediate and nextTick
(function() {
// use native nextTick (unless we're in webpack)
// webpack (or better node-libs-browser polyfill) sets process.browser.
// this way we can detect webpack properly
if(typeof process !== 'undefined' && process.nextTick && !process.browser) {
util$1.nextTick = process.nextTick;
if(typeof setImmediate === 'function') {
util$1.setImmediate = setImmediate;
} else {
// polyfill setImmediate with nextTick, older versions of node
// (those w/o setImmediate) won't totally starve IO
util$1.setImmediate = util$1.nextTick;
}
return;
}
// polyfill nextTick with native setImmediate
if(typeof setImmediate === 'function') {
util$1.setImmediate = function() { return setImmediate.apply(undefined, arguments); };
util$1.nextTick = function(callback) {
return setImmediate(callback);
};
return;
}
/* Note: A polyfill upgrade pattern is used here to allow combining
polyfills. For example, MutationObserver is fast, but blocks UI updates,
so it needs to allow UI updates periodically, so it falls back on
postMessage or setTimeout. */
// polyfill with setTimeout
util$1.setImmediate = function(callback) {
setTimeout(callback, 0);
};
// upgrade polyfill to use postMessage
if(typeof window !== 'undefined' &&
typeof window.postMessage === 'function') {
var msg = 'forge.setImmediate';
var callbacks = [];
util$1.setImmediate = function(callback) {
callbacks.push(callback);
// only send message when one hasn't been sent in
// the current turn of the event loop
if(callbacks.length === 1) {
window.postMessage(msg, '*');
}
};
function handler(event) {
if(event.source === window && event.data === msg) {
event.stopPropagation();
var copy = callbacks.slice();
callbacks.length = 0;
copy.forEach(function(callback) {
callback();
});
}
}
window.addEventListener('message', handler, true);
}
// upgrade polyfill to use MutationObserver
if(typeof MutationObserver !== 'undefined') {
// polyfill with MutationObserver
var now = Date.now();
var attr = true;
var div = document.createElement('div');
var callbacks = [];
new MutationObserver(function() {
var copy = callbacks.slice();
callbacks.length = 0;
copy.forEach(function(callback) {
callback();
});
}).observe(div, {attributes: true});
var oldSetImmediate = util$1.setImmediate;
util$1.setImmediate = function(callback) {
if(Date.now() - now > 15) {
now = Date.now();
oldSetImmediate(callback);
} else {
callbacks.push(callback);
// only trigger observer when it hasn't been triggered in
// the current turn of the event loop
if(callbacks.length === 1) {
div.setAttribute('a', attr = !attr);
}
}
};
}
util$1.nextTick = util$1.setImmediate;
})();
// check if running under Node.js
util$1.isNodejs =
typeof process !== 'undefined' && process.versions && process.versions.node;
// 'self' will also work in Web Workers (instance of WorkerGlobalScope) while
// it will point to `window` in the main thread.
// To remain compatible with older browsers, we fall back to 'window' if 'self'
// is not available.
util$1.globalScope = (function() {
if(util$1.isNodejs) {
return commonjsGlobal;
}
return typeof self === 'undefined' ? window : self;
})();
// define isArray
util$1.isArray = Array.isArray || function(x) {
return Object.prototype.toString.call(x) === '[object Array]';
};
// define isArrayBuffer
util$1.isArrayBuffer = function(x) {
return typeof ArrayBuffer !== 'undefined' && x instanceof ArrayBuffer;
};
// define isArrayBufferView
util$1.isArrayBufferView = function(x) {
return x && util$1.isArrayBuffer(x.buffer) && x.byteLength !== undefined;
};
/**
* Ensure a bits param is 8, 16, 24, or 32. Used to validate input for
* algorithms where bit manipulation, JavaScript limitations, and/or algorithm
* design only allow for byte operations of a limited size.
*
* @param n number of bits.
*
* Throw Error if n invalid.
*/
function _checkBitsParam(n) {
if(!(n === 8 || n === 16 || n === 24 || n === 32)) {
throw new Error('Only 8, 16, 24, or 32 bits supported: ' + n);
}
}
// TODO: set ByteBuffer to best available backing
util$1.ByteBuffer = ByteStringBuffer;
/** Buffer w/BinaryString backing */
/**
* Constructor for a binary string backed byte buffer.
*
* @param [b] the bytes to wrap (either encoded as string, one byte per
* character, or as an ArrayBuffer or Typed Array).
*/
function ByteStringBuffer(b) {
// TODO: update to match DataBuffer API
// the data in this buffer
this.data = '';
// the pointer for reading from this buffer
this.read = 0;
if(typeof b === 'string') {
this.data = b;
} else if(util$1.isArrayBuffer(b) || util$1.isArrayBufferView(b)) {
if(typeof Buffer !== 'undefined' && b instanceof Buffer) {
this.data = b.toString('binary');
} else {
// convert native buffer to forge buffer
// FIXME: support native buffers internally instead
var arr = new Uint8Array(b);
try {
this.data = String.fromCharCode.apply(null, arr);
} catch(e) {
for(var i = 0; i < arr.length; ++i) {
this.putByte(arr[i]);
}
}
}
} else if(b instanceof ByteStringBuffer ||
(typeof b === 'object' && typeof b.data === 'string' &&
typeof b.read === 'number')) {
// copy existing buffer
this.data = b.data;
this.read = b.read;
}
// used for v8 optimization
this._constructedStringLength = 0;
}
util$1.ByteStringBuffer = ByteStringBuffer;
/* Note: This is an optimization for V8-based browsers. When V8 concatenates
a string, the strings are only joined logically using a "cons string" or
"constructed/concatenated string". These containers keep references to one
another and can result in very large memory usage. For example, if a 2MB
string is constructed by concatenating 4 bytes together at a time, the
memory usage will be ~44MB; so ~22x increase. The strings are only joined
together when an operation requiring their joining takes place, such as
substr(). This function is called when adding data to this buffer to ensure
these types of strings are periodically joined to reduce the memory
footprint. */
var _MAX_CONSTRUCTED_STRING_LENGTH = 4096;
util$1.ByteStringBuffer.prototype._optimizeConstructedString = function(x) {
this._constructedStringLength += x;
if(this._constructedStringLength > _MAX_CONSTRUCTED_STRING_LENGTH) {
// this substr() should cause the constructed string to join
this.data.substr(0, 1);
this._constructedStringLength = 0;
}
};
/**
* Gets the number of bytes in this buffer.
*
* @return the number of bytes in this buffer.
*/
util$1.ByteStringBuffer.prototype.length = function() {
return this.data.length - this.read;
};
/**
* Gets whether or not this buffer is empty.
*
* @return true if this buffer is empty, false if not.
*/
util$1.ByteStringBuffer.prototype.isEmpty = function() {
return this.length() <= 0;
};
/**
* Puts a byte in this buffer.
*
* @param b the byte to put.
*
* @return this buffer.
*/
util$1.ByteStringBuffer.prototype.putByte = function(b) {
return this.putBytes(String.fromCharCode(b));
};
/**
* Puts a byte in this buffer N times.
*
* @param b the byte to put.
* @param n the number of bytes of value b to put.
*
* @return this buffer.
*/
util$1.ByteStringBuffer.prototype.fillWithByte = function(b, n) {
b = String.fromCharCode(b);
var d = this.data;
while(n > 0) {
if(n & 1) {
d += b;
}
n >>>= 1;
if(n > 0) {
b += b;
}
}
this.data = d;
this._optimizeConstructedString(n);
return this;
};
/**
* Puts bytes in this buffer.
*
* @param bytes the bytes (as a binary encoded string) to put.
*
* @return this buffer.
*/
util$1.ByteStringBuffer.prototype.putBytes = function(bytes) {
this.data += bytes;
this._optimizeConstructedString(bytes.length);
return this;
};
/**
* Puts a UTF-16 encoded string into this buffer.
*
* @param str the string to put.
*
* @return this buffer.
*/
util$1.ByteStringBuffer.prototype.putString = function(str) {
return this.putBytes(util$1.encodeUtf8(str));
};
/**
* Puts a 16-bit integer in this buffer in big-endian order.
*
* @param i the 16-bit integer.
*
* @return this buffer.
*/
util$1.ByteStringBuffer.prototype.putInt16 = function(i) {
return this.putBytes(
String.fromCharCode(i >> 8 & 0xFF) +
String.fromCharCode(i & 0xFF));
};
/**
* Puts a 24-bit integer in this buffer in big-endian order.
*
* @param i the 24-bit integer.
*
* @return this buffer.
*/
util$1.ByteStringBuffer.prototype.putInt24 = function(i) {
return this.putBytes(
String.fromCharCode(i >> 16 & 0xFF) +
String.fromCharCode(i >> 8 & 0xFF) +
String.fromCharCode(i & 0xFF));
};
/**
* Puts a 32-bit integer in this buffer in big-endian order.
*
* @param i the 32-bit integer.
*
* @return this buffer.
*/
util$1.ByteStringBuffer.prototype.putInt32 = function(i) {
return this.putBytes(
String.fromCharCode(i >> 24 & 0xFF) +
String.fromCharCode(i >> 16 & 0xFF) +
String.fromCharCode(i >> 8 & 0xFF) +
String.fromCharCode(i & 0xFF));
};
/**
* Puts a 16-bit integer in this buffer in little-endian order.
*
* @param i the 16-bit integer.
*
* @return this buffer.
*/
util$1.ByteStringBuffer.prototype.putInt16Le = function(i) {
return this.putBytes(
String.fromCharCode(i & 0xFF) +
String.fromCharCode(i >> 8 & 0xFF));
};
/**
* Puts a 24-bit integer in this buffer in little-endian order.
*
* @param i the 24-bit integer.
*
* @return this buffer.
*/
util$1.ByteStringBuffer.prototype.putInt24Le = function(i) {
return this.putBytes(
String.fromCharCode(i & 0xFF) +
String.fromCharCode(i >> 8 & 0xFF) +
String.fromCharCode(i >> 16 & 0xFF));
};
/**
* Puts a 32-bit integer in this buffer in little-endian order.
*
* @param i the 32-bit integer.
*
* @return this buffer.
*/
util$1.ByteStringBuffer.prototype.putInt32Le = function(i) {
return this.putBytes(
String.fromCharCode(i & 0xFF) +
String.fromCharCode(i >> 8 & 0xFF) +
String.fromCharCode(i >> 16 & 0xFF) +
String.fromCharCode(i >> 24 & 0xFF));
};
/**
* Puts an n-bit integer in this buffer in big-endian order.
*
* @param i the n-bit integer.
* @param n the number of bits in the integer (8, 16, 24, or 32).
*
* @return this buffer.
*/
util$1.ByteStringBuffer.prototype.putInt = function(i, n) {
_checkBitsParam(n);
var bytes = '';
do {
n -= 8;
bytes += String.fromCharCode((i >> n) & 0xFF);
} while(n > 0);
return this.putBytes(bytes);
};
/**
* Puts a signed n-bit integer in this buffer in big-endian order. Two's
* complement representation is used.
*
* @param i the n-bit integer.
* @param n the number of bits in the integer (8, 16, 24, or 32).
*
* @return this buffer.
*/
util$1.ByteStringBuffer.prototype.putSignedInt = function(i, n) {
// putInt checks n
if(i < 0) {
i += 2 << (n - 1);
}
return this.putInt(i, n);
};
/**
* Puts the given buffer into this buffer.
*
* @param buffer the buffer to put into this one.
*
* @return this buffer.
*/
util$1.ByteStringBuffer.prototype.putBuffer = function(buffer) {
return this.putBytes(buffer.getBytes());
};
/**
* Gets a byte from this buffer and advances the read pointer by 1.
*
* @return the byte.
*/
util$1.ByteStringBuffer.prototype.getByte = function() {
return this.data.charCodeAt(this.read++);
};
/**
* Gets a uint16 from this buffer in big-endian order and advances the read
* pointer by 2.
*
* @return the uint16.
*/
util$1.ByteStringBuffer.prototype.getInt16 = function() {
var rval = (
this.data.charCodeAt(this.read) << 8 ^
this.data.charCodeAt(this.read + 1));
this.read += 2;
return rval;
};
/**
* Gets a uint24 from this buffer in big-endian order and advances the read
* pointer by 3.
*
* @return the uint24.
*/
util$1.ByteStringBuffer.prototype.getInt24 = function() {
var rval = (
this.data.charCodeAt(this.read) << 16 ^
this.data.charCodeAt(this.read + 1) << 8 ^
this.data.charCodeAt(this.read + 2));
this.read += 3;
return rval;
};
/**
* Gets a uint32 from this buffer in big-endian order and advances the read
* pointer by 4.
*
* @return the word.
*/
util$1.ByteStringBuffer.prototype.getInt32 = function() {
var rval = (
this.data.charCodeAt(this.read) << 24 ^
this.data.charCodeAt(this.read + 1) << 16 ^
this.data.charCodeAt(this.read + 2) << 8 ^
this.data.charCodeAt(this.read + 3));
this.read += 4;
return rval;
};
/**
* Gets a uint16 from this buffer in little-endian order and advances the read
* pointer by 2.
*
* @return the uint16.
*/
util$1.ByteStringBuffer.prototype.getInt16Le = function() {
var rval = (
this.data.charCodeAt(this.read) ^
this.data.charCodeAt(this.read + 1) << 8);
this.read += 2;
return rval;
};
/**
* Gets a uint24 from this buffer in little-endian order and advances the read
* pointer by 3.
*
* @return the uint24.
*/
util$1.ByteStringBuffer.prototype.getInt24Le = function() {
var rval = (
this.data.charCodeAt(this.read) ^
this.data.charCodeAt(this.read + 1) << 8 ^
this.data.charCodeAt(this.read + 2) << 16);
this.read += 3;
return rval;
};
/**
* Gets a uint32 from this buffer in little-endian order and advances the read
* pointer by 4.
*
* @return the word.
*/
util$1.ByteStringBuffer.prototype.getInt32Le = function() {
var rval = (
this.data.charCodeAt(this.read) ^
this.data.charCodeAt(this.read + 1) << 8 ^
this.data.charCodeAt(this.read + 2) << 16 ^
this.data.charCodeAt(this.read + 3) << 24);
this.read += 4;
return rval;
};
/**
* Gets an n-bit integer from this buffer in big-endian order and advances the
* read pointer by ceil(n/8).
*
* @param n the number of bits in the integer (8, 16, 24, or 32).
*
* @return the integer.
*/
util$1.ByteStringBuffer.prototype.getInt = function(n) {
_checkBitsParam(n);
var rval = 0;
do {
// TODO: Use (rval * 0x100) if adding support for 33 to 53 bits.
rval = (rval << 8) + this.data.charCodeAt(this.read++);
n -= 8;
} while(n > 0);
return rval;
};
/**
* Gets a signed n-bit integer from this buffer in big-endian order, using
* two's complement, and advances the read pointer by n/8.
*
* @param n the number of bits in the integer (8, 16, 24, or 32).
*
* @return the integer.
*/
util$1.ByteStringBuffer.prototype.getSignedInt = function(n) {
// getInt checks n
var x = this.getInt(n);
var max = 2 << (n - 2);
if(x >= max) {
x -= max << 1;
}
return x;
};
/**
* Reads bytes out as a binary encoded string and clears them from the
* buffer. Note that the resulting string is binary encoded (in node.js this
* encoding is referred to as `binary`, it is *not* `utf8`).
*
* @param count the number of bytes to read, undefined or null for all.
*
* @return a binary encoded string of bytes.
*/
util$1.ByteStringBuffer.prototype.getBytes = function(count) {
var rval;
if(count) {
// read count bytes
count = Math.min(this.length(), count);
rval = this.data.slice(this.read, this.read + count);
this.read += count;
} else if(count === 0) {
rval = '';
} else {
// read all bytes, optimize to only copy when needed
rval = (this.read === 0) ? this.data : this.data.slice(this.read);
this.clear();
}
return rval;
};
/**
* Gets a binary encoded string of the bytes from this buffer without
* modifying the read pointer.
*
* @param count the number of bytes to get, omit to get all.
*
* @return a string full of binary encoded characters.
*/
util$1.ByteStringBuffer.prototype.bytes = function(count) {
return (typeof(count) === 'undefined' ?
this.data.slice(this.read) :
this.data.slice(this.read, this.read + count));
};
/**
* Gets a byte at the given index without modifying the read pointer.
*
* @param i the byte index.
*
* @return the byte.
*/
util$1.ByteStringBuffer.prototype.at = function(i) {
return this.data.charCodeAt(this.read + i);
};
/**
* Puts a byte at the given index without modifying the read pointer.
*
* @param i the byte index.
* @param b the byte to put.
*
* @return this buffer.
*/
util$1.ByteStringBuffer.prototype.setAt = function(i, b) {
this.data = this.data.substr(0, this.read + i) +
String.fromCharCode(b) +
this.data.substr(this.read + i + 1);
return this;
};
/**
* Gets the last byte without modifying the read pointer.
*
* @return the last byte.
*/
util$1.ByteStringBuffer.prototype.last = function() {
return this.data.charCodeAt(this.data.length - 1);
};
/**
* Creates a copy of this buffer.
*
* @return the copy.
*/
util$1.ByteStringBuffer.prototype.copy = function() {
var c = util$1.createBuffer(this.data);
c.read = this.read;
return c;
};
/**
* Compacts this buffer.
*
* @return this buffer.
*/
util$1.ByteStringBuffer.prototype.compact = function() {
if(this.read > 0) {
this.data = this.data.slice(this.read);
this.read = 0;
}
return this;
};
/**
* Clears this buffer.
*
* @return this buffer.
*/
util$1.ByteStringBuffer.prototype.clear = function() {
this.data = '';
this.read = 0;
return this;
};
/**
* Shortens this buffer by triming bytes off of the end of this buffer.
*
* @param count the number of bytes to trim off.
*
* @return this buffer.
*/
util$1.ByteStringBuffer.prototype.truncate = function(count) {
var len = Math.max(0, this.length() - count);
this.data = this.data.substr(this.read, len);
this.read = 0;
return this;
};
/**
* Converts this buffer to a hexadecimal string.
*
* @return a hexadecimal string.
*/
util$1.ByteStringBuffer.prototype.toHex = function() {
var rval = '';
for(var i = this.read; i < this.data.length; ++i) {
var b = this.data.charCodeAt(i);
if(b < 16) {
rval += '0';
}
rval += b.toString(16);
}
return rval;
};
/**
* Converts this buffer to a UTF-16 string (standard JavaScript string).
*
* @return a UTF-16 string.
*/
util$1.ByteStringBuffer.prototype.toString = function() {
return util$1.decodeUtf8(this.bytes());
};
/** End Buffer w/BinaryString backing */
/** Buffer w/UInt8Array backing */
/**
* FIXME: Experimental. Do not use yet.
*
* Constructor for an ArrayBuffer-backed byte buffer.
*
* The buffer may be constructed from a string, an ArrayBuffer, DataView, or a
* TypedArray.
*
* If a string is given, its encoding should be provided as an option,
* otherwise it will default to 'binary'. A 'binary' string is encoded such
* that each character is one byte in length and size.
*
* If an ArrayBuffer, DataView, or TypedArray is given, it will be used
* *directly* without any copying. Note that, if a write to the buffer requires
* more space, the buffer will allocate a new backing ArrayBuffer to
* accommodate. The starting read and write offsets for the buffer may be
* given as options.
*
* @param [b] the initial bytes for this buffer.
* @param options the options to use:
* [readOffset] the starting read offset to use (default: 0).
* [writeOffset] the starting write offset to use (default: the
* length of the first parameter).
* [growSize] the minimum amount, in bytes, to grow the buffer by to
* accommodate writes (default: 1024).
* [encoding] the encoding ('binary', 'utf8', 'utf16', 'hex') for the
* first parameter, if it is a string (default: 'binary').
*/
function DataBuffer(b, options) {
// default options
options = options || {};
// pointers for read from/write to buffer
this.read = options.readOffset || 0;
this.growSize = options.growSize || 1024;
var isArrayBuffer = util$1.isArrayBuffer(b);
var isArrayBufferView = util$1.isArrayBufferView(b);
if(isArrayBuffer || isArrayBufferView) {
// use ArrayBuffer directly
if(isArrayBuffer) {
this.data = new DataView(b);
} else {
// TODO: adjust read/write offset based on the type of view
// or specify that this must be done in the options ... that the
// offsets are byte-based
this.data = new DataView(b.buffer, b.byteOffset, b.byteLength);
}
this.write = ('writeOffset' in options ?
options.writeOffset : this.data.byteLength);
return;
}
// initialize to empty array buffer and add any given bytes using putBytes
this.data = new DataView(new ArrayBuffer(0));
this.write = 0;
if(b !== null && b !== undefined) {
this.putBytes(b);
}
if('writeOffset' in options) {
this.write = options.writeOffset;
}
}
util$1.DataBuffer = DataBuffer;
/**
* Gets the number of bytes in this buffer.
*
* @return the number of bytes in this buffer.
*/
util$1.DataBuffer.prototype.length = function() {
return this.write - this.read;
};
/**
* Gets whether or not this buffer is empty.
*
* @return true if this buffer is empty, false if not.
*/
util$1.DataBuffer.prototype.isEmpty = function() {
return this.length() <= 0;
};
/**
* Ensures this buffer has enough empty space to accommodate the given number
* of bytes. An optional parameter may be given that indicates a minimum
* amount to grow the buffer if necessary. If the parameter is not given,
* the buffer will be grown by some previously-specified default amount
* or heuristic.
*
* @param amount the number of bytes to accommodate.
* @param [growSize] the minimum amount, in bytes, to grow the buffer by if
* necessary.
*/
util$1.DataBuffer.prototype.accommodate = function(amount, growSize) {
if(this.length() >= amount) {
return this;
}
growSize = Math.max(growSize || this.growSize, amount);
// grow buffer
var src = new Uint8Array(
this.data.buffer, this.data.byteOffset, this.data.byteLength);
var dst = new Uint8Array(this.length() + growSize);
dst.set(src);
this.data = new DataView(dst.buffer);
return this;
};
/**
* Puts a byte in this buffer.
*
* @param b the byte to put.
*
* @return this buffer.
*/
util$1.DataBuffer.prototype.putByte = function(b) {
this.accommodate(1);
this.data.setUint8(this.write++, b);
return this;
};
/**
* Puts a byte in this buffer N times.
*
* @param b the byte to put.
* @param n the number of bytes of value b to put.
*
* @return this buffer.
*/
util$1.DataBuffer.prototype.fillWithByte = function(b, n) {
this.accommodate(n);
for(var i = 0; i < n; ++i) {
this.data.setUint8(b);
}
return this;
};
/**
* Puts bytes in this buffer. The bytes may be given as a string, an
* ArrayBuffer, a DataView, or a TypedArray.
*
* @param bytes the bytes to put.
* @param [encoding] the encoding for the first parameter ('binary', 'utf8',
* 'utf16', 'hex'), if it is a string (default: 'binary').
*
* @return this buffer.
*/
util$1.DataBuffer.prototype.putBytes = function(bytes, encoding) {
if(util$1.isArrayBufferView(bytes)) {
var src = new Uint8Array(bytes.buffer, bytes.byteOffset, bytes.byteLength);
var len = src.byteLength - src.byteOffset;
this.accommodate(len);
var dst = new Uint8Array(this.data.buffer, this.write);
dst.set(src);
this.write += len;
return this;
}
if(util$1.isArrayBuffer(bytes)) {
var src = new Uint8Array(bytes);
this.accommodate(src.byteLength);
var dst = new Uint8Array(this.data.buffer);
dst.set(src, this.write);
this.write += src.byteLength;
return this;
}
// bytes is a util.DataBuffer or equivalent
if(bytes instanceof util$1.DataBuffer ||
(typeof bytes === 'object' &&
typeof bytes.read === 'number' && typeof bytes.write === 'number' &&
util$1.isArrayBufferView(bytes.data))) {
var src = new Uint8Array(bytes.data.byteLength, bytes.read, bytes.length());
this.accommodate(src.byteLength);
var dst = new Uint8Array(bytes.data.byteLength, this.write);
dst.set(src);
this.write += src.byteLength;
return this;
}
if(bytes instanceof util$1.ByteStringBuffer) {
// copy binary string and process as the same as a string parameter below
bytes = bytes.data;
encoding = 'binary';
}
// string conversion
encoding = encoding || 'binary';
if(typeof bytes === 'string') {
var view;
// decode from string
if(encoding === 'hex') {
this.accommodate(Math.ceil(bytes.length / 2));
view = new Uint8Array(this.data.buffer, this.write);
this.write += util$1.binary.hex.decode(bytes, view, this.write);
return this;
}
if(encoding === 'base64') {
this.accommodate(Math.ceil(bytes.length / 4) * 3);
view = new Uint8Array(this.data.buffer, this.write);
this.write += util$1.binary.base64.decode(bytes, view, this.write);
return this;
}
// encode text as UTF-8 bytes
if(encoding === 'utf8') {
// encode as UTF-8 then decode string as raw binary
bytes = util$1.encodeUtf8(bytes);
encoding = 'binary';
}
// decode string as raw binary
if(encoding === 'binary' || encoding === 'raw') {
// one byte per character
this.accommodate(bytes.length);
view = new Uint8Array(this.data.buffer, this.write);
this.write += util$1.binary.raw.decode(view);
return this;
}
// encode text as UTF-16 bytes
if(encoding === 'utf16') {
// two bytes per character
this.accommodate(bytes.length * 2);
view = new Uint16Array(this.data.buffer, this.write);
this.write += util$1.text.utf16.encode(view);
return this;
}
throw new Error('Invalid encoding: ' + encoding);
}
throw Error('Invalid parameter: ' + bytes);
};
/**
* Puts the given buffer into this buffer.
*
* @param buffer the buffer to put into this one.
*
* @return this buffer.
*/
util$1.DataBuffer.prototype.putBuffer = function(buffer) {
this.putBytes(buffer);
buffer.clear();
return this;
};
/**
* Puts a string into this buffer.
*
* @param str the string to put.
* @param [encoding] the encoding for the string (default: 'utf16').
*
* @return this buffer.
*/
util$1.DataBuffer.prototype.putString = function(str) {
return this.putBytes(str, 'utf16');
};
/**
* Puts a 16-bit integer in this buffer in big-endian order.
*
* @param i the 16-bit integer.
*
* @return this buffer.
*/
util$1.DataBuffer.prototype.putInt16 = function(i) {
this.accommodate(2);
this.data.setInt16(this.write, i);
this.write += 2;
return this;
};
/**
* Puts a 24-bit integer in this buffer in big-endian order.
*
* @param i the 24-bit integer.
*
* @return this buffer.
*/
util$1.DataBuffer.prototype.putInt24 = function(i) {
this.accommodate(3);
this.data.setInt16(this.write, i >> 8 & 0xFFFF);
this.data.setInt8(this.write, i >> 16 & 0xFF);
this.write += 3;
return this;
};
/**
* Puts a 32-bit integer in this buffer in big-endian order.
*
* @param i the 32-bit integer.
*
* @return this buffer.
*/
util$1.DataBuffer.prototype.putInt32 = function(i) {
this.accommodate(4);
this.data.setInt32(this.write, i);
this.write += 4;
return this;
};
/**
* Puts a 16-bit integer in this buffer in little-endian order.
*
* @param i the 16-bit integer.
*
* @return this buffer.
*/
util$1.DataBuffer.prototype.putInt16Le = function(i) {
this.accommodate(2);
this.data.setInt16(this.write, i, true);
this.write += 2;
return this;
};
/**
* Puts a 24-bit integer in this buffer in little-endian order.
*
* @param i the 24-bit integer.
*
* @return this buffer.
*/
util$1.DataBuffer.prototype.putInt24Le = function(i) {
this.accommodate(3);
this.data.setInt8(this.write, i >> 16 & 0xFF);
this.data.setInt16(this.write, i >> 8 & 0xFFFF, true);
this.write += 3;
return this;
};
/**
* Puts a 32-bit integer in this buffer in little-endian order.
*
* @param i the 32-bit integer.
*
* @return this buffer.
*/
util$1.DataBuffer.prototype.putInt32Le = function(i) {
this.accommodate(4);
this.data.setInt32(this.write, i, true);
this.write += 4;
return this;
};
/**
* Puts an n-bit integer in this buffer in big-endian order.
*
* @param i the n-bit integer.
* @param n the number of bits in the integer (8, 16, 24, or 32).
*
* @return this buffer.
*/
util$1.DataBuffer.prototype.putInt = function(i, n) {
_checkBitsParam(n);
this.accommodate(n / 8);
do {
n -= 8;
this.data.setInt8(this.write++, (i >> n) & 0xFF);
} while(n > 0);
return this;
};
/**
* Puts a signed n-bit integer in this buffer in big-endian order. Two's
* complement representation is used.
*
* @param i the n-bit integer.
* @param n the number of bits in the integer.
*
* @return this buffer.
*/
util$1.DataBuffer.prototype.putSignedInt = function(i, n) {
_checkBitsParam(n);
this.accommodate(n / 8);
if(i < 0) {
i += 2 << (n - 1);
}
return this.putInt(i, n);
};
/**
* Gets a byte from this buffer and advances the read pointer by 1.
*
* @return the byte.
*/
util$1.DataBuffer.prototype.getByte = function() {
return this.data.getInt8(this.read++);
};
/**
* Gets a uint16 from this buffer in big-endian order and advances the read
* pointer by 2.
*
* @return the uint16.
*/
util$1.DataBuffer.prototype.getInt16 = function() {
var rval = this.data.getInt16(this.read);
this.read += 2;
return rval;
};
/**
* Gets a uint24 from this buffer in big-endian order and advances the read
* pointer by 3.
*
* @return the uint24.
*/
util$1.DataBuffer.prototype.getInt24 = function() {
var rval = (
this.data.getInt16(this.read) << 8 ^
this.data.getInt8(this.read + 2));
this.read += 3;
return rval;
};
/**
* Gets a uint32 from this buffer in big-endian order and advances the read
* pointer by 4.
*
* @return the word.
*/
util$1.DataBuffer.prototype.getInt32 = function() {
var rval = this.data.getInt32(this.read);
this.read += 4;
return rval;
};
/**
* Gets a uint16 from this buffer in little-endian order and advances the read
* pointer by 2.
*
* @return the uint16.
*/
util$1.DataBuffer.prototype.getInt16Le = function() {
var rval = this.data.getInt16(this.read, true);
this.read += 2;
return rval;
};
/**
* Gets a uint24 from this buffer in little-endian order and advances the read
* pointer by 3.
*
* @return the uint24.
*/
util$1.DataBuffer.prototype.getInt24Le = function() {
var rval = (
this.data.getInt8(this.read) ^
this.data.getInt16(this.read + 1, true) << 8);
this.read += 3;
return rval;
};
/**
* Gets a uint32 from this buffer in little-endian order and advances the read
* pointer by 4.
*
* @return the word.
*/
util$1.DataBuffer.prototype.getInt32Le = function() {
var rval = this.data.getInt32(this.read, true);
this.read += 4;
return rval;
};
/**
* Gets an n-bit integer from this buffer in big-endian order and advances the
* read pointer by n/8.
*
* @param n the number of bits in the integer (8, 16, 24, or 32).
*
* @return the integer.
*/
util$1.DataBuffer.prototype.getInt = function(n) {
_checkBitsParam(n);
var rval = 0;
do {
// TODO: Use (rval * 0x100) if adding support for 33 to 53 bits.
rval = (rval << 8) + this.data.getInt8(this.read++);
n -= 8;
} while(n > 0);
return rval;
};
/**
* Gets a signed n-bit integer from this buffer in big-endian order, using
* two's complement, and advances the read pointer by n/8.
*
* @param n the number of bits in the integer (8, 16, 24, or 32).
*
* @return the integer.
*/
util$1.DataBuffer.prototype.getSignedInt = function(n) {
// getInt checks n
var x = this.getInt(n);
var max = 2 << (n - 2);
if(x >= max) {
x -= max << 1;
}
return x;
};
/**
* Reads bytes out as a binary encoded string and clears them from the
* buffer.
*
* @param count the number of bytes to read, undefined or null for all.
*
* @return a binary encoded string of bytes.
*/
util$1.DataBuffer.prototype.getBytes = function(count) {
// TODO: deprecate this method, it is poorly named and
// this.toString('binary') replaces it
// add a toTypedArray()/toArrayBuffer() function
var rval;
if(count) {
// read count bytes
count = Math.min(this.length(), count);
rval = this.data.slice(this.read, this.read + count);
this.read += count;
} else if(count === 0) {
rval = '';
} else {
// read all bytes, optimize to only copy when needed
rval = (this.read === 0) ? this.data : this.data.slice(this.read);
this.clear();
}
return rval;
};
/**
* Gets a binary encoded string of the bytes from this buffer without
* modifying the read pointer.
*
* @param count the number of bytes to get, omit to get all.
*
* @return a string full of binary encoded characters.
*/
util$1.DataBuffer.prototype.bytes = function(count) {
// TODO: deprecate this method, it is poorly named, add "getString()"
return (typeof(count) === 'undefined' ?
this.data.slice(this.read) :
this.data.slice(this.read, this.read + count));
};
/**
* Gets a byte at the given index without modifying the read pointer.
*
* @param i the byte index.
*
* @return the byte.
*/
util$1.DataBuffer.prototype.at = function(i) {
return this.data.getUint8(this.read + i);
};
/**
* Puts a byte at the given index without modifying the read pointer.
*
* @param i the byte index.
* @param b the byte to put.
*
* @return this buffer.
*/
util$1.DataBuffer.prototype.setAt = function(i, b) {
this.data.setUint8(i, b);
return this;
};
/**
* Gets the last byte without modifying the read pointer.
*
* @return the last byte.
*/
util$1.DataBuffer.prototype.last = function() {
return this.data.getUint8(this.write - 1);
};
/**
* Creates a copy of this buffer.
*
* @return the copy.
*/
util$1.DataBuffer.prototype.copy = function() {
return new util$1.DataBuffer(this);
};
/**
* Compacts this buffer.
*
* @return this buffer.
*/
util$1.DataBuffer.prototype.compact = function() {
if(this.read > 0) {
var src = new Uint8Array(this.data.buffer, this.read);
var dst = new Uint8Array(src.byteLength);
dst.set(src);
this.data = new DataView(dst);
this.write -= this.read;
this.read = 0;
}
return this;
};
/**
* Clears this buffer.
*
* @return this buffer.
*/
util$1.DataBuffer.prototype.clear = function() {
this.data = new DataView(new ArrayBuffer(0));
this.read = this.write = 0;
return this;
};
/**
* Shortens this buffer by triming bytes off of the end of this buffer.
*
* @param count the number of bytes to trim off.
*
* @return this buffer.
*/
util$1.DataBuffer.prototype.truncate = function(count) {
this.write = Math.max(0, this.length() - count);
this.read = Math.min(this.read, this.write);
return this;
};
/**
* Converts this buffer to a hexadecimal string.
*
* @return a hexadecimal string.
*/
util$1.DataBuffer.prototype.toHex = function() {
var rval = '';
for(var i = this.read; i < this.data.byteLength; ++i) {
var b = this.data.getUint8(i);
if(b < 16) {
rval += '0';
}
rval += b.toString(16);
}
return rval;
};
/**
* Converts this buffer to a string, using the given encoding. If no
* encoding is given, 'utf8' (UTF-8) is used.
*
* @param [encoding] the encoding to use: 'binary', 'utf8', 'utf16', 'hex',
* 'base64' (default: 'utf8').
*
* @return a string representation of the bytes in this buffer.
*/
util$1.DataBuffer.prototype.toString = function(encoding) {
var view = new Uint8Array(this.data, this.read, this.length());
encoding = encoding || 'utf8';
// encode to string
if(encoding === 'binary' || encoding === 'raw') {
return util$1.binary.raw.encode(view);
}
if(encoding === 'hex') {
return util$1.binary.hex.encode(view);
}
if(encoding === 'base64') {
return util$1.binary.base64.encode(view);
}
// decode to text
if(encoding === 'utf8') {
return util$1.text.utf8.decode(view);
}
if(encoding === 'utf16') {
return util$1.text.utf16.decode(view);
}
throw new Error('Invalid encoding: ' + encoding);
};
/** End Buffer w/UInt8Array backing */
/**
* Creates a buffer that stores bytes. A value may be given to populate the
* buffer with data. This value can either be string of encoded bytes or a
* regular string of characters. When passing a string of binary encoded
* bytes, the encoding `raw` should be given. This is also the default. When
* passing a string of characters, the encoding `utf8` should be given.
*
* @param [input] a string with encoded bytes to store in the buffer.
* @param [encoding] (default: 'raw', other: 'utf8').
*/
util$1.createBuffer = function(input, encoding) {
// TODO: deprecate, use new ByteBuffer() instead
encoding = encoding || 'raw';
if(input !== undefined && encoding === 'utf8') {
input = util$1.encodeUtf8(input);
}
return new util$1.ByteBuffer(input);
};
/**
* Fills a string with a particular value. If you want the string to be a byte
* string, pass in String.fromCharCode(theByte).
*
* @param c the character to fill the string with, use String.fromCharCode
* to fill the string with a byte value.
* @param n the number of characters of value c to fill with.
*
* @return the filled string.
*/
util$1.fillString = function(c, n) {
var s = '';
while(n > 0) {
if(n & 1) {
s += c;
}
n >>>= 1;
if(n > 0) {
c += c;
}
}
return s;
};
/**
* Performs a per byte XOR between two byte strings and returns the result as a
* string of bytes.
*
* @param s1 first string of bytes.
* @param s2 second string of bytes.
* @param n the number of bytes to XOR.
*
* @return the XOR'd result.
*/
util$1.xorBytes = function(s1, s2, n) {
var s3 = '';
var b = '';
var t = '';
var i = 0;
var c = 0;
for(; n > 0; --n, ++i) {
b = s1.charCodeAt(i) ^ s2.charCodeAt(i);
if(c >= 10) {
s3 += t;
t = '';
c = 0;
}
t += String.fromCharCode(b);
++c;
}
s3 += t;
return s3;
};
/**
* Converts a hex string into a 'binary' encoded string of bytes.
*
* @param hex the hexadecimal string to convert.
*
* @return the binary-encoded string of bytes.
*/
util$1.hexToBytes = function(hex) {
// TODO: deprecate: "Deprecated. Use util.binary.hex.decode instead."
var rval = '';
var i = 0;
if(hex.length & 1 == 1) {
// odd number of characters, convert first character alone
i = 1;
rval += String.fromCharCode(parseInt(hex[0], 16));
}
// convert 2 characters (1 byte) at a time
for(; i < hex.length; i += 2) {
rval += String.fromCharCode(parseInt(hex.substr(i, 2), 16));
}
return rval;
};
/**
* Converts a 'binary' encoded string of bytes to hex.
*
* @param bytes the byte string to convert.
*
* @return the string of hexadecimal characters.
*/
util$1.bytesToHex = function(bytes) {
// TODO: deprecate: "Deprecated. Use util.binary.hex.encode instead."
return util$1.createBuffer(bytes).toHex();
};
/**
* Converts an 32-bit integer to 4-big-endian byte string.
*
* @param i the integer.
*
* @return the byte string.
*/
util$1.int32ToBytes = function(i) {
return (
String.fromCharCode(i >> 24 & 0xFF) +
String.fromCharCode(i >> 16 & 0xFF) +
String.fromCharCode(i >> 8 & 0xFF) +
String.fromCharCode(i & 0xFF));
};
// base64 characters, reverse mapping
var _base64 =
'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/=';
var _base64Idx = [
/*43 -43 = 0*/
/*'+', 1, 2, 3,'/' */
62, -1, -1, -1, 63,
/*'0','1','2','3','4','5','6','7','8','9' */
52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
/*15, 16, 17,'=', 19, 20, 21 */
-1, -1, -1, 64, -1, -1, -1,
/*65 - 43 = 22*/
/*'A','B','C','D','E','F','G','H','I','J','K','L','M', */
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
/*'N','O','P','Q','R','S','T','U','V','W','X','Y','Z' */
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,
/*91 - 43 = 48 */
/*48, 49, 50, 51, 52, 53 */
-1, -1, -1, -1, -1, -1,
/*97 - 43 = 54*/
/*'a','b','c','d','e','f','g','h','i','j','k','l','m' */
26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38,
/*'n','o','p','q','r','s','t','u','v','w','x','y','z' */
39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51
];
// base58 characters (Bitcoin alphabet)
var _base58 = '123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz';
/**
* Base64 encodes a 'binary' encoded string of bytes.
*
* @param input the binary encoded string of bytes to base64-encode.
* @param maxline the maximum number of encoded characters per line to use,
* defaults to none.
*
* @return the base64-encoded output.
*/
util$1.encode64 = function(input, maxline) {
// TODO: deprecate: "Deprecated. Use util.binary.base64.encode instead."
var line = '';
var output = '';
var chr1, chr2, chr3;
var i = 0;
while(i < input.length) {
chr1 = input.charCodeAt(i++);
chr2 = input.charCodeAt(i++);
chr3 = input.charCodeAt(i++);
// encode 4 character group
line += _base64.charAt(chr1 >> 2);
line += _base64.charAt(((chr1 & 3) << 4) | (chr2 >> 4));
if(isNaN(chr2)) {
line += '==';
} else {
line += _base64.charAt(((chr2 & 15) << 2) | (chr3 >> 6));
line += isNaN(chr3) ? '=' : _base64.charAt(chr3 & 63);
}
if(maxline && line.length > maxline) {
output += line.substr(0, maxline) + '\r\n';
line = line.substr(maxline);
}
}
output += line;
return output;
};
/**
* Base64 decodes a string into a 'binary' encoded string of bytes.
*
* @param input the base64-encoded input.
*
* @return the binary encoded string.
*/
util$1.decode64 = function(input) {
// TODO: deprecate: "Deprecated. Use util.binary.base64.decode instead."
// remove all non-base64 characters
input = input.replace(/[^A-Za-z0-9\+\/\=]/g, '');
var output = '';
var enc1, enc2, enc3, enc4;
var i = 0;
while(i < input.length) {
enc1 = _base64Idx[input.charCodeAt(i++) - 43];
enc2 = _base64Idx[input.charCodeAt(i++) - 43];
enc3 = _base64Idx[input.charCodeAt(i++) - 43];
enc4 = _base64Idx[input.charCodeAt(i++) - 43];
output += String.fromCharCode((enc1 << 2) | (enc2 >> 4));
if(enc3 !== 64) {
// decoded at least 2 bytes
output += String.fromCharCode(((enc2 & 15) << 4) | (enc3 >> 2));
if(enc4 !== 64) {
// decoded 3 bytes
output += String.fromCharCode(((enc3 & 3) << 6) | enc4);
}
}
}
return output;
};
/**
* Encodes the given string of characters (a standard JavaScript
* string) as a binary encoded string where the bytes represent
* a UTF-8 encoded string of characters. Non-ASCII characters will be
* encoded as multiple bytes according to UTF-8.
*
* @param str a standard string of characters to encode.
*
* @return the binary encoded string.
*/
util$1.encodeUtf8 = function(str) {
return unescape(encodeURIComponent(str));
};
/**
* Decodes a binary encoded string that contains bytes that
* represent a UTF-8 encoded string of characters -- into a
* string of characters (a standard JavaScript string).
*
* @param str the binary encoded string to decode.
*
* @return the resulting standard string of characters.
*/
util$1.decodeUtf8 = function(str) {
return decodeURIComponent(escape(str));
};
// binary encoding/decoding tools
// FIXME: Experimental. Do not use yet.
util$1.binary = {
raw: {},
hex: {},
base64: {},
base58: {},
baseN : {
encode: baseN.encode,
decode: baseN.decode
}
};
/**
* Encodes a Uint8Array as a binary-encoded string. This encoding uses
* a value between 0 and 255 for each character.
*
* @param bytes the Uint8Array to encode.
*
* @return the binary-encoded string.
*/
util$1.binary.raw.encode = function(bytes) {
return String.fromCharCode.apply(null, bytes);
};
/**
* Decodes a binary-encoded string to a Uint8Array. This encoding uses
* a value between 0 and 255 for each character.
*
* @param str the binary-encoded string to decode.
* @param [output] an optional Uint8Array to write the output to; if it
* is too small, an exception will be thrown.
* @param [offset] the start offset for writing to the output (default: 0).
*
* @return the Uint8Array or the number of bytes written if output was given.
*/
util$1.binary.raw.decode = function(str, output, offset) {
var out = output;
if(!out) {
out = new Uint8Array(str.length);
}
offset = offset || 0;
var j = offset;
for(var i = 0; i < str.length; ++i) {
out[j++] = str.charCodeAt(i);
}
return output ? (j - offset) : out;
};
/**
* Encodes a 'binary' string, ArrayBuffer, DataView, TypedArray, or
* ByteBuffer as a string of hexadecimal characters.
*
* @param bytes the bytes to convert.
*
* @return the string of hexadecimal characters.
*/
util$1.binary.hex.encode = util$1.bytesToHex;
/**
* Decodes a hex-encoded string to a Uint8Array.
*
* @param hex the hexadecimal string to convert.
* @param [output] an optional Uint8Array to write the output to; if it
* is too small, an exception will be thrown.
* @param [offset] the start offset for writing to the output (default: 0).
*
* @return the Uint8Array or the number of bytes written if output was given.
*/
util$1.binary.hex.decode = function(hex, output, offset) {
var out = output;
if(!out) {
out = new Uint8Array(Math.ceil(hex.length / 2));
}
offset = offset || 0;
var i = 0, j = offset;
if(hex.length & 1) {
// odd number of characters, convert first character alone
i = 1;
out[j++] = parseInt(hex[0], 16);
}
// convert 2 characters (1 byte) at a time
for(; i < hex.length; i += 2) {
out[j++] = parseInt(hex.substr(i, 2), 16);
}
return output ? (j - offset) : out;
};
/**
* Base64-encodes a Uint8Array.
*
* @param input the Uint8Array to encode.
* @param maxline the maximum number of encoded characters per line to use,
* defaults to none.
*
* @return the base64-encoded output string.
*/
util$1.binary.base64.encode = function(input, maxline) {
var line = '';
var output = '';
var chr1, chr2, chr3;
var i = 0;
while(i < input.byteLength) {
chr1 = input[i++];
chr2 = input[i++];
chr3 = input[i++];
// encode 4 character group
line += _base64.charAt(chr1 >> 2);
line += _base64.charAt(((chr1 & 3) << 4) | (chr2 >> 4));
if(isNaN(chr2)) {
line += '==';
} else {
line += _base64.charAt(((chr2 & 15) << 2) | (chr3 >> 6));
line += isNaN(chr3) ? '=' : _base64.charAt(chr3 & 63);
}
if(maxline && line.length > maxline) {
output += line.substr(0, maxline) + '\r\n';
line = line.substr(maxline);
}
}
output += line;
return output;
};
/**
* Decodes a base64-encoded string to a Uint8Array.
*
* @param input the base64-encoded input string.
* @param [output] an optional Uint8Array to write the output to; if it
* is too small, an exception will be thrown.
* @param [offset] the start offset for writing to the output (default: 0).
*
* @return the Uint8Array or the number of bytes written if output was given.
*/
util$1.binary.base64.decode = function(input, output, offset) {
var out = output;
if(!out) {
out = new Uint8Array(Math.ceil(input.length / 4) * 3);
}
// remove all non-base64 characters
input = input.replace(/[^A-Za-z0-9\+\/\=]/g, '');
offset = offset || 0;
var enc1, enc2, enc3, enc4;
var i = 0, j = offset;
while(i < input.length) {
enc1 = _base64Idx[input.charCodeAt(i++) - 43];
enc2 = _base64Idx[input.charCodeAt(i++) - 43];
enc3 = _base64Idx[input.charCodeAt(i++) - 43];
enc4 = _base64Idx[input.charCodeAt(i++) - 43];
out[j++] = (enc1 << 2) | (enc2 >> 4);
if(enc3 !== 64) {
// decoded at least 2 bytes
out[j++] = ((enc2 & 15) << 4) | (enc3 >> 2);
if(enc4 !== 64) {
// decoded 3 bytes
out[j++] = ((enc3 & 3) << 6) | enc4;
}
}
}
// make sure result is the exact decoded length
return output ? (j - offset) : out.subarray(0, j);
};
// add support for base58 encoding/decoding with Bitcoin alphabet
util$1.binary.base58.encode = function(input, maxline) {
return util$1.binary.baseN.encode(input, _base58, maxline);
};
util$1.binary.base58.decode = function(input, maxline) {
return util$1.binary.baseN.decode(input, _base58, maxline);
};
// text encoding/decoding tools
// FIXME: Experimental. Do not use yet.
util$1.text = {
utf8: {},
utf16: {}
};
/**
* Encodes the given string as UTF-8 in a Uint8Array.
*
* @param str the string to encode.
* @param [output] an optional Uint8Array to write the output to; if it
* is too small, an exception will be thrown.
* @param [offset] the start offset for writing to the output (default: 0).
*
* @return the Uint8Array or the number of bytes written if output was given.
*/
util$1.text.utf8.encode = function(str, output, offset) {
str = util$1.encodeUtf8(str);
var out = output;
if(!out) {
out = new Uint8Array(str.length);
}
offset = offset || 0;
var j = offset;
for(var i = 0; i < str.length; ++i) {
out[j++] = str.charCodeAt(i);
}
return output ? (j - offset) : out;
};
/**
* Decodes the UTF-8 contents from a Uint8Array.
*
* @param bytes the Uint8Array to decode.
*
* @return the resulting string.
*/
util$1.text.utf8.decode = function(bytes) {
return util$1.decodeUtf8(String.fromCharCode.apply(null, bytes));
};
/**
* Encodes the given string as UTF-16 in a Uint8Array.
*
* @param str the string to encode.
* @param [output] an optional Uint8Array to write the output to; if it
* is too small, an exception will be thrown.
* @param [offset] the start offset for writing to the output (default: 0).
*
* @return the Uint8Array or the number of bytes written if output was given.
*/
util$1.text.utf16.encode = function(str, output, offset) {
var out = output;
if(!out) {
out = new Uint8Array(str.length * 2);
}
var view = new Uint16Array(out.buffer);
offset = offset || 0;
var j = offset;
var k = offset;
for(var i = 0; i < str.length; ++i) {
view[k++] = str.charCodeAt(i);
j += 2;
}
return output ? (j - offset) : out;
};
/**
* Decodes the UTF-16 contents from a Uint8Array.
*
* @param bytes the Uint8Array to decode.
*
* @return the resulting string.
*/
util$1.text.utf16.decode = function(bytes) {
return String.fromCharCode.apply(null, new Uint16Array(bytes.buffer));
};
/**
* Deflates the given data using a flash interface.
*
* @param api the flash interface.
* @param bytes the data.
* @param raw true to return only raw deflate data, false to include zlib
* header and trailer.
*
* @return the deflated data as a string.
*/
util$1.deflate = function(api, bytes, raw) {
bytes = util$1.decode64(api.deflate(util$1.encode64(bytes)).rval);
// strip zlib header and trailer if necessary
if(raw) {
// zlib header is 2 bytes (CMF,FLG) where FLG indicates that
// there is a 4-byte DICT (alder-32) block before the data if
// its 5th bit is set
var start = 2;
var flg = bytes.charCodeAt(1);
if(flg & 0x20) {
start = 6;
}
// zlib trailer is 4 bytes of adler-32
bytes = bytes.substring(start, bytes.length - 4);
}
return bytes;
};
/**
* Inflates the given data using a flash interface.
*
* @param api the flash interface.
* @param bytes the data.
* @param raw true if the incoming data has no zlib header or trailer and is
* raw DEFLATE data.
*
* @return the inflated data as a string, null on error.
*/
util$1.inflate = function(api, bytes, raw) {
// TODO: add zlib header and trailer if necessary/possible
var rval = api.inflate(util$1.encode64(bytes)).rval;
return (rval === null) ? null : util$1.decode64(rval);
};
/**
* Sets a storage object.
*
* @param api the storage interface.
* @param id the storage ID to use.
* @param obj the storage object, null to remove.
*/
var _setStorageObject = function(api, id, obj) {
if(!api) {
throw new Error('WebStorage not available.');
}
var rval;
if(obj === null) {
rval = api.removeItem(id);
} else {
// json-encode and base64-encode object
obj = util$1.encode64(JSON.stringify(obj));
rval = api.setItem(id, obj);
}
// handle potential flash error
if(typeof(rval) !== 'undefined' && rval.rval !== true) {
var error = new Error(rval.error.message);
error.id = rval.error.id;
error.name = rval.error.name;
throw error;
}
};
/**
* Gets a storage object.
*
* @param api the storage interface.
* @param id the storage ID to use.
*
* @return the storage object entry or null if none exists.
*/
var _getStorageObject = function(api, id) {
if(!api) {
throw new Error('WebStorage not available.');
}
// get the existing entry
var rval = api.getItem(id);
/* Note: We check api.init because we can't do (api == localStorage)
on IE because of "Class doesn't support Automation" exception. Only
the flash api has an init method so this works too, but we need a
better solution in the future. */
// flash returns item wrapped in an object, handle special case
if(api.init) {
if(rval.rval === null) {
if(rval.error) {
var error = new Error(rval.error.message);
error.id = rval.error.id;
error.name = rval.error.name;
throw error;
}
// no error, but also no item
rval = null;
} else {
rval = rval.rval;
}
}
// handle decoding
if(rval !== null) {
// base64-decode and json-decode data
rval = JSON.parse(util$1.decode64(rval));
}
return rval;
};
/**
* Stores an item in local storage.
*
* @param api the storage interface.
* @param id the storage ID to use.
* @param key the key for the item.
* @param data the data for the item (any javascript object/primitive).
*/
var _setItem = function(api, id, key, data) {
// get storage object
var obj = _getStorageObject(api, id);
if(obj === null) {
// create a new storage object
obj = {};
}
// update key
obj[key] = data;
// set storage object
_setStorageObject(api, id, obj);
};
/**
* Gets an item from local storage.
*
* @param api the storage interface.
* @param id the storage ID to use.
* @param key the key for the item.
*
* @return the item.
*/
var _getItem = function(api, id, key) {
// get storage object
var rval = _getStorageObject(api, id);
if(rval !== null) {
// return data at key
rval = (key in rval) ? rval[key] : null;
}
return rval;
};
/**
* Removes an item from local storage.
*
* @param api the storage interface.
* @param id the storage ID to use.
* @param key the key for the item.
*/
var _removeItem = function(api, id, key) {
// get storage object
var obj = _getStorageObject(api, id);
if(obj !== null && key in obj) {
// remove key
delete obj[key];
// see if entry has no keys remaining
var empty = true;
for(var prop in obj) {
empty = false;
break;
}
if(empty) {
// remove entry entirely if no keys are left
obj = null;
}
// set storage object
_setStorageObject(api, id, obj);
}
};
/**
* Clears the local disk storage identified by the given ID.
*
* @param api the storage interface.
* @param id the storage ID to use.
*/
var _clearItems = function(api, id) {
_setStorageObject(api, id, null);
};
/**
* Calls a storage function.
*
* @param func the function to call.
* @param args the arguments for the function.
* @param location the location argument.
*
* @return the return value from the function.
*/
var _callStorageFunction = function(func, args, location) {
var rval = null;
// default storage types
if(typeof(location) === 'undefined') {
location = ['web', 'flash'];
}
// apply storage types in order of preference
var type;
var done = false;
var exception = null;
for(var idx in location) {
type = location[idx];
try {
if(type === 'flash' || type === 'both') {
if(args[0] === null) {
throw new Error('Flash local storage not available.');
}
rval = func.apply(this, args);
done = (type === 'flash');
}
if(type === 'web' || type === 'both') {
args[0] = localStorage;
rval = func.apply(this, args);
done = true;
}
} catch(ex) {
exception = ex;
}
if(done) {
break;
}
}
if(!done) {
throw exception;
}
return rval;
};
/**
* Stores an item on local disk.
*
* The available types of local storage include 'flash', 'web', and 'both'.
*
* The type 'flash' refers to flash local storage (SharedObject). In order
* to use flash local storage, the 'api' parameter must be valid. The type
* 'web' refers to WebStorage, if supported by the browser. The type 'both'
* refers to storing using both 'flash' and 'web', not just one or the
* other.
*
* The location array should list the storage types to use in order of
* preference:
*
* ['flash']: flash only storage
* ['web']: web only storage
* ['both']: try to store in both
* ['flash','web']: store in flash first, but if not available, 'web'
* ['web','flash']: store in web first, but if not available, 'flash'
*
* The location array defaults to: ['web', 'flash']
*
* @param api the flash interface, null to use only WebStorage.
* @param id the storage ID to use.
* @param key the key for the item.
* @param data the data for the item (any javascript object/primitive).
* @param location an array with the preferred types of storage to use.
*/
util$1.setItem = function(api, id, key, data, location) {
_callStorageFunction(_setItem, arguments, location);
};
/**
* Gets an item on local disk.
*
* Set setItem() for details on storage types.
*
* @param api the flash interface, null to use only WebStorage.
* @param id the storage ID to use.
* @param key the key for the item.
* @param location an array with the preferred types of storage to use.
*
* @return the item.
*/
util$1.getItem = function(api, id, key, location) {
return _callStorageFunction(_getItem, arguments, location);
};
/**
* Removes an item on local disk.
*
* Set setItem() for details on storage types.
*
* @param api the flash interface.
* @param id the storage ID to use.
* @param key the key for the item.
* @param location an array with the preferred types of storage to use.
*/
util$1.removeItem = function(api, id, key, location) {
_callStorageFunction(_removeItem, arguments, location);
};
/**
* Clears the local disk storage identified by the given ID.
*
* Set setItem() for details on storage types.
*
* @param api the flash interface if flash is available.
* @param id the storage ID to use.
* @param location an array with the preferred types of storage to use.
*/
util$1.clearItems = function(api, id, location) {
_callStorageFunction(_clearItems, arguments, location);
};
/**
* Check if an object is empty.
*
* Taken from:
* http://stackoverflow.com/questions/679915/how-do-i-test-for-an-empty-javascript-object-from-json/679937#679937
*
* @param object the object to check.
*/
util$1.isEmpty = function(obj) {
for(var prop in obj) {
if(obj.hasOwnProperty(prop)) {
return false;
}
}
return true;
};
/**
* Format with simple printf-style interpolation.
*
* %%: literal '%'
* %s,%o: convert next argument into a string.
*
* @param format the string to format.
* @param ... arguments to interpolate into the format string.
*/
util$1.format = function(format) {
var re = /%./g;
// current match
var match;
// current part
var part;
// current arg index
var argi = 0;
// collected parts to recombine later
var parts = [];
// last index found
var last = 0;
// loop while matches remain
while((match = re.exec(format))) {
part = format.substring(last, re.lastIndex - 2);
// don't add empty strings (ie, parts between %s%s)
if(part.length > 0) {
parts.push(part);
}
last = re.lastIndex;
// switch on % code
var code = match[0][1];
switch(code) {
case 's':
case 'o':
// check if enough arguments were given
if(argi < arguments.length) {
parts.push(arguments[argi++ + 1]);
} else {
parts.push('<?>');
}
break;
// FIXME: do proper formating for numbers, etc
//case 'f':
//case 'd':
case '%':
parts.push('%');
break;
default:
parts.push('<%' + code + '?>');
}
}
// add trailing part of format string
parts.push(format.substring(last));
return parts.join('');
};
/**
* Formats a number.
*
* http://snipplr.com/view/5945/javascript-numberformat--ported-from-php/
*/
util$1.formatNumber = function(number, decimals, dec_point, thousands_sep) {
// http://kevin.vanzonneveld.net
// + original by: Jonas Raoni Soares Silva (http://www.jsfromhell.com)
// + improved by: Kevin van Zonneveld (http://kevin.vanzonneveld.net)
// + bugfix by: Michael White (http://crestidg.com)
// + bugfix by: Benjamin Lupton
// + bugfix by: Allan Jensen (http://www.winternet.no)
// + revised by: Jonas Raoni Soares Silva (http://www.jsfromhell.com)
// * example 1: number_format(1234.5678, 2, '.', '');
// * returns 1: 1234.57
var n = number, c = isNaN(decimals = Math.abs(decimals)) ? 2 : decimals;
var d = dec_point === undefined ? ',' : dec_point;
var t = thousands_sep === undefined ?
'.' : thousands_sep, s = n < 0 ? '-' : '';
var i = parseInt((n = Math.abs(+n || 0).toFixed(c)), 10) + '';
var j = (i.length > 3) ? i.length % 3 : 0;
return s + (j ? i.substr(0, j) + t : '') +
i.substr(j).replace(/(\d{3})(?=\d)/g, '$1' + t) +
(c ? d + Math.abs(n - i).toFixed(c).slice(2) : '');
};
/**
* Formats a byte size.
*
* http://snipplr.com/view/5949/format-humanize-file-byte-size-presentation-in-javascript/
*/
util$1.formatSize = function(size) {
if(size >= 1073741824) {
size = util$1.formatNumber(size / 1073741824, 2, '.', '') + ' GiB';
} else if(size >= 1048576) {
size = util$1.formatNumber(size / 1048576, 2, '.', '') + ' MiB';
} else if(size >= 1024) {
size = util$1.formatNumber(size / 1024, 0) + ' KiB';
} else {
size = util$1.formatNumber(size, 0) + ' bytes';
}
return size;
};
/**
* Converts an IPv4 or IPv6 string representation into bytes (in network order).
*
* @param ip the IPv4 or IPv6 address to convert.
*
* @return the 4-byte IPv6 or 16-byte IPv6 address or null if the address can't
* be parsed.
*/
util$1.bytesFromIP = function(ip) {
if(ip.indexOf('.') !== -1) {
return util$1.bytesFromIPv4(ip);
}
if(ip.indexOf(':') !== -1) {
return util$1.bytesFromIPv6(ip);
}
return null;
};
/**
* Converts an IPv4 string representation into bytes (in network order).
*
* @param ip the IPv4 address to convert.
*
* @return the 4-byte address or null if the address can't be parsed.
*/
util$1.bytesFromIPv4 = function(ip) {
ip = ip.split('.');
if(ip.length !== 4) {
return null;
}
var b = util$1.createBuffer();
for(var i = 0; i < ip.length; ++i) {
var num = parseInt(ip[i], 10);
if(isNaN(num)) {
return null;
}
b.putByte(num);
}
return b.getBytes();
};
/**
* Converts an IPv6 string representation into bytes (in network order).
*
* @param ip the IPv6 address to convert.
*
* @return the 16-byte address or null if the address can't be parsed.
*/
util$1.bytesFromIPv6 = function(ip) {
var blanks = 0;
ip = ip.split(':').filter(function(e) {
if(e.length === 0) ++blanks;
return true;
});
var zeros = (8 - ip.length + blanks) * 2;
var b = util$1.createBuffer();
for(var i = 0; i < 8; ++i) {
if(!ip[i] || ip[i].length === 0) {
b.fillWithByte(0, zeros);
zeros = 0;
continue;
}
var bytes = util$1.hexToBytes(ip[i]);
if(bytes.length < 2) {
b.putByte(0);
}
b.putBytes(bytes);
}
return b.getBytes();
};
/**
* Converts 4-bytes into an IPv4 string representation or 16-bytes into
* an IPv6 string representation. The bytes must be in network order.
*
* @param bytes the bytes to convert.
*
* @return the IPv4 or IPv6 string representation if 4 or 16 bytes,
* respectively, are given, otherwise null.
*/
util$1.bytesToIP = function(bytes) {
if(bytes.length === 4) {
return util$1.bytesToIPv4(bytes);
}
if(bytes.length === 16) {
return util$1.bytesToIPv6(bytes);
}
return null;
};
/**
* Converts 4-bytes into an IPv4 string representation. The bytes must be
* in network order.
*
* @param bytes the bytes to convert.
*
* @return the IPv4 string representation or null for an invalid # of bytes.
*/
util$1.bytesToIPv4 = function(bytes) {
if(bytes.length !== 4) {
return null;
}
var ip = [];
for(var i = 0; i < bytes.length; ++i) {
ip.push(bytes.charCodeAt(i));
}
return ip.join('.');
};
/**
* Converts 16-bytes into an IPv16 string representation. The bytes must be
* in network order.
*
* @param bytes the bytes to convert.
*
* @return the IPv16 string representation or null for an invalid # of bytes.
*/
util$1.bytesToIPv6 = function(bytes) {
if(bytes.length !== 16) {
return null;
}
var ip = [];
var zeroGroups = [];
var zeroMaxGroup = 0;
for(var i = 0; i < bytes.length; i += 2) {
var hex = util$1.bytesToHex(bytes[i] + bytes[i + 1]);
// canonicalize zero representation
while(hex[0] === '0' && hex !== '0') {
hex = hex.substr(1);
}
if(hex === '0') {
var last = zeroGroups[zeroGroups.length - 1];
var idx = ip.length;
if(!last || idx !== last.end + 1) {
zeroGroups.push({start: idx, end: idx});
} else {
last.end = idx;
if((last.end - last.start) >
(zeroGroups[zeroMaxGroup].end - zeroGroups[zeroMaxGroup].start)) {
zeroMaxGroup = zeroGroups.length - 1;
}
}
}
ip.push(hex);
}
if(zeroGroups.length > 0) {
var group = zeroGroups[zeroMaxGroup];
// only shorten group of length > 0
if(group.end - group.start > 0) {
ip.splice(group.start, group.end - group.start + 1, '');
if(group.start === 0) {
ip.unshift('');
}
if(group.end === 7) {
ip.push('');
}
}
}
return ip.join(':');
};
/**
* Estimates the number of processes that can be run concurrently. If
* creating Web Workers, keep in mind that the main JavaScript process needs
* its own core.
*
* @param options the options to use:
* update true to force an update (not use the cached value).
* @param callback(err, max) called once the operation completes.
*/
util$1.estimateCores = function(options, callback) {
if(typeof options === 'function') {
callback = options;
options = {};
}
options = options || {};
if('cores' in util$1 && !options.update) {
return callback(null, util$1.cores);
}
if(typeof navigator !== 'undefined' &&
'hardwareConcurrency' in navigator &&
navigator.hardwareConcurrency > 0) {
util$1.cores = navigator.hardwareConcurrency;
return callback(null, util$1.cores);
}
if(typeof Worker === 'undefined') {
// workers not available
util$1.cores = 1;
return callback(null, util$1.cores);
}
if(typeof Blob === 'undefined') {
// can't estimate, default to 2
util$1.cores = 2;
return callback(null, util$1.cores);
}
// create worker concurrency estimation code as blob
var blobUrl = URL.createObjectURL(new Blob(['(',
function() {
self.addEventListener('message', function(e) {
// run worker for 4 ms
var st = Date.now();
var et = st + 4;
self.postMessage({st: st, et: et});
});
}.toString(),
')()'], {type: 'application/javascript'}));
// take 5 samples using 16 workers
sample([], 5, 16);
function sample(max, samples, numWorkers) {
if(samples === 0) {
// get overlap average
var avg = Math.floor(max.reduce(function(avg, x) {
return avg + x;
}, 0) / max.length);
util$1.cores = Math.max(1, avg);
URL.revokeObjectURL(blobUrl);
return callback(null, util$1.cores);
}
map(numWorkers, function(err, results) {
max.push(reduce(numWorkers, results));
sample(max, samples - 1, numWorkers);
});
}
function map(numWorkers, callback) {
var workers = [];
var results = [];
for(var i = 0; i < numWorkers; ++i) {
var worker = new Worker(blobUrl);
worker.addEventListener('message', function(e) {
results.push(e.data);
if(results.length === numWorkers) {
for(var i = 0; i < numWorkers; ++i) {
workers[i].terminate();
}
callback(null, results);
}
});
workers.push(worker);
}
for(var i = 0; i < numWorkers; ++i) {
workers[i].postMessage(i);
}
}
function reduce(numWorkers, results) {
// find overlapping time windows
var overlaps = [];
for(var n = 0; n < numWorkers; ++n) {
var r1 = results[n];
var overlap = overlaps[n] = [];
for(var i = 0; i < numWorkers; ++i) {
if(n === i) {
continue;
}
var r2 = results[i];
if((r1.st > r2.st && r1.st < r2.et) ||
(r2.st > r1.st && r2.st < r1.et)) {
overlap.push(i);
}
}
}
// get maximum overlaps ... don't include overlapping worker itself
// as the main JS process was also being scheduled during the work and
// would have to be subtracted from the estimate anyway
return overlaps.reduce(function(max, overlap) {
return Math.max(max, overlap.length);
}, 0);
}
};
/**
* Object IDs for ASN.1.
*
* @author Dave Longley
*
* Copyright (c) 2010-2013 Digital Bazaar, Inc.
*/
var forge$k = forge$m;
forge$k.pki = forge$k.pki || {};
var oids$1 = forge$k.pki.oids = forge$k.oids = forge$k.oids || {};
// set id to name mapping and name to id mapping
function _IN(id, name) {
oids$1[id] = name;
oids$1[name] = id;
}
// set id to name mapping only
function _I_(id, name) {
oids$1[id] = name;
}
// algorithm OIDs
_IN('1.2.840.113549.1.1.1', 'rsaEncryption');
// Note: md2 & md4 not implemented
//_IN('1.2.840.113549.1.1.2', 'md2WithRSAEncryption');
//_IN('1.2.840.113549.1.1.3', 'md4WithRSAEncryption');
_IN('1.2.840.113549.1.1.4', 'md5WithRSAEncryption');
_IN('1.2.840.113549.1.1.5', 'sha1WithRSAEncryption');
_IN('1.2.840.113549.1.1.7', 'RSAES-OAEP');
_IN('1.2.840.113549.1.1.8', 'mgf1');
_IN('1.2.840.113549.1.1.9', 'pSpecified');
_IN('1.2.840.113549.1.1.10', 'RSASSA-PSS');
_IN('1.2.840.113549.1.1.11', 'sha256WithRSAEncryption');
_IN('1.2.840.113549.1.1.12', 'sha384WithRSAEncryption');
_IN('1.2.840.113549.1.1.13', 'sha512WithRSAEncryption');
// Edwards-curve Digital Signature Algorithm (EdDSA) Ed25519
_IN('1.3.101.112', 'EdDSA25519');
_IN('1.2.840.10040.4.3', 'dsa-with-sha1');
_IN('1.3.14.3.2.7', 'desCBC');
_IN('1.3.14.3.2.26', 'sha1');
// Deprecated equivalent of sha1WithRSAEncryption
_IN('1.3.14.3.2.29', 'sha1WithRSASignature');
_IN('2.16.840.1.101.3.4.2.1', 'sha256');
_IN('2.16.840.1.101.3.4.2.2', 'sha384');
_IN('2.16.840.1.101.3.4.2.3', 'sha512');
_IN('2.16.840.1.101.3.4.2.4', 'sha224');
_IN('2.16.840.1.101.3.4.2.5', 'sha512-224');
_IN('2.16.840.1.101.3.4.2.6', 'sha512-256');
_IN('1.2.840.113549.2.2', 'md2');
_IN('1.2.840.113549.2.5', 'md5');
// pkcs#7 content types
_IN('1.2.840.113549.1.7.1', 'data');
_IN('1.2.840.113549.1.7.2', 'signedData');
_IN('1.2.840.113549.1.7.3', 'envelopedData');
_IN('1.2.840.113549.1.7.4', 'signedAndEnvelopedData');
_IN('1.2.840.113549.1.7.5', 'digestedData');
_IN('1.2.840.113549.1.7.6', 'encryptedData');
// pkcs#9 oids
_IN('1.2.840.113549.1.9.1', 'emailAddress');
_IN('1.2.840.113549.1.9.2', 'unstructuredName');
_IN('1.2.840.113549.1.9.3', 'contentType');
_IN('1.2.840.113549.1.9.4', 'messageDigest');
_IN('1.2.840.113549.1.9.5', 'signingTime');
_IN('1.2.840.113549.1.9.6', 'counterSignature');
_IN('1.2.840.113549.1.9.7', 'challengePassword');
_IN('1.2.840.113549.1.9.8', 'unstructuredAddress');
_IN('1.2.840.113549.1.9.14', 'extensionRequest');
_IN('1.2.840.113549.1.9.20', 'friendlyName');
_IN('1.2.840.113549.1.9.21', 'localKeyId');
_IN('1.2.840.113549.1.9.22.1', 'x509Certificate');
// pkcs#12 safe bags
_IN('1.2.840.113549.1.12.10.1.1', 'keyBag');
_IN('1.2.840.113549.1.12.10.1.2', 'pkcs8ShroudedKeyBag');
_IN('1.2.840.113549.1.12.10.1.3', 'certBag');
_IN('1.2.840.113549.1.12.10.1.4', 'crlBag');
_IN('1.2.840.113549.1.12.10.1.5', 'secretBag');
_IN('1.2.840.113549.1.12.10.1.6', 'safeContentsBag');
// password-based-encryption for pkcs#12
_IN('1.2.840.113549.1.5.13', 'pkcs5PBES2');
_IN('1.2.840.113549.1.5.12', 'pkcs5PBKDF2');
_IN('1.2.840.113549.1.12.1.1', 'pbeWithSHAAnd128BitRC4');
_IN('1.2.840.113549.1.12.1.2', 'pbeWithSHAAnd40BitRC4');
_IN('1.2.840.113549.1.12.1.3', 'pbeWithSHAAnd3-KeyTripleDES-CBC');
_IN('1.2.840.113549.1.12.1.4', 'pbeWithSHAAnd2-KeyTripleDES-CBC');
_IN('1.2.840.113549.1.12.1.5', 'pbeWithSHAAnd128BitRC2-CBC');
_IN('1.2.840.113549.1.12.1.6', 'pbewithSHAAnd40BitRC2-CBC');
// hmac OIDs
_IN('1.2.840.113549.2.7', 'hmacWithSHA1');
_IN('1.2.840.113549.2.8', 'hmacWithSHA224');
_IN('1.2.840.113549.2.9', 'hmacWithSHA256');
_IN('1.2.840.113549.2.10', 'hmacWithSHA384');
_IN('1.2.840.113549.2.11', 'hmacWithSHA512');
// symmetric key algorithm oids
_IN('1.2.840.113549.3.7', 'des-EDE3-CBC');
_IN('2.16.840.1.101.3.4.1.2', 'aes128-CBC');
_IN('2.16.840.1.101.3.4.1.22', 'aes192-CBC');
_IN('2.16.840.1.101.3.4.1.42', 'aes256-CBC');
// certificate issuer/subject OIDs
_IN('2.5.4.3', 'commonName');
_IN('2.5.4.4', 'surname');
_IN('2.5.4.5', 'serialNumber');
_IN('2.5.4.6', 'countryName');
_IN('2.5.4.7', 'localityName');
_IN('2.5.4.8', 'stateOrProvinceName');
_IN('2.5.4.9', 'streetAddress');
_IN('2.5.4.10', 'organizationName');
_IN('2.5.4.11', 'organizationalUnitName');
_IN('2.5.4.12', 'title');
_IN('2.5.4.13', 'description');
_IN('2.5.4.15', 'businessCategory');
_IN('2.5.4.17', 'postalCode');
_IN('2.5.4.42', 'givenName');
_IN('1.3.6.1.4.1.311.60.2.1.2', 'jurisdictionOfIncorporationStateOrProvinceName');
_IN('1.3.6.1.4.1.311.60.2.1.3', 'jurisdictionOfIncorporationCountryName');
// X.509 extension OIDs
_IN('2.16.840.1.113730.1.1', 'nsCertType');
_IN('2.16.840.1.113730.1.13', 'nsComment'); // deprecated in theory; still widely used
_I_('2.5.29.1', 'authorityKeyIdentifier'); // deprecated, use .35
_I_('2.5.29.2', 'keyAttributes'); // obsolete use .37 or .15
_I_('2.5.29.3', 'certificatePolicies'); // deprecated, use .32
_I_('2.5.29.4', 'keyUsageRestriction'); // obsolete use .37 or .15
_I_('2.5.29.5', 'policyMapping'); // deprecated use .33
_I_('2.5.29.6', 'subtreesConstraint'); // obsolete use .30
_I_('2.5.29.7', 'subjectAltName'); // deprecated use .17
_I_('2.5.29.8', 'issuerAltName'); // deprecated use .18
_I_('2.5.29.9', 'subjectDirectoryAttributes');
_I_('2.5.29.10', 'basicConstraints'); // deprecated use .19
_I_('2.5.29.11', 'nameConstraints'); // deprecated use .30
_I_('2.5.29.12', 'policyConstraints'); // deprecated use .36
_I_('2.5.29.13', 'basicConstraints'); // deprecated use .19
_IN('2.5.29.14', 'subjectKeyIdentifier');
_IN('2.5.29.15', 'keyUsage');
_I_('2.5.29.16', 'privateKeyUsagePeriod');
_IN('2.5.29.17', 'subjectAltName');
_IN('2.5.29.18', 'issuerAltName');
_IN('2.5.29.19', 'basicConstraints');
_I_('2.5.29.20', 'cRLNumber');
_I_('2.5.29.21', 'cRLReason');
_I_('2.5.29.22', 'expirationDate');
_I_('2.5.29.23', 'instructionCode');
_I_('2.5.29.24', 'invalidityDate');
_I_('2.5.29.25', 'cRLDistributionPoints'); // deprecated use .31
_I_('2.5.29.26', 'issuingDistributionPoint'); // deprecated use .28
_I_('2.5.29.27', 'deltaCRLIndicator');
_I_('2.5.29.28', 'issuingDistributionPoint');
_I_('2.5.29.29', 'certificateIssuer');
_I_('2.5.29.30', 'nameConstraints');
_IN('2.5.29.31', 'cRLDistributionPoints');
_IN('2.5.29.32', 'certificatePolicies');
_I_('2.5.29.33', 'policyMappings');
_I_('2.5.29.34', 'policyConstraints'); // deprecated use .36
_IN('2.5.29.35', 'authorityKeyIdentifier');
_I_('2.5.29.36', 'policyConstraints');
_IN('2.5.29.37', 'extKeyUsage');
_I_('2.5.29.46', 'freshestCRL');
_I_('2.5.29.54', 'inhibitAnyPolicy');
// extKeyUsage purposes
_IN('1.3.6.1.4.1.11129.2.4.2', 'timestampList');
_IN('1.3.6.1.5.5.7.1.1', 'authorityInfoAccess');
_IN('1.3.6.1.5.5.7.3.1', 'serverAuth');
_IN('1.3.6.1.5.5.7.3.2', 'clientAuth');
_IN('1.3.6.1.5.5.7.3.3', 'codeSigning');
_IN('1.3.6.1.5.5.7.3.4', 'emailProtection');
_IN('1.3.6.1.5.5.7.3.8', 'timeStamping');
/**
* Javascript implementation of Abstract Syntax Notation Number One.
*
* @author Dave Longley
*
* Copyright (c) 2010-2015 Digital Bazaar, Inc.
*
* An API for storing data using the Abstract Syntax Notation Number One
* format using DER (Distinguished Encoding Rules) encoding. This encoding is
* commonly used to store data for PKI, i.e. X.509 Certificates, and this
* implementation exists for that purpose.
*
* Abstract Syntax Notation Number One (ASN.1) is used to define the abstract
* syntax of information without restricting the way the information is encoded
* for transmission. It provides a standard that allows for open systems
* communication. ASN.1 defines the syntax of information data and a number of
* simple data types as well as a notation for describing them and specifying
* values for them.
*
* The RSA algorithm creates public and private keys that are often stored in
* X.509 or PKCS#X formats -- which use ASN.1 (encoded in DER format). This
* class provides the most basic functionality required to store and load DSA
* keys that are encoded according to ASN.1.
*
* The most common binary encodings for ASN.1 are BER (Basic Encoding Rules)
* and DER (Distinguished Encoding Rules). DER is just a subset of BER that
* has stricter requirements for how data must be encoded.
*
* Each ASN.1 structure has a tag (a byte identifying the ASN.1 structure type)
* and a byte array for the value of this ASN1 structure which may be data or a
* list of ASN.1 structures.
*
* Each ASN.1 structure using BER is (Tag-Length-Value):
*
* | byte 0 | bytes X | bytes Y |
* |--------|---------|----------
* | tag | length | value |
*
* ASN.1 allows for tags to be of "High-tag-number form" which allows a tag to
* be two or more octets, but that is not supported by this class. A tag is
* only 1 byte. Bits 1-5 give the tag number (ie the data type within a
* particular 'class'), 6 indicates whether or not the ASN.1 value is
* constructed from other ASN.1 values, and bits 7 and 8 give the 'class'. If
* bits 7 and 8 are both zero, the class is UNIVERSAL. If only bit 7 is set,
* then the class is APPLICATION. If only bit 8 is set, then the class is
* CONTEXT_SPECIFIC. If both bits 7 and 8 are set, then the class is PRIVATE.
* The tag numbers for the data types for the class UNIVERSAL are listed below:
*
* UNIVERSAL 0 Reserved for use by the encoding rules
* UNIVERSAL 1 Boolean type
* UNIVERSAL 2 Integer type
* UNIVERSAL 3 Bitstring type
* UNIVERSAL 4 Octetstring type
* UNIVERSAL 5 Null type
* UNIVERSAL 6 Object identifier type
* UNIVERSAL 7 Object descriptor type
* UNIVERSAL 8 External type and Instance-of type
* UNIVERSAL 9 Real type
* UNIVERSAL 10 Enumerated type
* UNIVERSAL 11 Embedded-pdv type
* UNIVERSAL 12 UTF8String type
* UNIVERSAL 13 Relative object identifier type
* UNIVERSAL 14-15 Reserved for future editions
* UNIVERSAL 16 Sequence and Sequence-of types
* UNIVERSAL 17 Set and Set-of types
* UNIVERSAL 18-22, 25-30 Character string types
* UNIVERSAL 23-24 Time types
*
* The length of an ASN.1 structure is specified after the tag identifier.
* There is a definite form and an indefinite form. The indefinite form may
* be used if the encoding is constructed and not all immediately available.
* The indefinite form is encoded using a length byte with only the 8th bit
* set. The end of the constructed object is marked using end-of-contents
* octets (two zero bytes).
*
* The definite form looks like this:
*
* The length may take up 1 or more bytes, it depends on the length of the
* value of the ASN.1 structure. DER encoding requires that if the ASN.1
* structure has a value that has a length greater than 127, more than 1 byte
* will be used to store its length, otherwise just one byte will be used.
* This is strict.
*
* In the case that the length of the ASN.1 value is less than 127, 1 octet
* (byte) is used to store the "short form" length. The 8th bit has a value of
* 0 indicating the length is "short form" and not "long form" and bits 7-1
* give the length of the data. (The 8th bit is the left-most, most significant
* bit: also known as big endian or network format).
*
* In the case that the length of the ASN.1 value is greater than 127, 2 to
* 127 octets (bytes) are used to store the "long form" length. The first
* byte's 8th bit is set to 1 to indicate the length is "long form." Bits 7-1
* give the number of additional octets. All following octets are in base 256
* with the most significant digit first (typical big-endian binary unsigned
* integer storage). So, for instance, if the length of a value was 257, the
* first byte would be set to:
*
* 10000010 = 130 = 0x82.
*
* This indicates there are 2 octets (base 256) for the length. The second and
* third bytes (the octets just mentioned) would store the length in base 256:
*
* octet 2: 00000001 = 1 * 256^1 = 256
* octet 3: 00000001 = 1 * 256^0 = 1
* total = 257
*
* The algorithm for converting a js integer value of 257 to base-256 is:
*
* var value = 257;
* var bytes = [];
* bytes[0] = (value >>> 8) & 0xFF; // most significant byte first
* bytes[1] = value & 0xFF; // least significant byte last
*
* On the ASN.1 UNIVERSAL Object Identifier (OID) type:
*
* An OID can be written like: "value1.value2.value3...valueN"
*
* The DER encoding rules:
*
* The first byte has the value 40 * value1 + value2.
* The following bytes, if any, encode the remaining values. Each value is
* encoded in base 128, most significant digit first (big endian), with as
* few digits as possible, and the most significant bit of each byte set
* to 1 except the last in each value's encoding. For example: Given the
* OID "1.2.840.113549", its DER encoding is (remember each byte except the
* last one in each encoding is OR'd with 0x80):
*
* byte 1: 40 * 1 + 2 = 42 = 0x2A.
* bytes 2-3: 128 * 6 + 72 = 840 = 6 72 = 6 72 = 0x0648 = 0x8648
* bytes 4-6: 16384 * 6 + 128 * 119 + 13 = 6 119 13 = 0x06770D = 0x86F70D
*
* The final value is: 0x2A864886F70D.
* The full OID (including ASN.1 tag and length of 6 bytes) is:
* 0x06062A864886F70D
*/
var forge$j = forge$m;
/* ASN.1 API */
var asn1$2 = forge$j.asn1 = forge$j.asn1 || {};
/**
* ASN.1 classes.
*/
asn1$2.Class = {
UNIVERSAL: 0x00,
APPLICATION: 0x40,
CONTEXT_SPECIFIC: 0x80,
PRIVATE: 0xC0
};
/**
* ASN.1 types. Not all types are supported by this implementation, only
* those necessary to implement a simple PKI are implemented.
*/
asn1$2.Type = {
NONE: 0,
BOOLEAN: 1,
INTEGER: 2,
BITSTRING: 3,
OCTETSTRING: 4,
NULL: 5,
OID: 6,
ODESC: 7,
EXTERNAL: 8,
REAL: 9,
ENUMERATED: 10,
EMBEDDED: 11,
UTF8: 12,
ROID: 13,
SEQUENCE: 16,
SET: 17,
PRINTABLESTRING: 19,
IA5STRING: 22,
UTCTIME: 23,
GENERALIZEDTIME: 24,
BMPSTRING: 30
};
/**
* Creates a new asn1 object.
*
* @param tagClass the tag class for the object.
* @param type the data type (tag number) for the object.
* @param constructed true if the asn1 object is in constructed form.
* @param value the value for the object, if it is not constructed.
* @param [options] the options to use:
* [bitStringContents] the plain BIT STRING content including padding
* byte.
*
* @return the asn1 object.
*/
asn1$2.create = function(tagClass, type, constructed, value, options) {
/* An asn1 object has a tagClass, a type, a constructed flag, and a
value. The value's type depends on the constructed flag. If
constructed, it will contain a list of other asn1 objects. If not,
it will contain the ASN.1 value as an array of bytes formatted
according to the ASN.1 data type. */
// remove undefined values
if(forge$j.util.isArray(value)) {
var tmp = [];
for(var i = 0; i < value.length; ++i) {
if(value[i] !== undefined) {
tmp.push(value[i]);
}
}
value = tmp;
}
var obj = {
tagClass: tagClass,
type: type,
constructed: constructed,
composed: constructed || forge$j.util.isArray(value),
value: value
};
if(options && 'bitStringContents' in options) {
// TODO: copy byte buffer if it's a buffer not a string
obj.bitStringContents = options.bitStringContents;
// TODO: add readonly flag to avoid this overhead
// save copy to detect changes
obj.original = asn1$2.copy(obj);
}
return obj;
};
/**
* Copies an asn1 object.
*
* @param obj the asn1 object.
* @param [options] copy options:
* [excludeBitStringContents] true to not copy bitStringContents
*
* @return the a copy of the asn1 object.
*/
asn1$2.copy = function(obj, options) {
var copy;
if(forge$j.util.isArray(obj)) {
copy = [];
for(var i = 0; i < obj.length; ++i) {
copy.push(asn1$2.copy(obj[i], options));
}
return copy;
}
if(typeof obj === 'string') {
// TODO: copy byte buffer if it's a buffer not a string
return obj;
}
copy = {
tagClass: obj.tagClass,
type: obj.type,
constructed: obj.constructed,
composed: obj.composed,
value: asn1$2.copy(obj.value, options)
};
if(options && !options.excludeBitStringContents) {
// TODO: copy byte buffer if it's a buffer not a string
copy.bitStringContents = obj.bitStringContents;
}
return copy;
};
/**
* Compares asn1 objects for equality.
*
* Note this function does not run in constant time.
*
* @param obj1 the first asn1 object.
* @param obj2 the second asn1 object.
* @param [options] compare options:
* [includeBitStringContents] true to compare bitStringContents
*
* @return true if the asn1 objects are equal.
*/
asn1$2.equals = function(obj1, obj2, options) {
if(forge$j.util.isArray(obj1)) {
if(!forge$j.util.isArray(obj2)) {
return false;
}
if(obj1.length !== obj2.length) {
return false;
}
for(var i = 0; i < obj1.length; ++i) {
if(!asn1$2.equals(obj1[i], obj2[i])) {
return false;
}
}
return true;
}
if(typeof obj1 !== typeof obj2) {
return false;
}
if(typeof obj1 === 'string') {
return obj1 === obj2;
}
var equal = obj1.tagClass === obj2.tagClass &&
obj1.type === obj2.type &&
obj1.constructed === obj2.constructed &&
obj1.composed === obj2.composed &&
asn1$2.equals(obj1.value, obj2.value);
if(options && options.includeBitStringContents) {
equal = equal && (obj1.bitStringContents === obj2.bitStringContents);
}
return equal;
};
/**
* Gets the length of a BER-encoded ASN.1 value.
*
* In case the length is not specified, undefined is returned.
*
* @param b the BER-encoded ASN.1 byte buffer, starting with the first
* length byte.
*
* @return the length of the BER-encoded ASN.1 value or undefined.
*/
asn1$2.getBerValueLength = function(b) {
// TODO: move this function and related DER/BER functions to a der.js
// file; better abstract ASN.1 away from der/ber.
var b2 = b.getByte();
if(b2 === 0x80) {
return undefined;
}
// see if the length is "short form" or "long form" (bit 8 set)
var length;
var longForm = b2 & 0x80;
if(!longForm) {
// length is just the first byte
length = b2;
} else {
// the number of bytes the length is specified in bits 7 through 1
// and each length byte is in big-endian base-256
length = b.getInt((b2 & 0x7F) << 3);
}
return length;
};
/**
* Check if the byte buffer has enough bytes. Throws an Error if not.
*
* @param bytes the byte buffer to parse from.
* @param remaining the bytes remaining in the current parsing state.
* @param n the number of bytes the buffer must have.
*/
function _checkBufferLength(bytes, remaining, n) {
if(n > remaining) {
var error = new Error('Too few bytes to parse DER.');
error.available = bytes.length();
error.remaining = remaining;
error.requested = n;
throw error;
}
}
/**
* Gets the length of a BER-encoded ASN.1 value.
*
* In case the length is not specified, undefined is returned.
*
* @param bytes the byte buffer to parse from.
* @param remaining the bytes remaining in the current parsing state.
*
* @return the length of the BER-encoded ASN.1 value or undefined.
*/
var _getValueLength = function(bytes, remaining) {
// TODO: move this function and related DER/BER functions to a der.js
// file; better abstract ASN.1 away from der/ber.
// fromDer already checked that this byte exists
var b2 = bytes.getByte();
remaining--;
if(b2 === 0x80) {
return undefined;
}
// see if the length is "short form" or "long form" (bit 8 set)
var length;
var longForm = b2 & 0x80;
if(!longForm) {
// length is just the first byte
length = b2;
} else {
// the number of bytes the length is specified in bits 7 through 1
// and each length byte is in big-endian base-256
var longFormBytes = b2 & 0x7F;
_checkBufferLength(bytes, remaining, longFormBytes);
length = bytes.getInt(longFormBytes << 3);
}
// FIXME: this will only happen for 32 bit getInt with high bit set
if(length < 0) {
throw new Error('Negative length: ' + length);
}
return length;
};
/**
* Parses an asn1 object from a byte buffer in DER format.
*
* @param bytes the byte buffer to parse from.
* @param [strict] true to be strict when checking value lengths, false to
* allow truncated values (default: true).
* @param [options] object with options or boolean strict flag
* [strict] true to be strict when checking value lengths, false to
* allow truncated values (default: true).
* [parseAllBytes] true to ensure all bytes are parsed
* (default: true)
* [decodeBitStrings] true to attempt to decode the content of
* BIT STRINGs (not OCTET STRINGs) using strict mode. Note that
* without schema support to understand the data context this can
* erroneously decode values that happen to be valid ASN.1. This
* flag will be deprecated or removed as soon as schema support is
* available. (default: true)
*
* @throws Will throw an error for various malformed input conditions.
*
* @return the parsed asn1 object.
*/
asn1$2.fromDer = function(bytes, options) {
if(options === undefined) {
options = {
strict: true,
parseAllBytes: true,
decodeBitStrings: true
};
}
if(typeof options === 'boolean') {
options = {
strict: options,
parseAllBytes: true,
decodeBitStrings: true
};
}
if(!('strict' in options)) {
options.strict = true;
}
if(!('parseAllBytes' in options)) {
options.parseAllBytes = true;
}
if(!('decodeBitStrings' in options)) {
options.decodeBitStrings = true;
}
// wrap in buffer if needed
if(typeof bytes === 'string') {
bytes = forge$j.util.createBuffer(bytes);
}
var byteCount = bytes.length();
var value = _fromDer(bytes, bytes.length(), 0, options);
if(options.parseAllBytes && bytes.length() !== 0) {
var error = new Error('Unparsed DER bytes remain after ASN.1 parsing.');
error.byteCount = byteCount;
error.remaining = bytes.length();
throw error;
}
return value;
};
/**
* Internal function to parse an asn1 object from a byte buffer in DER format.
*
* @param bytes the byte buffer to parse from.
* @param remaining the number of bytes remaining for this chunk.
* @param depth the current parsing depth.
* @param options object with same options as fromDer().
*
* @return the parsed asn1 object.
*/
function _fromDer(bytes, remaining, depth, options) {
// temporary storage for consumption calculations
var start;
// minimum length for ASN.1 DER structure is 2
_checkBufferLength(bytes, remaining, 2);
// get the first byte
var b1 = bytes.getByte();
// consumed one byte
remaining--;
// get the tag class
var tagClass = (b1 & 0xC0);
// get the type (bits 1-5)
var type = b1 & 0x1F;
// get the variable value length and adjust remaining bytes
start = bytes.length();
var length = _getValueLength(bytes, remaining);
remaining -= start - bytes.length();
// ensure there are enough bytes to get the value
if(length !== undefined && length > remaining) {
if(options.strict) {
var error = new Error('Too few bytes to read ASN.1 value.');
error.available = bytes.length();
error.remaining = remaining;
error.requested = length;
throw error;
}
// Note: be lenient with truncated values and use remaining state bytes
length = remaining;
}
// value storage
var value;
// possible BIT STRING contents storage
var bitStringContents;
// constructed flag is bit 6 (32 = 0x20) of the first byte
var constructed = ((b1 & 0x20) === 0x20);
if(constructed) {
// parse child asn1 objects from the value
value = [];
if(length === undefined) {
// asn1 object of indefinite length, read until end tag
for(;;) {
_checkBufferLength(bytes, remaining, 2);
if(bytes.bytes(2) === String.fromCharCode(0, 0)) {
bytes.getBytes(2);
remaining -= 2;
break;
}
start = bytes.length();
value.push(_fromDer(bytes, remaining, depth + 1, options));
remaining -= start - bytes.length();
}
} else {
// parsing asn1 object of definite length
while(length > 0) {
start = bytes.length();
value.push(_fromDer(bytes, length, depth + 1, options));
remaining -= start - bytes.length();
length -= start - bytes.length();
}
}
}
// if a BIT STRING, save the contents including padding
if(value === undefined && tagClass === asn1$2.Class.UNIVERSAL &&
type === asn1$2.Type.BITSTRING) {
bitStringContents = bytes.bytes(length);
}
// determine if a non-constructed value should be decoded as a composed
// value that contains other ASN.1 objects. BIT STRINGs (and OCTET STRINGs)
// can be used this way.
if(value === undefined && options.decodeBitStrings &&
tagClass === asn1$2.Class.UNIVERSAL &&
// FIXME: OCTET STRINGs not yet supported here
// .. other parts of forge expect to decode OCTET STRINGs manually
(type === asn1$2.Type.BITSTRING /*|| type === asn1.Type.OCTETSTRING*/) &&
length > 1) {
// save read position
var savedRead = bytes.read;
var savedRemaining = remaining;
var unused = 0;
if(type === asn1$2.Type.BITSTRING) {
/* The first octet gives the number of bits by which the length of the
bit string is less than the next multiple of eight (this is called
the "number of unused bits").
The second and following octets give the value of the bit string
converted to an octet string. */
_checkBufferLength(bytes, remaining, 1);
unused = bytes.getByte();
remaining--;
}
// if all bits are used, maybe the BIT/OCTET STRING holds ASN.1 objs
if(unused === 0) {
try {
// attempt to parse child asn1 object from the value
// (stored in array to signal composed value)
start = bytes.length();
var subOptions = {
// enforce strict mode to avoid parsing ASN.1 from plain data
strict: true,
decodeBitStrings: true
};
var composed = _fromDer(bytes, remaining, depth + 1, subOptions);
var used = start - bytes.length();
remaining -= used;
if(type == asn1$2.Type.BITSTRING) {
used++;
}
// if the data all decoded and the class indicates UNIVERSAL or
// CONTEXT_SPECIFIC then assume we've got an encapsulated ASN.1 object
var tc = composed.tagClass;
if(used === length &&
(tc === asn1$2.Class.UNIVERSAL || tc === asn1$2.Class.CONTEXT_SPECIFIC)) {
value = [composed];
}
} catch(ex) {
}
}
if(value === undefined) {
// restore read position
bytes.read = savedRead;
remaining = savedRemaining;
}
}
if(value === undefined) {
// asn1 not constructed or composed, get raw value
// TODO: do DER to OID conversion and vice-versa in .toDer?
if(length === undefined) {
if(options.strict) {
throw new Error('Non-constructed ASN.1 object of indefinite length.');
}
// be lenient and use remaining state bytes
length = remaining;
}
if(type === asn1$2.Type.BMPSTRING) {
value = '';
for(; length > 0; length -= 2) {
_checkBufferLength(bytes, remaining, 2);
value += String.fromCharCode(bytes.getInt16());
remaining -= 2;
}
} else {
value = bytes.getBytes(length);
remaining -= length;
}
}
// add BIT STRING contents if available
var asn1Options = bitStringContents === undefined ? null : {
bitStringContents: bitStringContents
};
// create and return asn1 object
return asn1$2.create(tagClass, type, constructed, value, asn1Options);
}
/**
* Converts the given asn1 object to a buffer of bytes in DER format.
*
* @param asn1 the asn1 object to convert to bytes.
*
* @return the buffer of bytes.
*/
asn1$2.toDer = function(obj) {
var bytes = forge$j.util.createBuffer();
// build the first byte
var b1 = obj.tagClass | obj.type;
// for storing the ASN.1 value
var value = forge$j.util.createBuffer();
// use BIT STRING contents if available and data not changed
var useBitStringContents = false;
if('bitStringContents' in obj) {
useBitStringContents = true;
if(obj.original) {
useBitStringContents = asn1$2.equals(obj, obj.original);
}
}
if(useBitStringContents) {
value.putBytes(obj.bitStringContents);
} else if(obj.composed) {
// if composed, use each child asn1 object's DER bytes as value
// turn on 6th bit (0x20 = 32) to indicate asn1 is constructed
// from other asn1 objects
if(obj.constructed) {
b1 |= 0x20;
} else {
// type is a bit string, add unused bits of 0x00
value.putByte(0x00);
}
// add all of the child DER bytes together
for(var i = 0; i < obj.value.length; ++i) {
if(obj.value[i] !== undefined) {
value.putBuffer(asn1$2.toDer(obj.value[i]));
}
}
} else {
// use asn1.value directly
if(obj.type === asn1$2.Type.BMPSTRING) {
for(var i = 0; i < obj.value.length; ++i) {
value.putInt16(obj.value.charCodeAt(i));
}
} else {
// ensure integer is minimally-encoded
// TODO: should all leading bytes be stripped vs just one?
// .. ex '00 00 01' => '01'?
if(obj.type === asn1$2.Type.INTEGER &&
obj.value.length > 1 &&
// leading 0x00 for positive integer
((obj.value.charCodeAt(0) === 0 &&
(obj.value.charCodeAt(1) & 0x80) === 0) ||
// leading 0xFF for negative integer
(obj.value.charCodeAt(0) === 0xFF &&
(obj.value.charCodeAt(1) & 0x80) === 0x80))) {
value.putBytes(obj.value.substr(1));
} else {
value.putBytes(obj.value);
}
}
}
// add tag byte
bytes.putByte(b1);
// use "short form" encoding
if(value.length() <= 127) {
// one byte describes the length
// bit 8 = 0 and bits 7-1 = length
bytes.putByte(value.length() & 0x7F);
} else {
// use "long form" encoding
// 2 to 127 bytes describe the length
// first byte: bit 8 = 1 and bits 7-1 = # of additional bytes
// other bytes: length in base 256, big-endian
var len = value.length();
var lenBytes = '';
do {
lenBytes += String.fromCharCode(len & 0xFF);
len = len >>> 8;
} while(len > 0);
// set first byte to # bytes used to store the length and turn on
// bit 8 to indicate long-form length is used
bytes.putByte(lenBytes.length | 0x80);
// concatenate length bytes in reverse since they were generated
// little endian and we need big endian
for(var i = lenBytes.length - 1; i >= 0; --i) {
bytes.putByte(lenBytes.charCodeAt(i));
}
}
// concatenate value bytes
bytes.putBuffer(value);
return bytes;
};
/**
* Converts an OID dot-separated string to a byte buffer. The byte buffer
* contains only the DER-encoded value, not any tag or length bytes.
*
* @param oid the OID dot-separated string.
*
* @return the byte buffer.
*/
asn1$2.oidToDer = function(oid) {
// split OID into individual values
var values = oid.split('.');
var bytes = forge$j.util.createBuffer();
// first byte is 40 * value1 + value2
bytes.putByte(40 * parseInt(values[0], 10) + parseInt(values[1], 10));
// other bytes are each value in base 128 with 8th bit set except for
// the last byte for each value
var last, valueBytes, value, b;
for(var i = 2; i < values.length; ++i) {
// produce value bytes in reverse because we don't know how many
// bytes it will take to store the value
last = true;
valueBytes = [];
value = parseInt(values[i], 10);
do {
b = value & 0x7F;
value = value >>> 7;
// if value is not last, then turn on 8th bit
if(!last) {
b |= 0x80;
}
valueBytes.push(b);
last = false;
} while(value > 0);
// add value bytes in reverse (needs to be in big endian)
for(var n = valueBytes.length - 1; n >= 0; --n) {
bytes.putByte(valueBytes[n]);
}
}
return bytes;
};
/**
* Converts a DER-encoded byte buffer to an OID dot-separated string. The
* byte buffer should contain only the DER-encoded value, not any tag or
* length bytes.
*
* @param bytes the byte buffer.
*
* @return the OID dot-separated string.
*/
asn1$2.derToOid = function(bytes) {
var oid;
// wrap in buffer if needed
if(typeof bytes === 'string') {
bytes = forge$j.util.createBuffer(bytes);
}
// first byte is 40 * value1 + value2
var b = bytes.getByte();
oid = Math.floor(b / 40) + '.' + (b % 40);
// other bytes are each value in base 128 with 8th bit set except for
// the last byte for each value
var value = 0;
while(bytes.length() > 0) {
b = bytes.getByte();
value = value << 7;
// not the last byte for the value
if(b & 0x80) {
value += b & 0x7F;
} else {
// last byte
oid += '.' + (value + b);
value = 0;
}
}
return oid;
};
/**
* Converts a UTCTime value to a date.
*
* Note: GeneralizedTime has 4 digits for the year and is used for X.509
* dates past 2049. Parsing that structure hasn't been implemented yet.
*
* @param utc the UTCTime value to convert.
*
* @return the date.
*/
asn1$2.utcTimeToDate = function(utc) {
/* The following formats can be used:
YYMMDDhhmmZ
YYMMDDhhmm+hh'mm'
YYMMDDhhmm-hh'mm'
YYMMDDhhmmssZ
YYMMDDhhmmss+hh'mm'
YYMMDDhhmmss-hh'mm'
Where:
YY is the least significant two digits of the year
MM is the month (01 to 12)
DD is the day (01 to 31)
hh is the hour (00 to 23)
mm are the minutes (00 to 59)
ss are the seconds (00 to 59)
Z indicates that local time is GMT, + indicates that local time is
later than GMT, and - indicates that local time is earlier than GMT
hh' is the absolute value of the offset from GMT in hours
mm' is the absolute value of the offset from GMT in minutes */
var date = new Date();
// if YY >= 50 use 19xx, if YY < 50 use 20xx
var year = parseInt(utc.substr(0, 2), 10);
year = (year >= 50) ? 1900 + year : 2000 + year;
var MM = parseInt(utc.substr(2, 2), 10) - 1; // use 0-11 for month
var DD = parseInt(utc.substr(4, 2), 10);
var hh = parseInt(utc.substr(6, 2), 10);
var mm = parseInt(utc.substr(8, 2), 10);
var ss = 0;
// not just YYMMDDhhmmZ
if(utc.length > 11) {
// get character after minutes
var c = utc.charAt(10);
var end = 10;
// see if seconds are present
if(c !== '+' && c !== '-') {
// get seconds
ss = parseInt(utc.substr(10, 2), 10);
end += 2;
}
}
// update date
date.setUTCFullYear(year, MM, DD);
date.setUTCHours(hh, mm, ss, 0);
if(end) {
// get +/- after end of time
c = utc.charAt(end);
if(c === '+' || c === '-') {
// get hours+minutes offset
var hhoffset = parseInt(utc.substr(end + 1, 2), 10);
var mmoffset = parseInt(utc.substr(end + 4, 2), 10);
// calculate offset in milliseconds
var offset = hhoffset * 60 + mmoffset;
offset *= 60000;
// apply offset
if(c === '+') {
date.setTime(+date - offset);
} else {
date.setTime(+date + offset);
}
}
}
return date;
};
/**
* Converts a GeneralizedTime value to a date.
*
* @param gentime the GeneralizedTime value to convert.
*
* @return the date.
*/
asn1$2.generalizedTimeToDate = function(gentime) {
/* The following formats can be used:
YYYYMMDDHHMMSS
YYYYMMDDHHMMSS.fff
YYYYMMDDHHMMSSZ
YYYYMMDDHHMMSS.fffZ
YYYYMMDDHHMMSS+hh'mm'
YYYYMMDDHHMMSS.fff+hh'mm'
YYYYMMDDHHMMSS-hh'mm'
YYYYMMDDHHMMSS.fff-hh'mm'
Where:
YYYY is the year
MM is the month (01 to 12)
DD is the day (01 to 31)
hh is the hour (00 to 23)
mm are the minutes (00 to 59)
ss are the seconds (00 to 59)
.fff is the second fraction, accurate to three decimal places
Z indicates that local time is GMT, + indicates that local time is
later than GMT, and - indicates that local time is earlier than GMT
hh' is the absolute value of the offset from GMT in hours
mm' is the absolute value of the offset from GMT in minutes */
var date = new Date();
var YYYY = parseInt(gentime.substr(0, 4), 10);
var MM = parseInt(gentime.substr(4, 2), 10) - 1; // use 0-11 for month
var DD = parseInt(gentime.substr(6, 2), 10);
var hh = parseInt(gentime.substr(8, 2), 10);
var mm = parseInt(gentime.substr(10, 2), 10);
var ss = parseInt(gentime.substr(12, 2), 10);
var fff = 0;
var offset = 0;
var isUTC = false;
if(gentime.charAt(gentime.length - 1) === 'Z') {
isUTC = true;
}
var end = gentime.length - 5, c = gentime.charAt(end);
if(c === '+' || c === '-') {
// get hours+minutes offset
var hhoffset = parseInt(gentime.substr(end + 1, 2), 10);
var mmoffset = parseInt(gentime.substr(end + 4, 2), 10);
// calculate offset in milliseconds
offset = hhoffset * 60 + mmoffset;
offset *= 60000;
// apply offset
if(c === '+') {
offset *= -1;
}
isUTC = true;
}
// check for second fraction
if(gentime.charAt(14) === '.') {
fff = parseFloat(gentime.substr(14), 10) * 1000;
}
if(isUTC) {
date.setUTCFullYear(YYYY, MM, DD);
date.setUTCHours(hh, mm, ss, fff);
// apply offset
date.setTime(+date + offset);
} else {
date.setFullYear(YYYY, MM, DD);
date.setHours(hh, mm, ss, fff);
}
return date;
};
/**
* Converts a date to a UTCTime value.
*
* Note: GeneralizedTime has 4 digits for the year and is used for X.509
* dates past 2049. Converting to a GeneralizedTime hasn't been
* implemented yet.
*
* @param date the date to convert.
*
* @return the UTCTime value.
*/
asn1$2.dateToUtcTime = function(date) {
// TODO: validate; currently assumes proper format
if(typeof date === 'string') {
return date;
}
var rval = '';
// create format YYMMDDhhmmssZ
var format = [];
format.push(('' + date.getUTCFullYear()).substr(2));
format.push('' + (date.getUTCMonth() + 1));
format.push('' + date.getUTCDate());
format.push('' + date.getUTCHours());
format.push('' + date.getUTCMinutes());
format.push('' + date.getUTCSeconds());
// ensure 2 digits are used for each format entry
for(var i = 0; i < format.length; ++i) {
if(format[i].length < 2) {
rval += '0';
}
rval += format[i];
}
rval += 'Z';
return rval;
};
/**
* Converts a date to a GeneralizedTime value.
*
* @param date the date to convert.
*
* @return the GeneralizedTime value as a string.
*/
asn1$2.dateToGeneralizedTime = function(date) {
// TODO: validate; currently assumes proper format
if(typeof date === 'string') {
return date;
}
var rval = '';
// create format YYYYMMDDHHMMSSZ
var format = [];
format.push('' + date.getUTCFullYear());
format.push('' + (date.getUTCMonth() + 1));
format.push('' + date.getUTCDate());
format.push('' + date.getUTCHours());
format.push('' + date.getUTCMinutes());
format.push('' + date.getUTCSeconds());
// ensure 2 digits are used for each format entry
for(var i = 0; i < format.length; ++i) {
if(format[i].length < 2) {
rval += '0';
}
rval += format[i];
}
rval += 'Z';
return rval;
};
/**
* Converts a javascript integer to a DER-encoded byte buffer to be used
* as the value for an INTEGER type.
*
* @param x the integer.
*
* @return the byte buffer.
*/
asn1$2.integerToDer = function(x) {
var rval = forge$j.util.createBuffer();
if(x >= -0x80 && x < 0x80) {
return rval.putSignedInt(x, 8);
}
if(x >= -0x8000 && x < 0x8000) {
return rval.putSignedInt(x, 16);
}
if(x >= -0x800000 && x < 0x800000) {
return rval.putSignedInt(x, 24);
}
if(x >= -0x80000000 && x < 0x80000000) {
return rval.putSignedInt(x, 32);
}
var error = new Error('Integer too large; max is 32-bits.');
error.integer = x;
throw error;
};
/**
* Converts a DER-encoded byte buffer to a javascript integer. This is
* typically used to decode the value of an INTEGER type.
*
* @param bytes the byte buffer.
*
* @return the integer.
*/
asn1$2.derToInteger = function(bytes) {
// wrap in buffer if needed
if(typeof bytes === 'string') {
bytes = forge$j.util.createBuffer(bytes);
}
var n = bytes.length() * 8;
if(n > 32) {
throw new Error('Integer too large; max is 32-bits.');
}
return bytes.getSignedInt(n);
};
/**
* Validates that the given ASN.1 object is at least a super set of the
* given ASN.1 structure. Only tag classes and types are checked. An
* optional map may also be provided to capture ASN.1 values while the
* structure is checked.
*
* To capture an ASN.1 value, set an object in the validator's 'capture'
* parameter to the key to use in the capture map. To capture the full
* ASN.1 object, specify 'captureAsn1'. To capture BIT STRING bytes, including
* the leading unused bits counter byte, specify 'captureBitStringContents'.
* To capture BIT STRING bytes, without the leading unused bits counter byte,
* specify 'captureBitStringValue'.
*
* Objects in the validator may set a field 'optional' to true to indicate
* that it isn't necessary to pass validation.
*
* @param obj the ASN.1 object to validate.
* @param v the ASN.1 structure validator.
* @param capture an optional map to capture values in.
* @param errors an optional array for storing validation errors.
*
* @return true on success, false on failure.
*/
asn1$2.validate = function(obj, v, capture, errors) {
var rval = false;
// ensure tag class and type are the same if specified
if((obj.tagClass === v.tagClass || typeof(v.tagClass) === 'undefined') &&
(obj.type === v.type || typeof(v.type) === 'undefined')) {
// ensure constructed flag is the same if specified
if(obj.constructed === v.constructed ||
typeof(v.constructed) === 'undefined') {
rval = true;
// handle sub values
if(v.value && forge$j.util.isArray(v.value)) {
var j = 0;
for(var i = 0; rval && i < v.value.length; ++i) {
rval = v.value[i].optional || false;
if(obj.value[j]) {
rval = asn1$2.validate(obj.value[j], v.value[i], capture, errors);
if(rval) {
++j;
} else if(v.value[i].optional) {
rval = true;
}
}
if(!rval && errors) {
errors.push(
'[' + v.name + '] ' +
'Tag class "' + v.tagClass + '", type "' +
v.type + '" expected value length "' +
v.value.length + '", got "' +
obj.value.length + '"');
}
}
}
if(rval && capture) {
if(v.capture) {
capture[v.capture] = obj.value;
}
if(v.captureAsn1) {
capture[v.captureAsn1] = obj;
}
if(v.captureBitStringContents && 'bitStringContents' in obj) {
capture[v.captureBitStringContents] = obj.bitStringContents;
}
if(v.captureBitStringValue && 'bitStringContents' in obj) {
if(obj.bitStringContents.length < 2) {
capture[v.captureBitStringValue] = '';
} else {
// FIXME: support unused bits with data shifting
var unused = obj.bitStringContents.charCodeAt(0);
if(unused !== 0) {
throw new Error(
'captureBitStringValue only supported for zero unused bits');
}
capture[v.captureBitStringValue] = obj.bitStringContents.slice(1);
}
}
}
} else if(errors) {
errors.push(
'[' + v.name + '] ' +
'Expected constructed "' + v.constructed + '", got "' +
obj.constructed + '"');
}
} else if(errors) {
if(obj.tagClass !== v.tagClass) {
errors.push(
'[' + v.name + '] ' +
'Expected tag class "' + v.tagClass + '", got "' +
obj.tagClass + '"');
}
if(obj.type !== v.type) {
errors.push(
'[' + v.name + '] ' +
'Expected type "' + v.type + '", got "' + obj.type + '"');
}
}
return rval;
};
// regex for testing for non-latin characters
var _nonLatinRegex = /[^\\u0000-\\u00ff]/;
/**
* Pretty prints an ASN.1 object to a string.
*
* @param obj the object to write out.
* @param level the level in the tree.
* @param indentation the indentation to use.
*
* @return the string.
*/
asn1$2.prettyPrint = function(obj, level, indentation) {
var rval = '';
// set default level and indentation
level = level || 0;
indentation = indentation || 2;
// start new line for deep levels
if(level > 0) {
rval += '\n';
}
// create indent
var indent = '';
for(var i = 0; i < level * indentation; ++i) {
indent += ' ';
}
// print class:type
rval += indent + 'Tag: ';
switch(obj.tagClass) {
case asn1$2.Class.UNIVERSAL:
rval += 'Universal:';
break;
case asn1$2.Class.APPLICATION:
rval += 'Application:';
break;
case asn1$2.Class.CONTEXT_SPECIFIC:
rval += 'Context-Specific:';
break;
case asn1$2.Class.PRIVATE:
rval += 'Private:';
break;
}
if(obj.tagClass === asn1$2.Class.UNIVERSAL) {
rval += obj.type;
// known types
switch(obj.type) {
case asn1$2.Type.NONE:
rval += ' (None)';
break;
case asn1$2.Type.BOOLEAN:
rval += ' (Boolean)';
break;
case asn1$2.Type.INTEGER:
rval += ' (Integer)';
break;
case asn1$2.Type.BITSTRING:
rval += ' (Bit string)';
break;
case asn1$2.Type.OCTETSTRING:
rval += ' (Octet string)';
break;
case asn1$2.Type.NULL:
rval += ' (Null)';
break;
case asn1$2.Type.OID:
rval += ' (Object Identifier)';
break;
case asn1$2.Type.ODESC:
rval += ' (Object Descriptor)';
break;
case asn1$2.Type.EXTERNAL:
rval += ' (External or Instance of)';
break;
case asn1$2.Type.REAL:
rval += ' (Real)';
break;
case asn1$2.Type.ENUMERATED:
rval += ' (Enumerated)';
break;
case asn1$2.Type.EMBEDDED:
rval += ' (Embedded PDV)';
break;
case asn1$2.Type.UTF8:
rval += ' (UTF8)';
break;
case asn1$2.Type.ROID:
rval += ' (Relative Object Identifier)';
break;
case asn1$2.Type.SEQUENCE:
rval += ' (Sequence)';
break;
case asn1$2.Type.SET:
rval += ' (Set)';
break;
case asn1$2.Type.PRINTABLESTRING:
rval += ' (Printable String)';
break;
case asn1$2.Type.IA5String:
rval += ' (IA5String (ASCII))';
break;
case asn1$2.Type.UTCTIME:
rval += ' (UTC time)';
break;
case asn1$2.Type.GENERALIZEDTIME:
rval += ' (Generalized time)';
break;
case asn1$2.Type.BMPSTRING:
rval += ' (BMP String)';
break;
}
} else {
rval += obj.type;
}
rval += '\n';
rval += indent + 'Constructed: ' + obj.constructed + '\n';
if(obj.composed) {
var subvalues = 0;
var sub = '';
for(var i = 0; i < obj.value.length; ++i) {
if(obj.value[i] !== undefined) {
subvalues += 1;
sub += asn1$2.prettyPrint(obj.value[i], level + 1, indentation);
if((i + 1) < obj.value.length) {
sub += ',';
}
}
}
rval += indent + 'Sub values: ' + subvalues + sub;
} else {
rval += indent + 'Value: ';
if(obj.type === asn1$2.Type.OID) {
var oid = asn1$2.derToOid(obj.value);
rval += oid;
if(forge$j.pki && forge$j.pki.oids) {
if(oid in forge$j.pki.oids) {
rval += ' (' + forge$j.pki.oids[oid] + ') ';
}
}
}
if(obj.type === asn1$2.Type.INTEGER) {
try {
rval += asn1$2.derToInteger(obj.value);
} catch(ex) {
rval += '0x' + forge$j.util.bytesToHex(obj.value);
}
} else if(obj.type === asn1$2.Type.BITSTRING) {
// TODO: shift bits as needed to display without padding
if(obj.value.length > 1) {
// remove unused bits field
rval += '0x' + forge$j.util.bytesToHex(obj.value.slice(1));
} else {
rval += '(none)';
}
// show unused bit count
if(obj.value.length > 0) {
var unused = obj.value.charCodeAt(0);
if(unused == 1) {
rval += ' (1 unused bit shown)';
} else if(unused > 1) {
rval += ' (' + unused + ' unused bits shown)';
}
}
} else if(obj.type === asn1$2.Type.OCTETSTRING) {
if(!_nonLatinRegex.test(obj.value)) {
rval += '(' + obj.value + ') ';
}
rval += '0x' + forge$j.util.bytesToHex(obj.value);
} else if(obj.type === asn1$2.Type.UTF8) {
try {
rval += forge$j.util.decodeUtf8(obj.value);
} catch(e) {
if(e.message === 'URI malformed') {
rval +=
'0x' + forge$j.util.bytesToHex(obj.value) + ' (malformed UTF8)';
} else {
throw e;
}
}
} else if(obj.type === asn1$2.Type.PRINTABLESTRING ||
obj.type === asn1$2.Type.IA5String) {
rval += obj.value;
} else if(_nonLatinRegex.test(obj.value)) {
rval += '0x' + forge$j.util.bytesToHex(obj.value);
} else if(obj.value.length === 0) {
rval += '[null]';
} else {
rval += obj.value;
}
}
return rval;
};
/**
* Cipher base API.
*
* @author Dave Longley
*
* Copyright (c) 2010-2014 Digital Bazaar, Inc.
*/
var forge$i = forge$m;
forge$i.cipher = forge$i.cipher || {};
// registered algorithms
forge$i.cipher.algorithms = forge$i.cipher.algorithms || {};
/**
* Creates a cipher object that can be used to encrypt data using the given
* algorithm and key. The algorithm may be provided as a string value for a
* previously registered algorithm or it may be given as a cipher algorithm
* API object.
*
* @param algorithm the algorithm to use, either a string or an algorithm API
* object.
* @param key the key to use, as a binary-encoded string of bytes or a
* byte buffer.
*
* @return the cipher.
*/
forge$i.cipher.createCipher = function(algorithm, key) {
var api = algorithm;
if(typeof api === 'string') {
api = forge$i.cipher.getAlgorithm(api);
if(api) {
api = api();
}
}
if(!api) {
throw new Error('Unsupported algorithm: ' + algorithm);
}
// assume block cipher
return new forge$i.cipher.BlockCipher({
algorithm: api,
key: key,
decrypt: false
});
};
/**
* Creates a decipher object that can be used to decrypt data using the given
* algorithm and key. The algorithm may be provided as a string value for a
* previously registered algorithm or it may be given as a cipher algorithm
* API object.
*
* @param algorithm the algorithm to use, either a string or an algorithm API
* object.
* @param key the key to use, as a binary-encoded string of bytes or a
* byte buffer.
*
* @return the cipher.
*/
forge$i.cipher.createDecipher = function(algorithm, key) {
var api = algorithm;
if(typeof api === 'string') {
api = forge$i.cipher.getAlgorithm(api);
if(api) {
api = api();
}
}
if(!api) {
throw new Error('Unsupported algorithm: ' + algorithm);
}
// assume block cipher
return new forge$i.cipher.BlockCipher({
algorithm: api,
key: key,
decrypt: true
});
};
/**
* Registers an algorithm by name. If the name was already registered, the
* algorithm API object will be overwritten.
*
* @param name the name of the algorithm.
* @param algorithm the algorithm API object.
*/
forge$i.cipher.registerAlgorithm = function(name, algorithm) {
name = name.toUpperCase();
forge$i.cipher.algorithms[name] = algorithm;
};
/**
* Gets a registered algorithm by name.
*
* @param name the name of the algorithm.
*
* @return the algorithm, if found, null if not.
*/
forge$i.cipher.getAlgorithm = function(name) {
name = name.toUpperCase();
if(name in forge$i.cipher.algorithms) {
return forge$i.cipher.algorithms[name];
}
return null;
};
var BlockCipher = forge$i.cipher.BlockCipher = function(options) {
this.algorithm = options.algorithm;
this.mode = this.algorithm.mode;
this.blockSize = this.mode.blockSize;
this._finish = false;
this._input = null;
this.output = null;
this._op = options.decrypt ? this.mode.decrypt : this.mode.encrypt;
this._decrypt = options.decrypt;
this.algorithm.initialize(options);
};
/**
* Starts or restarts the encryption or decryption process, whichever
* was previously configured.
*
* For non-GCM mode, the IV may be a binary-encoded string of bytes, an array
* of bytes, a byte buffer, or an array of 32-bit integers. If the IV is in
* bytes, then it must be Nb (16) bytes in length. If the IV is given in as
* 32-bit integers, then it must be 4 integers long.
*
* Note: an IV is not required or used in ECB mode.
*
* For GCM-mode, the IV must be given as a binary-encoded string of bytes or
* a byte buffer. The number of bytes should be 12 (96 bits) as recommended
* by NIST SP-800-38D but another length may be given.
*
* @param options the options to use:
* iv the initialization vector to use as a binary-encoded string of
* bytes, null to reuse the last ciphered block from a previous
* update() (this "residue" method is for legacy support only).
* additionalData additional authentication data as a binary-encoded
* string of bytes, for 'GCM' mode, (default: none).
* tagLength desired length of authentication tag, in bits, for
* 'GCM' mode (0-128, default: 128).
* tag the authentication tag to check if decrypting, as a
* binary-encoded string of bytes.
* output the output the buffer to write to, null to create one.
*/
BlockCipher.prototype.start = function(options) {
options = options || {};
var opts = {};
for(var key in options) {
opts[key] = options[key];
}
opts.decrypt = this._decrypt;
this._finish = false;
this._input = forge$i.util.createBuffer();
this.output = options.output || forge$i.util.createBuffer();
this.mode.start(opts);
};
/**
* Updates the next block according to the cipher mode.
*
* @param input the buffer to read from.
*/
BlockCipher.prototype.update = function(input) {
if(input) {
// input given, so empty it into the input buffer
this._input.putBuffer(input);
}
// do cipher operation until it needs more input and not finished
while(!this._op.call(this.mode, this._input, this.output, this._finish) &&
!this._finish) {}
// free consumed memory from input buffer
this._input.compact();
};
/**
* Finishes encrypting or decrypting.
*
* @param pad a padding function to use in CBC mode, null for default,
* signature(blockSize, buffer, decrypt).
*
* @return true if successful, false on error.
*/
BlockCipher.prototype.finish = function(pad) {
// backwards-compatibility w/deprecated padding API
// Note: will overwrite padding functions even after another start() call
if(pad && (this.mode.name === 'ECB' || this.mode.name === 'CBC')) {
this.mode.pad = function(input) {
return pad(this.blockSize, input, false);
};
this.mode.unpad = function(output) {
return pad(this.blockSize, output, true);
};
}
// build options for padding and afterFinish functions
var options = {};
options.decrypt = this._decrypt;
// get # of bytes that won't fill a block
options.overflow = this._input.length() % this.blockSize;
if(!this._decrypt && this.mode.pad) {
if(!this.mode.pad(this._input, options)) {
return false;
}
}
// do final update
this._finish = true;
this.update();
if(this._decrypt && this.mode.unpad) {
if(!this.mode.unpad(this.output, options)) {
return false;
}
}
if(this.mode.afterFinish) {
if(!this.mode.afterFinish(this.output, options)) {
return false;
}
}
return true;
};
/**
* Supported cipher modes.
*
* @author Dave Longley
*
* Copyright (c) 2010-2014 Digital Bazaar, Inc.
*/
var forge$h = forge$m;
forge$h.cipher = forge$h.cipher || {};
// supported cipher modes
var modes = forge$h.cipher.modes = forge$h.cipher.modes || {};
/** Electronic codebook (ECB) (Don't use this; it's not secure) **/
modes.ecb = function(options) {
options = options || {};
this.name = 'ECB';
this.cipher = options.cipher;
this.blockSize = options.blockSize || 16;
this._ints = this.blockSize / 4;
this._inBlock = new Array(this._ints);
this._outBlock = new Array(this._ints);
};
modes.ecb.prototype.start = function(options) {};
modes.ecb.prototype.encrypt = function(input, output, finish) {
// not enough input to encrypt
if(input.length() < this.blockSize && !(finish && input.length() > 0)) {
return true;
}
// get next block
for(var i = 0; i < this._ints; ++i) {
this._inBlock[i] = input.getInt32();
}
// encrypt block
this.cipher.encrypt(this._inBlock, this._outBlock);
// write output
for(var i = 0; i < this._ints; ++i) {
output.putInt32(this._outBlock[i]);
}
};
modes.ecb.prototype.decrypt = function(input, output, finish) {
// not enough input to decrypt
if(input.length() < this.blockSize && !(finish && input.length() > 0)) {
return true;
}
// get next block
for(var i = 0; i < this._ints; ++i) {
this._inBlock[i] = input.getInt32();
}
// decrypt block
this.cipher.decrypt(this._inBlock, this._outBlock);
// write output
for(var i = 0; i < this._ints; ++i) {
output.putInt32(this._outBlock[i]);
}
};
modes.ecb.prototype.pad = function(input, options) {
// add PKCS#7 padding to block (each pad byte is the
// value of the number of pad bytes)
var padding = (input.length() === this.blockSize ?
this.blockSize : (this.blockSize - input.length()));
input.fillWithByte(padding, padding);
return true;
};
modes.ecb.prototype.unpad = function(output, options) {
// check for error: input data not a multiple of blockSize
if(options.overflow > 0) {
return false;
}
// ensure padding byte count is valid
var len = output.length();
var count = output.at(len - 1);
if(count > (this.blockSize << 2)) {
return false;
}
// trim off padding bytes
output.truncate(count);
return true;
};
/** Cipher-block Chaining (CBC) **/
modes.cbc = function(options) {
options = options || {};
this.name = 'CBC';
this.cipher = options.cipher;
this.blockSize = options.blockSize || 16;
this._ints = this.blockSize / 4;
this._inBlock = new Array(this._ints);
this._outBlock = new Array(this._ints);
};
modes.cbc.prototype.start = function(options) {
// Note: legacy support for using IV residue (has security flaws)
// if IV is null, reuse block from previous processing
if(options.iv === null) {
// must have a previous block
if(!this._prev) {
throw new Error('Invalid IV parameter.');
}
this._iv = this._prev.slice(0);
} else if(!('iv' in options)) {
throw new Error('Invalid IV parameter.');
} else {
// save IV as "previous" block
this._iv = transformIV(options.iv, this.blockSize);
this._prev = this._iv.slice(0);
}
};
modes.cbc.prototype.encrypt = function(input, output, finish) {
// not enough input to encrypt
if(input.length() < this.blockSize && !(finish && input.length() > 0)) {
return true;
}
// get next block
// CBC XOR's IV (or previous block) with plaintext
for(var i = 0; i < this._ints; ++i) {
this._inBlock[i] = this._prev[i] ^ input.getInt32();
}
// encrypt block
this.cipher.encrypt(this._inBlock, this._outBlock);
// write output, save previous block
for(var i = 0; i < this._ints; ++i) {
output.putInt32(this._outBlock[i]);
}
this._prev = this._outBlock;
};
modes.cbc.prototype.decrypt = function(input, output, finish) {
// not enough input to decrypt
if(input.length() < this.blockSize && !(finish && input.length() > 0)) {
return true;
}
// get next block
for(var i = 0; i < this._ints; ++i) {
this._inBlock[i] = input.getInt32();
}
// decrypt block
this.cipher.decrypt(this._inBlock, this._outBlock);
// write output, save previous ciphered block
// CBC XOR's IV (or previous block) with ciphertext
for(var i = 0; i < this._ints; ++i) {
output.putInt32(this._prev[i] ^ this._outBlock[i]);
}
this._prev = this._inBlock.slice(0);
};
modes.cbc.prototype.pad = function(input, options) {
// add PKCS#7 padding to block (each pad byte is the
// value of the number of pad bytes)
var padding = (input.length() === this.blockSize ?
this.blockSize : (this.blockSize - input.length()));
input.fillWithByte(padding, padding);
return true;
};
modes.cbc.prototype.unpad = function(output, options) {
// check for error: input data not a multiple of blockSize
if(options.overflow > 0) {
return false;
}
// ensure padding byte count is valid
var len = output.length();
var count = output.at(len - 1);
if(count > (this.blockSize << 2)) {
return false;
}
// trim off padding bytes
output.truncate(count);
return true;
};
/** Cipher feedback (CFB) **/
modes.cfb = function(options) {
options = options || {};
this.name = 'CFB';
this.cipher = options.cipher;
this.blockSize = options.blockSize || 16;
this._ints = this.blockSize / 4;
this._inBlock = null;
this._outBlock = new Array(this._ints);
this._partialBlock = new Array(this._ints);
this._partialOutput = forge$h.util.createBuffer();
this._partialBytes = 0;
};
modes.cfb.prototype.start = function(options) {
if(!('iv' in options)) {
throw new Error('Invalid IV parameter.');
}
// use IV as first input
this._iv = transformIV(options.iv, this.blockSize);
this._inBlock = this._iv.slice(0);
this._partialBytes = 0;
};
modes.cfb.prototype.encrypt = function(input, output, finish) {
// not enough input to encrypt
var inputLength = input.length();
if(inputLength === 0) {
return true;
}
// encrypt block
this.cipher.encrypt(this._inBlock, this._outBlock);
// handle full block
if(this._partialBytes === 0 && inputLength >= this.blockSize) {
// XOR input with output, write input as output
for(var i = 0; i < this._ints; ++i) {
this._inBlock[i] = input.getInt32() ^ this._outBlock[i];
output.putInt32(this._inBlock[i]);
}
return;
}
// handle partial block
var partialBytes = (this.blockSize - inputLength) % this.blockSize;
if(partialBytes > 0) {
partialBytes = this.blockSize - partialBytes;
}
// XOR input with output, write input as partial output
this._partialOutput.clear();
for(var i = 0; i < this._ints; ++i) {
this._partialBlock[i] = input.getInt32() ^ this._outBlock[i];
this._partialOutput.putInt32(this._partialBlock[i]);
}
if(partialBytes > 0) {
// block still incomplete, restore input buffer
input.read -= this.blockSize;
} else {
// block complete, update input block
for(var i = 0; i < this._ints; ++i) {
this._inBlock[i] = this._partialBlock[i];
}
}
// skip any previous partial bytes
if(this._partialBytes > 0) {
this._partialOutput.getBytes(this._partialBytes);
}
if(partialBytes > 0 && !finish) {
output.putBytes(this._partialOutput.getBytes(
partialBytes - this._partialBytes));
this._partialBytes = partialBytes;
return true;
}
output.putBytes(this._partialOutput.getBytes(
inputLength - this._partialBytes));
this._partialBytes = 0;
};
modes.cfb.prototype.decrypt = function(input, output, finish) {
// not enough input to decrypt
var inputLength = input.length();
if(inputLength === 0) {
return true;
}
// encrypt block (CFB always uses encryption mode)
this.cipher.encrypt(this._inBlock, this._outBlock);
// handle full block
if(this._partialBytes === 0 && inputLength >= this.blockSize) {
// XOR input with output, write input as output
for(var i = 0; i < this._ints; ++i) {
this._inBlock[i] = input.getInt32();
output.putInt32(this._inBlock[i] ^ this._outBlock[i]);
}
return;
}
// handle partial block
var partialBytes = (this.blockSize - inputLength) % this.blockSize;
if(partialBytes > 0) {
partialBytes = this.blockSize - partialBytes;
}
// XOR input with output, write input as partial output
this._partialOutput.clear();
for(var i = 0; i < this._ints; ++i) {
this._partialBlock[i] = input.getInt32();
this._partialOutput.putInt32(this._partialBlock[i] ^ this._outBlock[i]);
}
if(partialBytes > 0) {
// block still incomplete, restore input buffer
input.read -= this.blockSize;
} else {
// block complete, update input block
for(var i = 0; i < this._ints; ++i) {
this._inBlock[i] = this._partialBlock[i];
}
}
// skip any previous partial bytes
if(this._partialBytes > 0) {
this._partialOutput.getBytes(this._partialBytes);
}
if(partialBytes > 0 && !finish) {
output.putBytes(this._partialOutput.getBytes(
partialBytes - this._partialBytes));
this._partialBytes = partialBytes;
return true;
}
output.putBytes(this._partialOutput.getBytes(
inputLength - this._partialBytes));
this._partialBytes = 0;
};
/** Output feedback (OFB) **/
modes.ofb = function(options) {
options = options || {};
this.name = 'OFB';
this.cipher = options.cipher;
this.blockSize = options.blockSize || 16;
this._ints = this.blockSize / 4;
this._inBlock = null;
this._outBlock = new Array(this._ints);
this._partialOutput = forge$h.util.createBuffer();
this._partialBytes = 0;
};
modes.ofb.prototype.start = function(options) {
if(!('iv' in options)) {
throw new Error('Invalid IV parameter.');
}
// use IV as first input
this._iv = transformIV(options.iv, this.blockSize);
this._inBlock = this._iv.slice(0);
this._partialBytes = 0;
};
modes.ofb.prototype.encrypt = function(input, output, finish) {
// not enough input to encrypt
var inputLength = input.length();
if(input.length() === 0) {
return true;
}
// encrypt block (OFB always uses encryption mode)
this.cipher.encrypt(this._inBlock, this._outBlock);
// handle full block
if(this._partialBytes === 0 && inputLength >= this.blockSize) {
// XOR input with output and update next input
for(var i = 0; i < this._ints; ++i) {
output.putInt32(input.getInt32() ^ this._outBlock[i]);
this._inBlock[i] = this._outBlock[i];
}
return;
}
// handle partial block
var partialBytes = (this.blockSize - inputLength) % this.blockSize;
if(partialBytes > 0) {
partialBytes = this.blockSize - partialBytes;
}
// XOR input with output
this._partialOutput.clear();
for(var i = 0; i < this._ints; ++i) {
this._partialOutput.putInt32(input.getInt32() ^ this._outBlock[i]);
}
if(partialBytes > 0) {
// block still incomplete, restore input buffer
input.read -= this.blockSize;
} else {
// block complete, update input block
for(var i = 0; i < this._ints; ++i) {
this._inBlock[i] = this._outBlock[i];
}
}
// skip any previous partial bytes
if(this._partialBytes > 0) {
this._partialOutput.getBytes(this._partialBytes);
}
if(partialBytes > 0 && !finish) {
output.putBytes(this._partialOutput.getBytes(
partialBytes - this._partialBytes));
this._partialBytes = partialBytes;
return true;
}
output.putBytes(this._partialOutput.getBytes(
inputLength - this._partialBytes));
this._partialBytes = 0;
};
modes.ofb.prototype.decrypt = modes.ofb.prototype.encrypt;
/** Counter (CTR) **/
modes.ctr = function(options) {
options = options || {};
this.name = 'CTR';
this.cipher = options.cipher;
this.blockSize = options.blockSize || 16;
this._ints = this.blockSize / 4;
this._inBlock = null;
this._outBlock = new Array(this._ints);
this._partialOutput = forge$h.util.createBuffer();
this._partialBytes = 0;
};
modes.ctr.prototype.start = function(options) {
if(!('iv' in options)) {
throw new Error('Invalid IV parameter.');
}
// use IV as first input
this._iv = transformIV(options.iv, this.blockSize);
this._inBlock = this._iv.slice(0);
this._partialBytes = 0;
};
modes.ctr.prototype.encrypt = function(input, output, finish) {
// not enough input to encrypt
var inputLength = input.length();
if(inputLength === 0) {
return true;
}
// encrypt block (CTR always uses encryption mode)
this.cipher.encrypt(this._inBlock, this._outBlock);
// handle full block
if(this._partialBytes === 0 && inputLength >= this.blockSize) {
// XOR input with output
for(var i = 0; i < this._ints; ++i) {
output.putInt32(input.getInt32() ^ this._outBlock[i]);
}
} else {
// handle partial block
var partialBytes = (this.blockSize - inputLength) % this.blockSize;
if(partialBytes > 0) {
partialBytes = this.blockSize - partialBytes;
}
// XOR input with output
this._partialOutput.clear();
for(var i = 0; i < this._ints; ++i) {
this._partialOutput.putInt32(input.getInt32() ^ this._outBlock[i]);
}
if(partialBytes > 0) {
// block still incomplete, restore input buffer
input.read -= this.blockSize;
}
// skip any previous partial bytes
if(this._partialBytes > 0) {
this._partialOutput.getBytes(this._partialBytes);
}
if(partialBytes > 0 && !finish) {
output.putBytes(this._partialOutput.getBytes(
partialBytes - this._partialBytes));
this._partialBytes = partialBytes;
return true;
}
output.putBytes(this._partialOutput.getBytes(
inputLength - this._partialBytes));
this._partialBytes = 0;
}
// block complete, increment counter (input block)
inc32(this._inBlock);
};
modes.ctr.prototype.decrypt = modes.ctr.prototype.encrypt;
/** Galois/Counter Mode (GCM) **/
modes.gcm = function(options) {
options = options || {};
this.name = 'GCM';
this.cipher = options.cipher;
this.blockSize = options.blockSize || 16;
this._ints = this.blockSize / 4;
this._inBlock = new Array(this._ints);
this._outBlock = new Array(this._ints);
this._partialOutput = forge$h.util.createBuffer();
this._partialBytes = 0;
// R is actually this value concatenated with 120 more zero bits, but
// we only XOR against R so the other zeros have no effect -- we just
// apply this value to the first integer in a block
this._R = 0xE1000000;
};
modes.gcm.prototype.start = function(options) {
if(!('iv' in options)) {
throw new Error('Invalid IV parameter.');
}
// ensure IV is a byte buffer
var iv = forge$h.util.createBuffer(options.iv);
// no ciphered data processed yet
this._cipherLength = 0;
// default additional data is none
var additionalData;
if('additionalData' in options) {
additionalData = forge$h.util.createBuffer(options.additionalData);
} else {
additionalData = forge$h.util.createBuffer();
}
// default tag length is 128 bits
if('tagLength' in options) {
this._tagLength = options.tagLength;
} else {
this._tagLength = 128;
}
// if tag is given, ensure tag matches tag length
this._tag = null;
if(options.decrypt) {
// save tag to check later
this._tag = forge$h.util.createBuffer(options.tag).getBytes();
if(this._tag.length !== (this._tagLength / 8)) {
throw new Error('Authentication tag does not match tag length.');
}
}
// create tmp storage for hash calculation
this._hashBlock = new Array(this._ints);
// no tag generated yet
this.tag = null;
// generate hash subkey
// (apply block cipher to "zero" block)
this._hashSubkey = new Array(this._ints);
this.cipher.encrypt([0, 0, 0, 0], this._hashSubkey);
// generate table M
// use 4-bit tables (32 component decomposition of a 16 byte value)
// 8-bit tables take more space and are known to have security
// vulnerabilities (in native implementations)
this.componentBits = 4;
this._m = this.generateHashTable(this._hashSubkey, this.componentBits);
// Note: support IV length different from 96 bits? (only supporting
// 96 bits is recommended by NIST SP-800-38D)
// generate J_0
var ivLength = iv.length();
if(ivLength === 12) {
// 96-bit IV
this._j0 = [iv.getInt32(), iv.getInt32(), iv.getInt32(), 1];
} else {
// IV is NOT 96-bits
this._j0 = [0, 0, 0, 0];
while(iv.length() > 0) {
this._j0 = this.ghash(
this._hashSubkey, this._j0,
[iv.getInt32(), iv.getInt32(), iv.getInt32(), iv.getInt32()]);
}
this._j0 = this.ghash(
this._hashSubkey, this._j0, [0, 0].concat(from64To32(ivLength * 8)));
}
// generate ICB (initial counter block)
this._inBlock = this._j0.slice(0);
inc32(this._inBlock);
this._partialBytes = 0;
// consume authentication data
additionalData = forge$h.util.createBuffer(additionalData);
// save additional data length as a BE 64-bit number
this._aDataLength = from64To32(additionalData.length() * 8);
// pad additional data to 128 bit (16 byte) block size
var overflow = additionalData.length() % this.blockSize;
if(overflow) {
additionalData.fillWithByte(0, this.blockSize - overflow);
}
this._s = [0, 0, 0, 0];
while(additionalData.length() > 0) {
this._s = this.ghash(this._hashSubkey, this._s, [
additionalData.getInt32(),
additionalData.getInt32(),
additionalData.getInt32(),
additionalData.getInt32()
]);
}
};
modes.gcm.prototype.encrypt = function(input, output, finish) {
// not enough input to encrypt
var inputLength = input.length();
if(inputLength === 0) {
return true;
}
// encrypt block
this.cipher.encrypt(this._inBlock, this._outBlock);
// handle full block
if(this._partialBytes === 0 && inputLength >= this.blockSize) {
// XOR input with output
for(var i = 0; i < this._ints; ++i) {
output.putInt32(this._outBlock[i] ^= input.getInt32());
}
this._cipherLength += this.blockSize;
} else {
// handle partial block
var partialBytes = (this.blockSize - inputLength) % this.blockSize;
if(partialBytes > 0) {
partialBytes = this.blockSize - partialBytes;
}
// XOR input with output
this._partialOutput.clear();
for(var i = 0; i < this._ints; ++i) {
this._partialOutput.putInt32(input.getInt32() ^ this._outBlock[i]);
}
if(partialBytes <= 0 || finish) {
// handle overflow prior to hashing
if(finish) {
// get block overflow
var overflow = inputLength % this.blockSize;
this._cipherLength += overflow;
// truncate for hash function
this._partialOutput.truncate(this.blockSize - overflow);
} else {
this._cipherLength += this.blockSize;
}
// get output block for hashing
for(var i = 0; i < this._ints; ++i) {
this._outBlock[i] = this._partialOutput.getInt32();
}
this._partialOutput.read -= this.blockSize;
}
// skip any previous partial bytes
if(this._partialBytes > 0) {
this._partialOutput.getBytes(this._partialBytes);
}
if(partialBytes > 0 && !finish) {
// block still incomplete, restore input buffer, get partial output,
// and return early
input.read -= this.blockSize;
output.putBytes(this._partialOutput.getBytes(
partialBytes - this._partialBytes));
this._partialBytes = partialBytes;
return true;
}
output.putBytes(this._partialOutput.getBytes(
inputLength - this._partialBytes));
this._partialBytes = 0;
}
// update hash block S
this._s = this.ghash(this._hashSubkey, this._s, this._outBlock);
// increment counter (input block)
inc32(this._inBlock);
};
modes.gcm.prototype.decrypt = function(input, output, finish) {
// not enough input to decrypt
var inputLength = input.length();
if(inputLength < this.blockSize && !(finish && inputLength > 0)) {
return true;
}
// encrypt block (GCM always uses encryption mode)
this.cipher.encrypt(this._inBlock, this._outBlock);
// increment counter (input block)
inc32(this._inBlock);
// update hash block S
this._hashBlock[0] = input.getInt32();
this._hashBlock[1] = input.getInt32();
this._hashBlock[2] = input.getInt32();
this._hashBlock[3] = input.getInt32();
this._s = this.ghash(this._hashSubkey, this._s, this._hashBlock);
// XOR hash input with output
for(var i = 0; i < this._ints; ++i) {
output.putInt32(this._outBlock[i] ^ this._hashBlock[i]);
}
// increment cipher data length
if(inputLength < this.blockSize) {
this._cipherLength += inputLength % this.blockSize;
} else {
this._cipherLength += this.blockSize;
}
};
modes.gcm.prototype.afterFinish = function(output, options) {
var rval = true;
// handle overflow
if(options.decrypt && options.overflow) {
output.truncate(this.blockSize - options.overflow);
}
// handle authentication tag
this.tag = forge$h.util.createBuffer();
// concatenate additional data length with cipher length
var lengths = this._aDataLength.concat(from64To32(this._cipherLength * 8));
// include lengths in hash
this._s = this.ghash(this._hashSubkey, this._s, lengths);
// do GCTR(J_0, S)
var tag = [];
this.cipher.encrypt(this._j0, tag);
for(var i = 0; i < this._ints; ++i) {
this.tag.putInt32(this._s[i] ^ tag[i]);
}
// trim tag to length
this.tag.truncate(this.tag.length() % (this._tagLength / 8));
// check authentication tag
if(options.decrypt && this.tag.bytes() !== this._tag) {
rval = false;
}
return rval;
};
/**
* See NIST SP-800-38D 6.3 (Algorithm 1). This function performs Galois
* field multiplication. The field, GF(2^128), is defined by the polynomial:
*
* x^128 + x^7 + x^2 + x + 1
*
* Which is represented in little-endian binary form as: 11100001 (0xe1). When
* the value of a coefficient is 1, a bit is set. The value R, is the
* concatenation of this value and 120 zero bits, yielding a 128-bit value
* which matches the block size.
*
* This function will multiply two elements (vectors of bytes), X and Y, in
* the field GF(2^128). The result is initialized to zero. For each bit of
* X (out of 128), x_i, if x_i is set, then the result is multiplied (XOR'd)
* by the current value of Y. For each bit, the value of Y will be raised by
* a power of x (multiplied by the polynomial x). This can be achieved by
* shifting Y once to the right. If the current value of Y, prior to being
* multiplied by x, has 0 as its LSB, then it is a 127th degree polynomial.
* Otherwise, we must divide by R after shifting to find the remainder.
*
* @param x the first block to multiply by the second.
* @param y the second block to multiply by the first.
*
* @return the block result of the multiplication.
*/
modes.gcm.prototype.multiply = function(x, y) {
var z_i = [0, 0, 0, 0];
var v_i = y.slice(0);
// calculate Z_128 (block has 128 bits)
for(var i = 0; i < 128; ++i) {
// if x_i is 0, Z_{i+1} = Z_i (unchanged)
// else Z_{i+1} = Z_i ^ V_i
// get x_i by finding 32-bit int position, then left shift 1 by remainder
var x_i = x[(i / 32) | 0] & (1 << (31 - i % 32));
if(x_i) {
z_i[0] ^= v_i[0];
z_i[1] ^= v_i[1];
z_i[2] ^= v_i[2];
z_i[3] ^= v_i[3];
}
// if LSB(V_i) is 1, V_i = V_i >> 1
// else V_i = (V_i >> 1) ^ R
this.pow(v_i, v_i);
}
return z_i;
};
modes.gcm.prototype.pow = function(x, out) {
// if LSB(x) is 1, x = x >>> 1
// else x = (x >>> 1) ^ R
var lsb = x[3] & 1;
// always do x >>> 1:
// starting with the rightmost integer, shift each integer to the right
// one bit, pulling in the bit from the integer to the left as its top
// most bit (do this for the last 3 integers)
for(var i = 3; i > 0; --i) {
out[i] = (x[i] >>> 1) | ((x[i - 1] & 1) << 31);
}
// shift the first integer normally
out[0] = x[0] >>> 1;
// if lsb was not set, then polynomial had a degree of 127 and doesn't
// need to divided; otherwise, XOR with R to find the remainder; we only
// need to XOR the first integer since R technically ends w/120 zero bits
if(lsb) {
out[0] ^= this._R;
}
};
modes.gcm.prototype.tableMultiply = function(x) {
// assumes 4-bit tables are used
var z = [0, 0, 0, 0];
for(var i = 0; i < 32; ++i) {
var idx = (i / 8) | 0;
var x_i = (x[idx] >>> ((7 - (i % 8)) * 4)) & 0xF;
var ah = this._m[i][x_i];
z[0] ^= ah[0];
z[1] ^= ah[1];
z[2] ^= ah[2];
z[3] ^= ah[3];
}
return z;
};
/**
* A continuing version of the GHASH algorithm that operates on a single
* block. The hash block, last hash value (Ym) and the new block to hash
* are given.
*
* @param h the hash block.
* @param y the previous value for Ym, use [0, 0, 0, 0] for a new hash.
* @param x the block to hash.
*
* @return the hashed value (Ym).
*/
modes.gcm.prototype.ghash = function(h, y, x) {
y[0] ^= x[0];
y[1] ^= x[1];
y[2] ^= x[2];
y[3] ^= x[3];
return this.tableMultiply(y);
//return this.multiply(y, h);
};
/**
* Precomputes a table for multiplying against the hash subkey. This
* mechanism provides a substantial speed increase over multiplication
* performed without a table. The table-based multiplication this table is
* for solves X * H by multiplying each component of X by H and then
* composing the results together using XOR.
*
* This function can be used to generate tables with different bit sizes
* for the components, however, this implementation assumes there are
* 32 components of X (which is a 16 byte vector), therefore each component
* takes 4-bits (so the table is constructed with bits=4).
*
* @param h the hash subkey.
* @param bits the bit size for a component.
*/
modes.gcm.prototype.generateHashTable = function(h, bits) {
// TODO: There are further optimizations that would use only the
// first table M_0 (or some variant) along with a remainder table;
// this can be explored in the future
var multiplier = 8 / bits;
var perInt = 4 * multiplier;
var size = 16 * multiplier;
var m = new Array(size);
for(var i = 0; i < size; ++i) {
var tmp = [0, 0, 0, 0];
var idx = (i / perInt) | 0;
var shft = ((perInt - 1 - (i % perInt)) * bits);
tmp[idx] = (1 << (bits - 1)) << shft;
m[i] = this.generateSubHashTable(this.multiply(tmp, h), bits);
}
return m;
};
/**
* Generates a table for multiplying against the hash subkey for one
* particular component (out of all possible component values).
*
* @param mid the pre-multiplied value for the middle key of the table.
* @param bits the bit size for a component.
*/
modes.gcm.prototype.generateSubHashTable = function(mid, bits) {
// compute the table quickly by minimizing the number of
// POW operations -- they only need to be performed for powers of 2,
// all other entries can be composed from those powers using XOR
var size = 1 << bits;
var half = size >>> 1;
var m = new Array(size);
m[half] = mid.slice(0);
var i = half >>> 1;
while(i > 0) {
// raise m0[2 * i] and store in m0[i]
this.pow(m[2 * i], m[i] = []);
i >>= 1;
}
i = 2;
while(i < half) {
for(var j = 1; j < i; ++j) {
var m_i = m[i];
var m_j = m[j];
m[i + j] = [
m_i[0] ^ m_j[0],
m_i[1] ^ m_j[1],
m_i[2] ^ m_j[2],
m_i[3] ^ m_j[3]
];
}
i *= 2;
}
m[0] = [0, 0, 0, 0];
/* Note: We could avoid storing these by doing composition during multiply
calculate top half using composition by speed is preferred. */
for(i = half + 1; i < size; ++i) {
var c = m[i ^ half];
m[i] = [mid[0] ^ c[0], mid[1] ^ c[1], mid[2] ^ c[2], mid[3] ^ c[3]];
}
return m;
};
/** Utility functions */
function transformIV(iv, blockSize) {
if(typeof iv === 'string') {
// convert iv string into byte buffer
iv = forge$h.util.createBuffer(iv);
}
if(forge$h.util.isArray(iv) && iv.length > 4) {
// convert iv byte array into byte buffer
var tmp = iv;
iv = forge$h.util.createBuffer();
for(var i = 0; i < tmp.length; ++i) {
iv.putByte(tmp[i]);
}
}
if(iv.length() < blockSize) {
throw new Error(
'Invalid IV length; got ' + iv.length() +
' bytes and expected ' + blockSize + ' bytes.');
}
if(!forge$h.util.isArray(iv)) {
// convert iv byte buffer into 32-bit integer array
var ints = [];
var blocks = blockSize / 4;
for(var i = 0; i < blocks; ++i) {
ints.push(iv.getInt32());
}
iv = ints;
}
return iv;
}
function inc32(block) {
// increment last 32 bits of block only
block[block.length - 1] = (block[block.length - 1] + 1) & 0xFFFFFFFF;
}
function from64To32(num) {
// convert 64-bit number to two BE Int32s
return [(num / 0x100000000) | 0, num & 0xFFFFFFFF];
}
/**
* Advanced Encryption Standard (AES) implementation.
*
* This implementation is based on the public domain library 'jscrypto' which
* was written by:
*
* Emily Stark (estark@stanford.edu)
* Mike Hamburg (mhamburg@stanford.edu)
* Dan Boneh (dabo@cs.stanford.edu)
*
* Parts of this code are based on the OpenSSL implementation of AES:
* http://www.openssl.org
*
* @author Dave Longley
*
* Copyright (c) 2010-2014 Digital Bazaar, Inc.
*/
var forge$g = forge$m;
/* AES API */
forge$g.aes = forge$g.aes || {};
/**
* Deprecated. Instead, use:
*
* var cipher = forge.cipher.createCipher('AES-<mode>', key);
* cipher.start({iv: iv});
*
* Creates an AES cipher object to encrypt data using the given symmetric key.
* The output will be stored in the 'output' member of the returned cipher.
*
* The key and iv may be given as a string of bytes, an array of bytes,
* a byte buffer, or an array of 32-bit words.
*
* @param key the symmetric key to use.
* @param iv the initialization vector to use.
* @param output the buffer to write to, null to create one.
* @param mode the cipher mode to use (default: 'CBC').
*
* @return the cipher.
*/
forge$g.aes.startEncrypting = function(key, iv, output, mode) {
var cipher = _createCipher$1({
key: key,
output: output,
decrypt: false,
mode: mode
});
cipher.start(iv);
return cipher;
};
/**
* Deprecated. Instead, use:
*
* var cipher = forge.cipher.createCipher('AES-<mode>', key);
*
* Creates an AES cipher object to encrypt data using the given symmetric key.
*
* The key may be given as a string of bytes, an array of bytes, a
* byte buffer, or an array of 32-bit words.
*
* @param key the symmetric key to use.
* @param mode the cipher mode to use (default: 'CBC').
*
* @return the cipher.
*/
forge$g.aes.createEncryptionCipher = function(key, mode) {
return _createCipher$1({
key: key,
output: null,
decrypt: false,
mode: mode
});
};
/**
* Deprecated. Instead, use:
*
* var decipher = forge.cipher.createDecipher('AES-<mode>', key);
* decipher.start({iv: iv});
*
* Creates an AES cipher object to decrypt data using the given symmetric key.
* The output will be stored in the 'output' member of the returned cipher.
*
* The key and iv may be given as a string of bytes, an array of bytes,
* a byte buffer, or an array of 32-bit words.
*
* @param key the symmetric key to use.
* @param iv the initialization vector to use.
* @param output the buffer to write to, null to create one.
* @param mode the cipher mode to use (default: 'CBC').
*
* @return the cipher.
*/
forge$g.aes.startDecrypting = function(key, iv, output, mode) {
var cipher = _createCipher$1({
key: key,
output: output,
decrypt: true,
mode: mode
});
cipher.start(iv);
return cipher;
};
/**
* Deprecated. Instead, use:
*
* var decipher = forge.cipher.createDecipher('AES-<mode>', key);
*
* Creates an AES cipher object to decrypt data using the given symmetric key.
*
* The key may be given as a string of bytes, an array of bytes, a
* byte buffer, or an array of 32-bit words.
*
* @param key the symmetric key to use.
* @param mode the cipher mode to use (default: 'CBC').
*
* @return the cipher.
*/
forge$g.aes.createDecryptionCipher = function(key, mode) {
return _createCipher$1({
key: key,
output: null,
decrypt: true,
mode: mode
});
};
/**
* Creates a new AES cipher algorithm object.
*
* @param name the name of the algorithm.
* @param mode the mode factory function.
*
* @return the AES algorithm object.
*/
forge$g.aes.Algorithm = function(name, mode) {
if(!init$1) {
initialize();
}
var self = this;
self.name = name;
self.mode = new mode({
blockSize: 16,
cipher: {
encrypt: function(inBlock, outBlock) {
return _updateBlock$1(self._w, inBlock, outBlock, false);
},
decrypt: function(inBlock, outBlock) {
return _updateBlock$1(self._w, inBlock, outBlock, true);
}
}
});
self._init = false;
};
/**
* Initializes this AES algorithm by expanding its key.
*
* @param options the options to use.
* key the key to use with this algorithm.
* decrypt true if the algorithm should be initialized for decryption,
* false for encryption.
*/
forge$g.aes.Algorithm.prototype.initialize = function(options) {
if(this._init) {
return;
}
var key = options.key;
var tmp;
/* Note: The key may be a string of bytes, an array of bytes, a byte
buffer, or an array of 32-bit integers. If the key is in bytes, then
it must be 16, 24, or 32 bytes in length. If it is in 32-bit
integers, it must be 4, 6, or 8 integers long. */
if(typeof key === 'string' &&
(key.length === 16 || key.length === 24 || key.length === 32)) {
// convert key string into byte buffer
key = forge$g.util.createBuffer(key);
} else if(forge$g.util.isArray(key) &&
(key.length === 16 || key.length === 24 || key.length === 32)) {
// convert key integer array into byte buffer
tmp = key;
key = forge$g.util.createBuffer();
for(var i = 0; i < tmp.length; ++i) {
key.putByte(tmp[i]);
}
}
// convert key byte buffer into 32-bit integer array
if(!forge$g.util.isArray(key)) {
tmp = key;
key = [];
// key lengths of 16, 24, 32 bytes allowed
var len = tmp.length();
if(len === 16 || len === 24 || len === 32) {
len = len >>> 2;
for(var i = 0; i < len; ++i) {
key.push(tmp.getInt32());
}
}
}
// key must be an array of 32-bit integers by now
if(!forge$g.util.isArray(key) ||
!(key.length === 4 || key.length === 6 || key.length === 8)) {
throw new Error('Invalid key parameter.');
}
// encryption operation is always used for these modes
var mode = this.mode.name;
var encryptOp = (['CFB', 'OFB', 'CTR', 'GCM'].indexOf(mode) !== -1);
// do key expansion
this._w = _expandKey(key, options.decrypt && !encryptOp);
this._init = true;
};
/**
* Expands a key. Typically only used for testing.
*
* @param key the symmetric key to expand, as an array of 32-bit words.
* @param decrypt true to expand for decryption, false for encryption.
*
* @return the expanded key.
*/
forge$g.aes._expandKey = function(key, decrypt) {
if(!init$1) {
initialize();
}
return _expandKey(key, decrypt);
};
/**
* Updates a single block. Typically only used for testing.
*
* @param w the expanded key to use.
* @param input an array of block-size 32-bit words.
* @param output an array of block-size 32-bit words.
* @param decrypt true to decrypt, false to encrypt.
*/
forge$g.aes._updateBlock = _updateBlock$1;
/** Register AES algorithms **/
registerAlgorithm$1('AES-ECB', forge$g.cipher.modes.ecb);
registerAlgorithm$1('AES-CBC', forge$g.cipher.modes.cbc);
registerAlgorithm$1('AES-CFB', forge$g.cipher.modes.cfb);
registerAlgorithm$1('AES-OFB', forge$g.cipher.modes.ofb);
registerAlgorithm$1('AES-CTR', forge$g.cipher.modes.ctr);
registerAlgorithm$1('AES-GCM', forge$g.cipher.modes.gcm);
function registerAlgorithm$1(name, mode) {
var factory = function() {
return new forge$g.aes.Algorithm(name, mode);
};
forge$g.cipher.registerAlgorithm(name, factory);
}
/** AES implementation **/
var init$1 = false; // not yet initialized
var Nb = 4; // number of words comprising the state (AES = 4)
var sbox; // non-linear substitution table used in key expansion
var isbox; // inversion of sbox
var rcon; // round constant word array
var mix; // mix-columns table
var imix; // inverse mix-columns table
/**
* Performs initialization, ie: precomputes tables to optimize for speed.
*
* One way to understand how AES works is to imagine that 'addition' and
* 'multiplication' are interfaces that require certain mathematical
* properties to hold true (ie: they are associative) but they might have
* different implementations and produce different kinds of results ...
* provided that their mathematical properties remain true. AES defines
* its own methods of addition and multiplication but keeps some important
* properties the same, ie: associativity and distributivity. The
* explanation below tries to shed some light on how AES defines addition
* and multiplication of bytes and 32-bit words in order to perform its
* encryption and decryption algorithms.
*
* The basics:
*
* The AES algorithm views bytes as binary representations of polynomials
* that have either 1 or 0 as the coefficients. It defines the addition
* or subtraction of two bytes as the XOR operation. It also defines the
* multiplication of two bytes as a finite field referred to as GF(2^8)
* (Note: 'GF' means "Galois Field" which is a field that contains a finite
* number of elements so GF(2^8) has 256 elements).
*
* This means that any two bytes can be represented as binary polynomials;
* when they multiplied together and modularly reduced by an irreducible
* polynomial of the 8th degree, the results are the field GF(2^8). The
* specific irreducible polynomial that AES uses in hexadecimal is 0x11b.
* This multiplication is associative with 0x01 as the identity:
*
* (b * 0x01 = GF(b, 0x01) = b).
*
* The operation GF(b, 0x02) can be performed at the byte level by left
* shifting b once and then XOR'ing it (to perform the modular reduction)
* with 0x11b if b is >= 128. Repeated application of the multiplication
* of 0x02 can be used to implement the multiplication of any two bytes.
*
* For instance, multiplying 0x57 and 0x13, denoted as GF(0x57, 0x13), can
* be performed by factoring 0x13 into 0x01, 0x02, and 0x10. Then these
* factors can each be multiplied by 0x57 and then added together. To do
* the multiplication, values for 0x57 multiplied by each of these 3 factors
* can be precomputed and stored in a table. To add them, the values from
* the table are XOR'd together.
*
* AES also defines addition and multiplication of words, that is 4-byte
* numbers represented as polynomials of 3 degrees where the coefficients
* are the values of the bytes.
*
* The word [a0, a1, a2, a3] is a polynomial a3x^3 + a2x^2 + a1x + a0.
*
* Addition is performed by XOR'ing like powers of x. Multiplication
* is performed in two steps, the first is an algebriac expansion as
* you would do normally (where addition is XOR). But the result is
* a polynomial larger than 3 degrees and thus it cannot fit in a word. So
* next the result is modularly reduced by an AES-specific polynomial of
* degree 4 which will always produce a polynomial of less than 4 degrees
* such that it will fit in a word. In AES, this polynomial is x^4 + 1.
*
* The modular product of two polynomials 'a' and 'b' is thus:
*
* d(x) = d3x^3 + d2x^2 + d1x + d0
* with
* d0 = GF(a0, b0) ^ GF(a3, b1) ^ GF(a2, b2) ^ GF(a1, b3)
* d1 = GF(a1, b0) ^ GF(a0, b1) ^ GF(a3, b2) ^ GF(a2, b3)
* d2 = GF(a2, b0) ^ GF(a1, b1) ^ GF(a0, b2) ^ GF(a3, b3)
* d3 = GF(a3, b0) ^ GF(a2, b1) ^ GF(a1, b2) ^ GF(a0, b3)
*
* As a matrix:
*
* [d0] = [a0 a3 a2 a1][b0]
* [d1] [a1 a0 a3 a2][b1]
* [d2] [a2 a1 a0 a3][b2]
* [d3] [a3 a2 a1 a0][b3]
*
* Special polynomials defined by AES (0x02 == {02}):
* a(x) = {03}x^3 + {01}x^2 + {01}x + {02}
* a^-1(x) = {0b}x^3 + {0d}x^2 + {09}x + {0e}.
*
* These polynomials are used in the MixColumns() and InverseMixColumns()
* operations, respectively, to cause each element in the state to affect
* the output (referred to as diffusing).
*
* RotWord() uses: a0 = a1 = a2 = {00} and a3 = {01}, which is the
* polynomial x3.
*
* The ShiftRows() method modifies the last 3 rows in the state (where
* the state is 4 words with 4 bytes per word) by shifting bytes cyclically.
* The 1st byte in the second row is moved to the end of the row. The 1st
* and 2nd bytes in the third row are moved to the end of the row. The 1st,
* 2nd, and 3rd bytes are moved in the fourth row.
*
* More details on how AES arithmetic works:
*
* In the polynomial representation of binary numbers, XOR performs addition
* and subtraction and multiplication in GF(2^8) denoted as GF(a, b)
* corresponds with the multiplication of polynomials modulo an irreducible
* polynomial of degree 8. In other words, for AES, GF(a, b) will multiply
* polynomial 'a' with polynomial 'b' and then do a modular reduction by
* an AES-specific irreducible polynomial of degree 8.
*
* A polynomial is irreducible if its only divisors are one and itself. For
* the AES algorithm, this irreducible polynomial is:
*
* m(x) = x^8 + x^4 + x^3 + x + 1,
*
* or {01}{1b} in hexadecimal notation, where each coefficient is a bit:
* 100011011 = 283 = 0x11b.
*
* For example, GF(0x57, 0x83) = 0xc1 because
*
* 0x57 = 87 = 01010111 = x^6 + x^4 + x^2 + x + 1
* 0x85 = 131 = 10000101 = x^7 + x + 1
*
* (x^6 + x^4 + x^2 + x + 1) * (x^7 + x + 1)
* = x^13 + x^11 + x^9 + x^8 + x^7 +
* x^7 + x^5 + x^3 + x^2 + x +
* x^6 + x^4 + x^2 + x + 1
* = x^13 + x^11 + x^9 + x^8 + x^6 + x^5 + x^4 + x^3 + 1 = y
* y modulo (x^8 + x^4 + x^3 + x + 1)
* = x^7 + x^6 + 1.
*
* The modular reduction by m(x) guarantees the result will be a binary
* polynomial of less than degree 8, so that it can fit in a byte.
*
* The operation to multiply a binary polynomial b with x (the polynomial
* x in binary representation is 00000010) is:
*
* b_7x^8 + b_6x^7 + b_5x^6 + b_4x^5 + b_3x^4 + b_2x^3 + b_1x^2 + b_0x^1
*
* To get GF(b, x) we must reduce that by m(x). If b_7 is 0 (that is the
* most significant bit is 0 in b) then the result is already reduced. If
* it is 1, then we can reduce it by subtracting m(x) via an XOR.
*
* It follows that multiplication by x (00000010 or 0x02) can be implemented
* by performing a left shift followed by a conditional bitwise XOR with
* 0x1b. This operation on bytes is denoted by xtime(). Multiplication by
* higher powers of x can be implemented by repeated application of xtime().
*
* By adding intermediate results, multiplication by any constant can be
* implemented. For instance:
*
* GF(0x57, 0x13) = 0xfe because:
*
* xtime(b) = (b & 128) ? (b << 1 ^ 0x11b) : (b << 1)
*
* Note: We XOR with 0x11b instead of 0x1b because in javascript our
* datatype for b can be larger than 1 byte, so a left shift will not
* automatically eliminate bits that overflow a byte ... by XOR'ing the
* overflow bit with 1 (the extra one from 0x11b) we zero it out.
*
* GF(0x57, 0x02) = xtime(0x57) = 0xae
* GF(0x57, 0x04) = xtime(0xae) = 0x47
* GF(0x57, 0x08) = xtime(0x47) = 0x8e
* GF(0x57, 0x10) = xtime(0x8e) = 0x07
*
* GF(0x57, 0x13) = GF(0x57, (0x01 ^ 0x02 ^ 0x10))
*
* And by the distributive property (since XOR is addition and GF() is
* multiplication):
*
* = GF(0x57, 0x01) ^ GF(0x57, 0x02) ^ GF(0x57, 0x10)
* = 0x57 ^ 0xae ^ 0x07
* = 0xfe.
*/
function initialize() {
init$1 = true;
/* Populate the Rcon table. These are the values given by
[x^(i-1),{00},{00},{00}] where x^(i-1) are powers of x (and x = 0x02)
in the field of GF(2^8), where i starts at 1.
rcon[0] = [0x00, 0x00, 0x00, 0x00]
rcon[1] = [0x01, 0x00, 0x00, 0x00] 2^(1-1) = 2^0 = 1
rcon[2] = [0x02, 0x00, 0x00, 0x00] 2^(2-1) = 2^1 = 2
...
rcon[9] = [0x1B, 0x00, 0x00, 0x00] 2^(9-1) = 2^8 = 0x1B
rcon[10] = [0x36, 0x00, 0x00, 0x00] 2^(10-1) = 2^9 = 0x36
We only store the first byte because it is the only one used.
*/
rcon = [0x00, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1B, 0x36];
// compute xtime table which maps i onto GF(i, 0x02)
var xtime = new Array(256);
for(var i = 0; i < 128; ++i) {
xtime[i] = i << 1;
xtime[i + 128] = (i + 128) << 1 ^ 0x11B;
}
// compute all other tables
sbox = new Array(256);
isbox = new Array(256);
mix = new Array(4);
imix = new Array(4);
for(var i = 0; i < 4; ++i) {
mix[i] = new Array(256);
imix[i] = new Array(256);
}
var e = 0, ei = 0, e2, e4, e8, sx, sx2, me, ime;
for(var i = 0; i < 256; ++i) {
/* We need to generate the SubBytes() sbox and isbox tables so that
we can perform byte substitutions. This requires us to traverse
all of the elements in GF, find their multiplicative inverses,
and apply to each the following affine transformation:
bi' = bi ^ b(i + 4) mod 8 ^ b(i + 5) mod 8 ^ b(i + 6) mod 8 ^
b(i + 7) mod 8 ^ ci
for 0 <= i < 8, where bi is the ith bit of the byte, and ci is the
ith bit of a byte c with the value {63} or {01100011}.
It is possible to traverse every possible value in a Galois field
using what is referred to as a 'generator'. There are many
generators (128 out of 256): 3,5,6,9,11,82 to name a few. To fully
traverse GF we iterate 255 times, multiplying by our generator
each time.
On each iteration we can determine the multiplicative inverse for
the current element.
Suppose there is an element in GF 'e'. For a given generator 'g',
e = g^x. The multiplicative inverse of e is g^(255 - x). It turns
out that if use the inverse of a generator as another generator
it will produce all of the corresponding multiplicative inverses
at the same time. For this reason, we choose 5 as our inverse
generator because it only requires 2 multiplies and 1 add and its
inverse, 82, requires relatively few operations as well.
In order to apply the affine transformation, the multiplicative
inverse 'ei' of 'e' can be repeatedly XOR'd (4 times) with a
bit-cycling of 'ei'. To do this 'ei' is first stored in 's' and
'x'. Then 's' is left shifted and the high bit of 's' is made the
low bit. The resulting value is stored in 's'. Then 'x' is XOR'd
with 's' and stored in 'x'. On each subsequent iteration the same
operation is performed. When 4 iterations are complete, 'x' is
XOR'd with 'c' (0x63) and the transformed value is stored in 'x'.
For example:
s = 01000001
x = 01000001
iteration 1: s = 10000010, x ^= s
iteration 2: s = 00000101, x ^= s
iteration 3: s = 00001010, x ^= s
iteration 4: s = 00010100, x ^= s
x ^= 0x63
This can be done with a loop where s = (s << 1) | (s >> 7). However,
it can also be done by using a single 16-bit (in this case 32-bit)
number 'sx'. Since XOR is an associative operation, we can set 'sx'
to 'ei' and then XOR it with 'sx' left-shifted 1,2,3, and 4 times.
The most significant bits will flow into the high 8 bit positions
and be correctly XOR'd with one another. All that remains will be
to cycle the high 8 bits by XOR'ing them all with the lower 8 bits
afterwards.
At the same time we're populating sbox and isbox we can precompute
the multiplication we'll need to do to do MixColumns() later.
*/
// apply affine transformation
sx = ei ^ (ei << 1) ^ (ei << 2) ^ (ei << 3) ^ (ei << 4);
sx = (sx >> 8) ^ (sx & 255) ^ 0x63;
// update tables
sbox[e] = sx;
isbox[sx] = e;
/* Mixing columns is done using matrix multiplication. The columns
that are to be mixed are each a single word in the current state.
The state has Nb columns (4 columns). Therefore each column is a
4 byte word. So to mix the columns in a single column 'c' where
its rows are r0, r1, r2, and r3, we use the following matrix
multiplication:
[2 3 1 1]*[r0,c]=[r'0,c]
[1 2 3 1] [r1,c] [r'1,c]
[1 1 2 3] [r2,c] [r'2,c]
[3 1 1 2] [r3,c] [r'3,c]
r0, r1, r2, and r3 are each 1 byte of one of the words in the
state (a column). To do matrix multiplication for each mixed
column c' we multiply the corresponding row from the left matrix
with the corresponding column from the right matrix. In total, we
get 4 equations:
r0,c' = 2*r0,c + 3*r1,c + 1*r2,c + 1*r3,c
r1,c' = 1*r0,c + 2*r1,c + 3*r2,c + 1*r3,c
r2,c' = 1*r0,c + 1*r1,c + 2*r2,c + 3*r3,c
r3,c' = 3*r0,c + 1*r1,c + 1*r2,c + 2*r3,c
As usual, the multiplication is as previously defined and the
addition is XOR. In order to optimize mixing columns we can store
the multiplication results in tables. If you think of the whole
column as a word (it might help to visualize by mentally rotating
the equations above by counterclockwise 90 degrees) then you can
see that it would be useful to map the multiplications performed on
each byte (r0, r1, r2, r3) onto a word as well. For instance, we
could map 2*r0,1*r0,1*r0,3*r0 onto a word by storing 2*r0 in the
highest 8 bits and 3*r0 in the lowest 8 bits (with the other two
respectively in the middle). This means that a table can be
constructed that uses r0 as an index to the word. We can do the
same with r1, r2, and r3, creating a total of 4 tables.
To construct a full c', we can just look up each byte of c in
their respective tables and XOR the results together.
Also, to build each table we only have to calculate the word
for 2,1,1,3 for every byte ... which we can do on each iteration
of this loop since we will iterate over every byte. After we have
calculated 2,1,1,3 we can get the results for the other tables
by cycling the byte at the end to the beginning. For instance
we can take the result of table 2,1,1,3 and produce table 3,2,1,1
by moving the right most byte to the left most position just like
how you can imagine the 3 moved out of 2,1,1,3 and to the front
to produce 3,2,1,1.
There is another optimization in that the same multiples of
the current element we need in order to advance our generator
to the next iteration can be reused in performing the 2,1,1,3
calculation. We also calculate the inverse mix column tables,
with e,9,d,b being the inverse of 2,1,1,3.
When we're done, and we need to actually mix columns, the first
byte of each state word should be put through mix[0] (2,1,1,3),
the second through mix[1] (3,2,1,1) and so forth. Then they should
be XOR'd together to produce the fully mixed column.
*/
// calculate mix and imix table values
sx2 = xtime[sx];
e2 = xtime[e];
e4 = xtime[e2];
e8 = xtime[e4];
me =
(sx2 << 24) ^ // 2
(sx << 16) ^ // 1
(sx << 8) ^ // 1
(sx ^ sx2); // 3
ime =
(e2 ^ e4 ^ e8) << 24 ^ // E (14)
(e ^ e8) << 16 ^ // 9
(e ^ e4 ^ e8) << 8 ^ // D (13)
(e ^ e2 ^ e8); // B (11)
// produce each of the mix tables by rotating the 2,1,1,3 value
for(var n = 0; n < 4; ++n) {
mix[n][e] = me;
imix[n][sx] = ime;
// cycle the right most byte to the left most position
// ie: 2,1,1,3 becomes 3,2,1,1
me = me << 24 | me >>> 8;
ime = ime << 24 | ime >>> 8;
}
// get next element and inverse
if(e === 0) {
// 1 is the inverse of 1
e = ei = 1;
} else {
// e = 2e + 2*2*2*(10e)) = multiply e by 82 (chosen generator)
// ei = ei + 2*2*ei = multiply ei by 5 (inverse generator)
e = e2 ^ xtime[xtime[xtime[e2 ^ e8]]];
ei ^= xtime[xtime[ei]];
}
}
}
/**
* Generates a key schedule using the AES key expansion algorithm.
*
* The AES algorithm takes the Cipher Key, K, and performs a Key Expansion
* routine to generate a key schedule. The Key Expansion generates a total
* of Nb*(Nr + 1) words: the algorithm requires an initial set of Nb words,
* and each of the Nr rounds requires Nb words of key data. The resulting
* key schedule consists of a linear array of 4-byte words, denoted [wi ],
* with i in the range 0 <= i < Nb(Nr + 1).
*
* KeyExpansion(byte key[4*Nk], word w[Nb*(Nr+1)], Nk)
* AES-128 (Nb=4, Nk=4, Nr=10)
* AES-192 (Nb=4, Nk=6, Nr=12)
* AES-256 (Nb=4, Nk=8, Nr=14)
* Note: Nr=Nk+6.
*
* Nb is the number of columns (32-bit words) comprising the State (or
* number of bytes in a block). For AES, Nb=4.
*
* @param key the key to schedule (as an array of 32-bit words).
* @param decrypt true to modify the key schedule to decrypt, false not to.
*
* @return the generated key schedule.
*/
function _expandKey(key, decrypt) {
// copy the key's words to initialize the key schedule
var w = key.slice(0);
/* RotWord() will rotate a word, moving the first byte to the last
byte's position (shifting the other bytes left).
We will be getting the value of Rcon at i / Nk. 'i' will iterate
from Nk to (Nb * Nr+1). Nk = 4 (4 byte key), Nb = 4 (4 words in
a block), Nr = Nk + 6 (10). Therefore 'i' will iterate from
4 to 44 (exclusive). Each time we iterate 4 times, i / Nk will
increase by 1. We use a counter iNk to keep track of this.
*/
// go through the rounds expanding the key
var temp, iNk = 1;
var Nk = w.length;
var Nr1 = Nk + 6 + 1;
var end = Nb * Nr1;
for(var i = Nk; i < end; ++i) {
temp = w[i - 1];
if(i % Nk === 0) {
// temp = SubWord(RotWord(temp)) ^ Rcon[i / Nk]
temp =
sbox[temp >>> 16 & 255] << 24 ^
sbox[temp >>> 8 & 255] << 16 ^
sbox[temp & 255] << 8 ^
sbox[temp >>> 24] ^ (rcon[iNk] << 24);
iNk++;
} else if(Nk > 6 && (i % Nk === 4)) {
// temp = SubWord(temp)
temp =
sbox[temp >>> 24] << 24 ^
sbox[temp >>> 16 & 255] << 16 ^
sbox[temp >>> 8 & 255] << 8 ^
sbox[temp & 255];
}
w[i] = w[i - Nk] ^ temp;
}
/* When we are updating a cipher block we always use the code path for
encryption whether we are decrypting or not (to shorten code and
simplify the generation of look up tables). However, because there
are differences in the decryption algorithm, other than just swapping
in different look up tables, we must transform our key schedule to
account for these changes:
1. The decryption algorithm gets its key rounds in reverse order.
2. The decryption algorithm adds the round key before mixing columns
instead of afterwards.
We don't need to modify our key schedule to handle the first case,
we can just traverse the key schedule in reverse order when decrypting.
The second case requires a little work.
The tables we built for performing rounds will take an input and then
perform SubBytes() and MixColumns() or, for the decrypt version,
InvSubBytes() and InvMixColumns(). But the decrypt algorithm requires
us to AddRoundKey() before InvMixColumns(). This means we'll need to
apply some transformations to the round key to inverse-mix its columns
so they'll be correct for moving AddRoundKey() to after the state has
had its columns inverse-mixed.
To inverse-mix the columns of the state when we're decrypting we use a
lookup table that will apply InvSubBytes() and InvMixColumns() at the
same time. However, the round key's bytes are not inverse-substituted
in the decryption algorithm. To get around this problem, we can first
substitute the bytes in the round key so that when we apply the
transformation via the InvSubBytes()+InvMixColumns() table, it will
undo our substitution leaving us with the original value that we
want -- and then inverse-mix that value.
This change will correctly alter our key schedule so that we can XOR
each round key with our already transformed decryption state. This
allows us to use the same code path as the encryption algorithm.
We make one more change to the decryption key. Since the decryption
algorithm runs in reverse from the encryption algorithm, we reverse
the order of the round keys to avoid having to iterate over the key
schedule backwards when running the encryption algorithm later in
decryption mode. In addition to reversing the order of the round keys,
we also swap each round key's 2nd and 4th rows. See the comments
section where rounds are performed for more details about why this is
done. These changes are done inline with the other substitution
described above.
*/
if(decrypt) {
var tmp;
var m0 = imix[0];
var m1 = imix[1];
var m2 = imix[2];
var m3 = imix[3];
var wnew = w.slice(0);
end = w.length;
for(var i = 0, wi = end - Nb; i < end; i += Nb, wi -= Nb) {
// do not sub the first or last round key (round keys are Nb
// words) as no column mixing is performed before they are added,
// but do change the key order
if(i === 0 || i === (end - Nb)) {
wnew[i] = w[wi];
wnew[i + 1] = w[wi + 3];
wnew[i + 2] = w[wi + 2];
wnew[i + 3] = w[wi + 1];
} else {
// substitute each round key byte because the inverse-mix
// table will inverse-substitute it (effectively cancel the
// substitution because round key bytes aren't sub'd in
// decryption mode) and swap indexes 3 and 1
for(var n = 0; n < Nb; ++n) {
tmp = w[wi + n];
wnew[i + (3&-n)] =
m0[sbox[tmp >>> 24]] ^
m1[sbox[tmp >>> 16 & 255]] ^
m2[sbox[tmp >>> 8 & 255]] ^
m3[sbox[tmp & 255]];
}
}
}
w = wnew;
}
return w;
}
/**
* Updates a single block (16 bytes) using AES. The update will either
* encrypt or decrypt the block.
*
* @param w the key schedule.
* @param input the input block (an array of 32-bit words).
* @param output the updated output block.
* @param decrypt true to decrypt the block, false to encrypt it.
*/
function _updateBlock$1(w, input, output, decrypt) {
/*
Cipher(byte in[4*Nb], byte out[4*Nb], word w[Nb*(Nr+1)])
begin
byte state[4,Nb]
state = in
AddRoundKey(state, w[0, Nb-1])
for round = 1 step 1 to Nr-1
SubBytes(state)
ShiftRows(state)
MixColumns(state)
AddRoundKey(state, w[round*Nb, (round+1)*Nb-1])
end for
SubBytes(state)
ShiftRows(state)
AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb-1])
out = state
end
InvCipher(byte in[4*Nb], byte out[4*Nb], word w[Nb*(Nr+1)])
begin
byte state[4,Nb]
state = in
AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb-1])
for round = Nr-1 step -1 downto 1
InvShiftRows(state)
InvSubBytes(state)
AddRoundKey(state, w[round*Nb, (round+1)*Nb-1])
InvMixColumns(state)
end for
InvShiftRows(state)
InvSubBytes(state)
AddRoundKey(state, w[0, Nb-1])
out = state
end
*/
// Encrypt: AddRoundKey(state, w[0, Nb-1])
// Decrypt: AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb-1])
var Nr = w.length / 4 - 1;
var m0, m1, m2, m3, sub;
if(decrypt) {
m0 = imix[0];
m1 = imix[1];
m2 = imix[2];
m3 = imix[3];
sub = isbox;
} else {
m0 = mix[0];
m1 = mix[1];
m2 = mix[2];
m3 = mix[3];
sub = sbox;
}
var a, b, c, d, a2, b2, c2;
a = input[0] ^ w[0];
b = input[decrypt ? 3 : 1] ^ w[1];
c = input[2] ^ w[2];
d = input[decrypt ? 1 : 3] ^ w[3];
var i = 3;
/* In order to share code we follow the encryption algorithm when both
encrypting and decrypting. To account for the changes required in the
decryption algorithm, we use different lookup tables when decrypting
and use a modified key schedule to account for the difference in the
order of transformations applied when performing rounds. We also get
key rounds in reverse order (relative to encryption). */
for(var round = 1; round < Nr; ++round) {
/* As described above, we'll be using table lookups to perform the
column mixing. Each column is stored as a word in the state (the
array 'input' has one column as a word at each index). In order to
mix a column, we perform these transformations on each row in c,
which is 1 byte in each word. The new column for c0 is c'0:
m0 m1 m2 m3
r0,c'0 = 2*r0,c0 + 3*r1,c0 + 1*r2,c0 + 1*r3,c0
r1,c'0 = 1*r0,c0 + 2*r1,c0 + 3*r2,c0 + 1*r3,c0
r2,c'0 = 1*r0,c0 + 1*r1,c0 + 2*r2,c0 + 3*r3,c0
r3,c'0 = 3*r0,c0 + 1*r1,c0 + 1*r2,c0 + 2*r3,c0
So using mix tables where c0 is a word with r0 being its upper
8 bits and r3 being its lower 8 bits:
m0[c0 >> 24] will yield this word: [2*r0,1*r0,1*r0,3*r0]
...
m3[c0 & 255] will yield this word: [1*r3,1*r3,3*r3,2*r3]
Therefore to mix the columns in each word in the state we
do the following (& 255 omitted for brevity):
c'0,r0 = m0[c0 >> 24] ^ m1[c1 >> 16] ^ m2[c2 >> 8] ^ m3[c3]
c'0,r1 = m0[c0 >> 24] ^ m1[c1 >> 16] ^ m2[c2 >> 8] ^ m3[c3]
c'0,r2 = m0[c0 >> 24] ^ m1[c1 >> 16] ^ m2[c2 >> 8] ^ m3[c3]
c'0,r3 = m0[c0 >> 24] ^ m1[c1 >> 16] ^ m2[c2 >> 8] ^ m3[c3]
However, before mixing, the algorithm requires us to perform
ShiftRows(). The ShiftRows() transformation cyclically shifts the
last 3 rows of the state over different offsets. The first row
(r = 0) is not shifted.
s'_r,c = s_r,(c + shift(r, Nb) mod Nb
for 0 < r < 4 and 0 <= c < Nb and
shift(1, 4) = 1
shift(2, 4) = 2
shift(3, 4) = 3.
This causes the first byte in r = 1 to be moved to the end of
the row, the first 2 bytes in r = 2 to be moved to the end of
the row, the first 3 bytes in r = 3 to be moved to the end of
the row:
r1: [c0 c1 c2 c3] => [c1 c2 c3 c0]
r2: [c0 c1 c2 c3] [c2 c3 c0 c1]
r3: [c0 c1 c2 c3] [c3 c0 c1 c2]
We can make these substitutions inline with our column mixing to
generate an updated set of equations to produce each word in the
state (note the columns have changed positions):
c0 c1 c2 c3 => c0 c1 c2 c3
c0 c1 c2 c3 c1 c2 c3 c0 (cycled 1 byte)
c0 c1 c2 c3 c2 c3 c0 c1 (cycled 2 bytes)
c0 c1 c2 c3 c3 c0 c1 c2 (cycled 3 bytes)
Therefore:
c'0 = 2*r0,c0 + 3*r1,c1 + 1*r2,c2 + 1*r3,c3
c'0 = 1*r0,c0 + 2*r1,c1 + 3*r2,c2 + 1*r3,c3
c'0 = 1*r0,c0 + 1*r1,c1 + 2*r2,c2 + 3*r3,c3
c'0 = 3*r0,c0 + 1*r1,c1 + 1*r2,c2 + 2*r3,c3
c'1 = 2*r0,c1 + 3*r1,c2 + 1*r2,c3 + 1*r3,c0
c'1 = 1*r0,c1 + 2*r1,c2 + 3*r2,c3 + 1*r3,c0
c'1 = 1*r0,c1 + 1*r1,c2 + 2*r2,c3 + 3*r3,c0
c'1 = 3*r0,c1 + 1*r1,c2 + 1*r2,c3 + 2*r3,c0
... and so forth for c'2 and c'3. The important distinction is
that the columns are cycling, with c0 being used with the m0
map when calculating c0, but c1 being used with the m0 map when
calculating c1 ... and so forth.
When performing the inverse we transform the mirror image and
skip the bottom row, instead of the top one, and move upwards:
c3 c2 c1 c0 => c0 c3 c2 c1 (cycled 3 bytes) *same as encryption
c3 c2 c1 c0 c1 c0 c3 c2 (cycled 2 bytes)
c3 c2 c1 c0 c2 c1 c0 c3 (cycled 1 byte) *same as encryption
c3 c2 c1 c0 c3 c2 c1 c0
If you compare the resulting matrices for ShiftRows()+MixColumns()
and for InvShiftRows()+InvMixColumns() the 2nd and 4th columns are
different (in encrypt mode vs. decrypt mode). So in order to use
the same code to handle both encryption and decryption, we will
need to do some mapping.
If in encryption mode we let a=c0, b=c1, c=c2, d=c3, and r<N> be
a row number in the state, then the resulting matrix in encryption
mode for applying the above transformations would be:
r1: a b c d
r2: b c d a
r3: c d a b
r4: d a b c
If we did the same in decryption mode we would get:
r1: a d c b
r2: b a d c
r3: c b a d
r4: d c b a
If instead we swap d and b (set b=c3 and d=c1), then we get:
r1: a b c d
r2: d a b c
r3: c d a b
r4: b c d a
Now the 1st and 3rd rows are the same as the encryption matrix. All
we need to do then to make the mapping exactly the same is to swap
the 2nd and 4th rows when in decryption mode. To do this without
having to do it on each iteration, we swapped the 2nd and 4th rows
in the decryption key schedule. We also have to do the swap above
when we first pull in the input and when we set the final output. */
a2 =
m0[a >>> 24] ^
m1[b >>> 16 & 255] ^
m2[c >>> 8 & 255] ^
m3[d & 255] ^ w[++i];
b2 =
m0[b >>> 24] ^
m1[c >>> 16 & 255] ^
m2[d >>> 8 & 255] ^
m3[a & 255] ^ w[++i];
c2 =
m0[c >>> 24] ^
m1[d >>> 16 & 255] ^
m2[a >>> 8 & 255] ^
m3[b & 255] ^ w[++i];
d =
m0[d >>> 24] ^
m1[a >>> 16 & 255] ^
m2[b >>> 8 & 255] ^
m3[c & 255] ^ w[++i];
a = a2;
b = b2;
c = c2;
}
/*
Encrypt:
SubBytes(state)
ShiftRows(state)
AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb-1])
Decrypt:
InvShiftRows(state)
InvSubBytes(state)
AddRoundKey(state, w[0, Nb-1])
*/
// Note: rows are shifted inline
output[0] =
(sub[a >>> 24] << 24) ^
(sub[b >>> 16 & 255] << 16) ^
(sub[c >>> 8 & 255] << 8) ^
(sub[d & 255]) ^ w[++i];
output[decrypt ? 3 : 1] =
(sub[b >>> 24] << 24) ^
(sub[c >>> 16 & 255] << 16) ^
(sub[d >>> 8 & 255] << 8) ^
(sub[a & 255]) ^ w[++i];
output[2] =
(sub[c >>> 24] << 24) ^
(sub[d >>> 16 & 255] << 16) ^
(sub[a >>> 8 & 255] << 8) ^
(sub[b & 255]) ^ w[++i];
output[decrypt ? 1 : 3] =
(sub[d >>> 24] << 24) ^
(sub[a >>> 16 & 255] << 16) ^
(sub[b >>> 8 & 255] << 8) ^
(sub[c & 255]) ^ w[++i];
}
/**
* Deprecated. Instead, use:
*
* forge.cipher.createCipher('AES-<mode>', key);
* forge.cipher.createDecipher('AES-<mode>', key);
*
* Creates a deprecated AES cipher object. This object's mode will default to
* CBC (cipher-block-chaining).
*
* The key and iv may be given as a string of bytes, an array of bytes, a
* byte buffer, or an array of 32-bit words.
*
* @param options the options to use.
* key the symmetric key to use.
* output the buffer to write to.
* decrypt true for decryption, false for encryption.
* mode the cipher mode to use (default: 'CBC').
*
* @return the cipher.
*/
function _createCipher$1(options) {
options = options || {};
var mode = (options.mode || 'CBC').toUpperCase();
var algorithm = 'AES-' + mode;
var cipher;
if(options.decrypt) {
cipher = forge$g.cipher.createDecipher(algorithm, options.key);
} else {
cipher = forge$g.cipher.createCipher(algorithm, options.key);
}
// backwards compatible start API
var start = cipher.start;
cipher.start = function(iv, options) {
// backwards compatibility: support second arg as output buffer
var output = null;
if(options instanceof forge$g.util.ByteBuffer) {
output = options;
options = {};
}
options = options || {};
options.output = output;
options.iv = iv;
start.call(cipher, options);
};
return cipher;
}
/**
* DES (Data Encryption Standard) implementation.
*
* This implementation supports DES as well as 3DES-EDE in ECB and CBC mode.
* It is based on the BSD-licensed implementation by Paul Tero:
*
* Paul Tero, July 2001
* http://www.tero.co.uk/des/
*
* Optimised for performance with large blocks by
* Michael Hayworth, November 2001
* http://www.netdealing.com
*
* THIS SOFTWARE IS PROVIDED "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @author Stefan Siegl
* @author Dave Longley
*
* Copyright (c) 2012 Stefan Siegl <stesie@brokenpipe.de>
* Copyright (c) 2012-2014 Digital Bazaar, Inc.
*/
var forge$f = forge$m;
/* DES API */
forge$f.des = forge$f.des || {};
/**
* Deprecated. Instead, use:
*
* var cipher = forge.cipher.createCipher('DES-<mode>', key);
* cipher.start({iv: iv});
*
* Creates an DES cipher object to encrypt data using the given symmetric key.
* The output will be stored in the 'output' member of the returned cipher.
*
* The key and iv may be given as binary-encoded strings of bytes or
* byte buffers.
*
* @param key the symmetric key to use (64 or 192 bits).
* @param iv the initialization vector to use.
* @param output the buffer to write to, null to create one.
* @param mode the cipher mode to use (default: 'CBC' if IV is
* given, 'ECB' if null).
*
* @return the cipher.
*/
forge$f.des.startEncrypting = function(key, iv, output, mode) {
var cipher = _createCipher({
key: key,
output: output,
decrypt: false,
mode: mode || (iv === null ? 'ECB' : 'CBC')
});
cipher.start(iv);
return cipher;
};
/**
* Deprecated. Instead, use:
*
* var cipher = forge.cipher.createCipher('DES-<mode>', key);
*
* Creates an DES cipher object to encrypt data using the given symmetric key.
*
* The key may be given as a binary-encoded string of bytes or a byte buffer.
*
* @param key the symmetric key to use (64 or 192 bits).
* @param mode the cipher mode to use (default: 'CBC').
*
* @return the cipher.
*/
forge$f.des.createEncryptionCipher = function(key, mode) {
return _createCipher({
key: key,
output: null,
decrypt: false,
mode: mode
});
};
/**
* Deprecated. Instead, use:
*
* var decipher = forge.cipher.createDecipher('DES-<mode>', key);
* decipher.start({iv: iv});
*
* Creates an DES cipher object to decrypt data using the given symmetric key.
* The output will be stored in the 'output' member of the returned cipher.
*
* The key and iv may be given as binary-encoded strings of bytes or
* byte buffers.
*
* @param key the symmetric key to use (64 or 192 bits).
* @param iv the initialization vector to use.
* @param output the buffer to write to, null to create one.
* @param mode the cipher mode to use (default: 'CBC' if IV is
* given, 'ECB' if null).
*
* @return the cipher.
*/
forge$f.des.startDecrypting = function(key, iv, output, mode) {
var cipher = _createCipher({
key: key,
output: output,
decrypt: true,
mode: mode || (iv === null ? 'ECB' : 'CBC')
});
cipher.start(iv);
return cipher;
};
/**
* Deprecated. Instead, use:
*
* var decipher = forge.cipher.createDecipher('DES-<mode>', key);
*
* Creates an DES cipher object to decrypt data using the given symmetric key.
*
* The key may be given as a binary-encoded string of bytes or a byte buffer.
*
* @param key the symmetric key to use (64 or 192 bits).
* @param mode the cipher mode to use (default: 'CBC').
*
* @return the cipher.
*/
forge$f.des.createDecryptionCipher = function(key, mode) {
return _createCipher({
key: key,
output: null,
decrypt: true,
mode: mode
});
};
/**
* Creates a new DES cipher algorithm object.
*
* @param name the name of the algorithm.
* @param mode the mode factory function.
*
* @return the DES algorithm object.
*/
forge$f.des.Algorithm = function(name, mode) {
var self = this;
self.name = name;
self.mode = new mode({
blockSize: 8,
cipher: {
encrypt: function(inBlock, outBlock) {
return _updateBlock(self._keys, inBlock, outBlock, false);
},
decrypt: function(inBlock, outBlock) {
return _updateBlock(self._keys, inBlock, outBlock, true);
}
}
});
self._init = false;
};
/**
* Initializes this DES algorithm by expanding its key.
*
* @param options the options to use.
* key the key to use with this algorithm.
* decrypt true if the algorithm should be initialized for decryption,
* false for encryption.
*/
forge$f.des.Algorithm.prototype.initialize = function(options) {
if(this._init) {
return;
}
var key = forge$f.util.createBuffer(options.key);
if(this.name.indexOf('3DES') === 0) {
if(key.length() !== 24) {
throw new Error('Invalid Triple-DES key size: ' + key.length() * 8);
}
}
// do key expansion to 16 or 48 subkeys (single or triple DES)
this._keys = _createKeys(key);
this._init = true;
};
/** Register DES algorithms **/
registerAlgorithm('DES-ECB', forge$f.cipher.modes.ecb);
registerAlgorithm('DES-CBC', forge$f.cipher.modes.cbc);
registerAlgorithm('DES-CFB', forge$f.cipher.modes.cfb);
registerAlgorithm('DES-OFB', forge$f.cipher.modes.ofb);
registerAlgorithm('DES-CTR', forge$f.cipher.modes.ctr);
registerAlgorithm('3DES-ECB', forge$f.cipher.modes.ecb);
registerAlgorithm('3DES-CBC', forge$f.cipher.modes.cbc);
registerAlgorithm('3DES-CFB', forge$f.cipher.modes.cfb);
registerAlgorithm('3DES-OFB', forge$f.cipher.modes.ofb);
registerAlgorithm('3DES-CTR', forge$f.cipher.modes.ctr);
function registerAlgorithm(name, mode) {
var factory = function() {
return new forge$f.des.Algorithm(name, mode);
};
forge$f.cipher.registerAlgorithm(name, factory);
}
/** DES implementation **/
var spfunction1 = [0x1010400,0,0x10000,0x1010404,0x1010004,0x10404,0x4,0x10000,0x400,0x1010400,0x1010404,0x400,0x1000404,0x1010004,0x1000000,0x4,0x404,0x1000400,0x1000400,0x10400,0x10400,0x1010000,0x1010000,0x1000404,0x10004,0x1000004,0x1000004,0x10004,0,0x404,0x10404,0x1000000,0x10000,0x1010404,0x4,0x1010000,0x1010400,0x1000000,0x1000000,0x400,0x1010004,0x10000,0x10400,0x1000004,0x400,0x4,0x1000404,0x10404,0x1010404,0x10004,0x1010000,0x1000404,0x1000004,0x404,0x10404,0x1010400,0x404,0x1000400,0x1000400,0,0x10004,0x10400,0,0x1010004];
var spfunction2 = [-0x7fef7fe0,-0x7fff8000,0x8000,0x108020,0x100000,0x20,-0x7fefffe0,-0x7fff7fe0,-0x7fffffe0,-0x7fef7fe0,-0x7fef8000,-0x80000000,-0x7fff8000,0x100000,0x20,-0x7fefffe0,0x108000,0x100020,-0x7fff7fe0,0,-0x80000000,0x8000,0x108020,-0x7ff00000,0x100020,-0x7fffffe0,0,0x108000,0x8020,-0x7fef8000,-0x7ff00000,0x8020,0,0x108020,-0x7fefffe0,0x100000,-0x7fff7fe0,-0x7ff00000,-0x7fef8000,0x8000,-0x7ff00000,-0x7fff8000,0x20,-0x7fef7fe0,0x108020,0x20,0x8000,-0x80000000,0x8020,-0x7fef8000,0x100000,-0x7fffffe0,0x100020,-0x7fff7fe0,-0x7fffffe0,0x100020,0x108000,0,-0x7fff8000,0x8020,-0x80000000,-0x7fefffe0,-0x7fef7fe0,0x108000];
var spfunction3 = [0x208,0x8020200,0,0x8020008,0x8000200,0,0x20208,0x8000200,0x20008,0x8000008,0x8000008,0x20000,0x8020208,0x20008,0x8020000,0x208,0x8000000,0x8,0x8020200,0x200,0x20200,0x8020000,0x8020008,0x20208,0x8000208,0x20200,0x20000,0x8000208,0x8,0x8020208,0x200,0x8000000,0x8020200,0x8000000,0x20008,0x208,0x20000,0x8020200,0x8000200,0,0x200,0x20008,0x8020208,0x8000200,0x8000008,0x200,0,0x8020008,0x8000208,0x20000,0x8000000,0x8020208,0x8,0x20208,0x20200,0x8000008,0x8020000,0x8000208,0x208,0x8020000,0x20208,0x8,0x8020008,0x20200];
var spfunction4 = [0x802001,0x2081,0x2081,0x80,0x802080,0x800081,0x800001,0x2001,0,0x802000,0x802000,0x802081,0x81,0,0x800080,0x800001,0x1,0x2000,0x800000,0x802001,0x80,0x800000,0x2001,0x2080,0x800081,0x1,0x2080,0x800080,0x2000,0x802080,0x802081,0x81,0x800080,0x800001,0x802000,0x802081,0x81,0,0,0x802000,0x2080,0x800080,0x800081,0x1,0x802001,0x2081,0x2081,0x80,0x802081,0x81,0x1,0x2000,0x800001,0x2001,0x802080,0x800081,0x2001,0x2080,0x800000,0x802001,0x80,0x800000,0x2000,0x802080];
var spfunction5 = [0x100,0x2080100,0x2080000,0x42000100,0x80000,0x100,0x40000000,0x2080000,0x40080100,0x80000,0x2000100,0x40080100,0x42000100,0x42080000,0x80100,0x40000000,0x2000000,0x40080000,0x40080000,0,0x40000100,0x42080100,0x42080100,0x2000100,0x42080000,0x40000100,0,0x42000000,0x2080100,0x2000000,0x42000000,0x80100,0x80000,0x42000100,0x100,0x2000000,0x40000000,0x2080000,0x42000100,0x40080100,0x2000100,0x40000000,0x42080000,0x2080100,0x40080100,0x100,0x2000000,0x42080000,0x42080100,0x80100,0x42000000,0x42080100,0x2080000,0,0x40080000,0x42000000,0x80100,0x2000100,0x40000100,0x80000,0,0x40080000,0x2080100,0x40000100];
var spfunction6 = [0x20000010,0x20400000,0x4000,0x20404010,0x20400000,0x10,0x20404010,0x400000,0x20004000,0x404010,0x400000,0x20000010,0x400010,0x20004000,0x20000000,0x4010,0,0x400010,0x20004010,0x4000,0x404000,0x20004010,0x10,0x20400010,0x20400010,0,0x404010,0x20404000,0x4010,0x404000,0x20404000,0x20000000,0x20004000,0x10,0x20400010,0x404000,0x20404010,0x400000,0x4010,0x20000010,0x400000,0x20004000,0x20000000,0x4010,0x20000010,0x20404010,0x404000,0x20400000,0x404010,0x20404000,0,0x20400010,0x10,0x4000,0x20400000,0x404010,0x4000,0x400010,0x20004010,0,0x20404000,0x20000000,0x400010,0x20004010];
var spfunction7 = [0x200000,0x4200002,0x4000802,0,0x800,0x4000802,0x200802,0x4200800,0x4200802,0x200000,0,0x4000002,0x2,0x4000000,0x4200002,0x802,0x4000800,0x200802,0x200002,0x4000800,0x4000002,0x4200000,0x4200800,0x200002,0x4200000,0x800,0x802,0x4200802,0x200800,0x2,0x4000000,0x200800,0x4000000,0x200800,0x200000,0x4000802,0x4000802,0x4200002,0x4200002,0x2,0x200002,0x4000000,0x4000800,0x200000,0x4200800,0x802,0x200802,0x4200800,0x802,0x4000002,0x4200802,0x4200000,0x200800,0,0x2,0x4200802,0,0x200802,0x4200000,0x800,0x4000002,0x4000800,0x800,0x200002];
var spfunction8 = [0x10001040,0x1000,0x40000,0x10041040,0x10000000,0x10001040,0x40,0x10000000,0x40040,0x10040000,0x10041040,0x41000,0x10041000,0x41040,0x1000,0x40,0x10040000,0x10000040,0x10001000,0x1040,0x41000,0x40040,0x10040040,0x10041000,0x1040,0,0,0x10040040,0x10000040,0x10001000,0x41040,0x40000,0x41040,0x40000,0x10041000,0x1000,0x40,0x10040040,0x1000,0x41040,0x10001000,0x40,0x10000040,0x10040000,0x10040040,0x10000000,0x40000,0x10001040,0,0x10041040,0x40040,0x10000040,0x10040000,0x10001000,0x10001040,0,0x10041040,0x41000,0x41000,0x1040,0x1040,0x40040,0x10000000,0x10041000];
/**
* Create necessary sub keys.
*
* @param key the 64-bit or 192-bit key.
*
* @return the expanded keys.
*/
function _createKeys(key) {
var pc2bytes0 = [0,0x4,0x20000000,0x20000004,0x10000,0x10004,0x20010000,0x20010004,0x200,0x204,0x20000200,0x20000204,0x10200,0x10204,0x20010200,0x20010204],
pc2bytes1 = [0,0x1,0x100000,0x100001,0x4000000,0x4000001,0x4100000,0x4100001,0x100,0x101,0x100100,0x100101,0x4000100,0x4000101,0x4100100,0x4100101],
pc2bytes2 = [0,0x8,0x800,0x808,0x1000000,0x1000008,0x1000800,0x1000808,0,0x8,0x800,0x808,0x1000000,0x1000008,0x1000800,0x1000808],
pc2bytes3 = [0,0x200000,0x8000000,0x8200000,0x2000,0x202000,0x8002000,0x8202000,0x20000,0x220000,0x8020000,0x8220000,0x22000,0x222000,0x8022000,0x8222000],
pc2bytes4 = [0,0x40000,0x10,0x40010,0,0x40000,0x10,0x40010,0x1000,0x41000,0x1010,0x41010,0x1000,0x41000,0x1010,0x41010],
pc2bytes5 = [0,0x400,0x20,0x420,0,0x400,0x20,0x420,0x2000000,0x2000400,0x2000020,0x2000420,0x2000000,0x2000400,0x2000020,0x2000420],
pc2bytes6 = [0,0x10000000,0x80000,0x10080000,0x2,0x10000002,0x80002,0x10080002,0,0x10000000,0x80000,0x10080000,0x2,0x10000002,0x80002,0x10080002],
pc2bytes7 = [0,0x10000,0x800,0x10800,0x20000000,0x20010000,0x20000800,0x20010800,0x20000,0x30000,0x20800,0x30800,0x20020000,0x20030000,0x20020800,0x20030800],
pc2bytes8 = [0,0x40000,0,0x40000,0x2,0x40002,0x2,0x40002,0x2000000,0x2040000,0x2000000,0x2040000,0x2000002,0x2040002,0x2000002,0x2040002],
pc2bytes9 = [0,0x10000000,0x8,0x10000008,0,0x10000000,0x8,0x10000008,0x400,0x10000400,0x408,0x10000408,0x400,0x10000400,0x408,0x10000408],
pc2bytes10 = [0,0x20,0,0x20,0x100000,0x100020,0x100000,0x100020,0x2000,0x2020,0x2000,0x2020,0x102000,0x102020,0x102000,0x102020],
pc2bytes11 = [0,0x1000000,0x200,0x1000200,0x200000,0x1200000,0x200200,0x1200200,0x4000000,0x5000000,0x4000200,0x5000200,0x4200000,0x5200000,0x4200200,0x5200200],
pc2bytes12 = [0,0x1000,0x8000000,0x8001000,0x80000,0x81000,0x8080000,0x8081000,0x10,0x1010,0x8000010,0x8001010,0x80010,0x81010,0x8080010,0x8081010],
pc2bytes13 = [0,0x4,0x100,0x104,0,0x4,0x100,0x104,0x1,0x5,0x101,0x105,0x1,0x5,0x101,0x105];
// how many iterations (1 for des, 3 for triple des)
// changed by Paul 16/6/2007 to use Triple DES for 9+ byte keys
var iterations = key.length() > 8 ? 3 : 1;
// stores the return keys
var keys = [];
// now define the left shifts which need to be done
var shifts = [0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0];
var n = 0, tmp;
for(var j = 0; j < iterations; j++) {
var left = key.getInt32();
var right = key.getInt32();
tmp = ((left >>> 4) ^ right) & 0x0f0f0f0f;
right ^= tmp;
left ^= (tmp << 4);
tmp = ((right >>> -16) ^ left) & 0x0000ffff;
left ^= tmp;
right ^= (tmp << -16);
tmp = ((left >>> 2) ^ right) & 0x33333333;
right ^= tmp;
left ^= (tmp << 2);
tmp = ((right >>> -16) ^ left) & 0x0000ffff;
left ^= tmp;
right ^= (tmp << -16);
tmp = ((left >>> 1) ^ right) & 0x55555555;
right ^= tmp;
left ^= (tmp << 1);
tmp = ((right >>> 8) ^ left) & 0x00ff00ff;
left ^= tmp;
right ^= (tmp << 8);
tmp = ((left >>> 1) ^ right) & 0x55555555;
right ^= tmp;
left ^= (tmp << 1);
// right needs to be shifted and OR'd with last four bits of left
tmp = (left << 8) | ((right >>> 20) & 0x000000f0);
// left needs to be put upside down
left = ((right << 24) | ((right << 8) & 0xff0000) |
((right >>> 8) & 0xff00) | ((right >>> 24) & 0xf0));
right = tmp;
// now go through and perform these shifts on the left and right keys
for(var i = 0; i < shifts.length; ++i) {
//shift the keys either one or two bits to the left
if(shifts[i]) {
left = (left << 2) | (left >>> 26);
right = (right << 2) | (right >>> 26);
} else {
left = (left << 1) | (left >>> 27);
right = (right << 1) | (right >>> 27);
}
left &= -0xf;
right &= -0xf;
// now apply PC-2, in such a way that E is easier when encrypting or
// decrypting this conversion will look like PC-2 except only the last 6
// bits of each byte are used rather than 48 consecutive bits and the
// order of lines will be according to how the S selection functions will
// be applied: S2, S4, S6, S8, S1, S3, S5, S7
var lefttmp = (
pc2bytes0[left >>> 28] | pc2bytes1[(left >>> 24) & 0xf] |
pc2bytes2[(left >>> 20) & 0xf] | pc2bytes3[(left >>> 16) & 0xf] |
pc2bytes4[(left >>> 12) & 0xf] | pc2bytes5[(left >>> 8) & 0xf] |
pc2bytes6[(left >>> 4) & 0xf]);
var righttmp = (
pc2bytes7[right >>> 28] | pc2bytes8[(right >>> 24) & 0xf] |
pc2bytes9[(right >>> 20) & 0xf] | pc2bytes10[(right >>> 16) & 0xf] |
pc2bytes11[(right >>> 12) & 0xf] | pc2bytes12[(right >>> 8) & 0xf] |
pc2bytes13[(right >>> 4) & 0xf]);
tmp = ((righttmp >>> 16) ^ lefttmp) & 0x0000ffff;
keys[n++] = lefttmp ^ tmp;
keys[n++] = righttmp ^ (tmp << 16);
}
}
return keys;
}
/**
* Updates a single block (1 byte) using DES. The update will either
* encrypt or decrypt the block.
*
* @param keys the expanded keys.
* @param input the input block (an array of 32-bit words).
* @param output the updated output block.
* @param decrypt true to decrypt the block, false to encrypt it.
*/
function _updateBlock(keys, input, output, decrypt) {
// set up loops for single or triple DES
var iterations = keys.length === 32 ? 3 : 9;
var looping;
if(iterations === 3) {
looping = decrypt ? [30, -2, -2] : [0, 32, 2];
} else {
looping = (decrypt ?
[94, 62, -2, 32, 64, 2, 30, -2, -2] :
[0, 32, 2, 62, 30, -2, 64, 96, 2]);
}
var tmp;
var left = input[0];
var right = input[1];
// first each 64 bit chunk of the message must be permuted according to IP
tmp = ((left >>> 4) ^ right) & 0x0f0f0f0f;
right ^= tmp;
left ^= (tmp << 4);
tmp = ((left >>> 16) ^ right) & 0x0000ffff;
right ^= tmp;
left ^= (tmp << 16);
tmp = ((right >>> 2) ^ left) & 0x33333333;
left ^= tmp;
right ^= (tmp << 2);
tmp = ((right >>> 8) ^ left) & 0x00ff00ff;
left ^= tmp;
right ^= (tmp << 8);
tmp = ((left >>> 1) ^ right) & 0x55555555;
right ^= tmp;
left ^= (tmp << 1);
// rotate left 1 bit
left = ((left << 1) | (left >>> 31));
right = ((right << 1) | (right >>> 31));
for(var j = 0; j < iterations; j += 3) {
var endloop = looping[j + 1];
var loopinc = looping[j + 2];
// now go through and perform the encryption or decryption
for(var i = looping[j]; i != endloop; i += loopinc) {
var right1 = right ^ keys[i];
var right2 = ((right >>> 4) | (right << 28)) ^ keys[i + 1];
// passing these bytes through the S selection functions
tmp = left;
left = right;
right = tmp ^ (
spfunction2[(right1 >>> 24) & 0x3f] |
spfunction4[(right1 >>> 16) & 0x3f] |
spfunction6[(right1 >>> 8) & 0x3f] |
spfunction8[right1 & 0x3f] |
spfunction1[(right2 >>> 24) & 0x3f] |
spfunction3[(right2 >>> 16) & 0x3f] |
spfunction5[(right2 >>> 8) & 0x3f] |
spfunction7[right2 & 0x3f]);
}
// unreverse left and right
tmp = left;
left = right;
right = tmp;
}
// rotate right 1 bit
left = ((left >>> 1) | (left << 31));
right = ((right >>> 1) | (right << 31));
// now perform IP-1, which is IP in the opposite direction
tmp = ((left >>> 1) ^ right) & 0x55555555;
right ^= tmp;
left ^= (tmp << 1);
tmp = ((right >>> 8) ^ left) & 0x00ff00ff;
left ^= tmp;
right ^= (tmp << 8);
tmp = ((right >>> 2) ^ left) & 0x33333333;
left ^= tmp;
right ^= (tmp << 2);
tmp = ((left >>> 16) ^ right) & 0x0000ffff;
right ^= tmp;
left ^= (tmp << 16);
tmp = ((left >>> 4) ^ right) & 0x0f0f0f0f;
right ^= tmp;
left ^= (tmp << 4);
output[0] = left;
output[1] = right;
}
/**
* Deprecated. Instead, use:
*
* forge.cipher.createCipher('DES-<mode>', key);
* forge.cipher.createDecipher('DES-<mode>', key);
*
* Creates a deprecated DES cipher object. This object's mode will default to
* CBC (cipher-block-chaining).
*
* The key may be given as a binary-encoded string of bytes or a byte buffer.
*
* @param options the options to use.
* key the symmetric key to use (64 or 192 bits).
* output the buffer to write to.
* decrypt true for decryption, false for encryption.
* mode the cipher mode to use (default: 'CBC').
*
* @return the cipher.
*/
function _createCipher(options) {
options = options || {};
var mode = (options.mode || 'CBC').toUpperCase();
var algorithm = 'DES-' + mode;
var cipher;
if(options.decrypt) {
cipher = forge$f.cipher.createDecipher(algorithm, options.key);
} else {
cipher = forge$f.cipher.createCipher(algorithm, options.key);
}
// backwards compatible start API
var start = cipher.start;
cipher.start = function(iv, options) {
// backwards compatibility: support second arg as output buffer
var output = null;
if(options instanceof forge$f.util.ByteBuffer) {
output = options;
options = {};
}
options = options || {};
options.output = output;
options.iv = iv;
start.call(cipher, options);
};
return cipher;
}
/**
* Node.js module for Forge message digests.
*
* @author Dave Longley
*
* Copyright 2011-2017 Digital Bazaar, Inc.
*/
var forge$e = forge$m;
forge$e.md = forge$e.md || {};
forge$e.md.algorithms = forge$e.md.algorithms || {};
/**
* Hash-based Message Authentication Code implementation. Requires a message
* digest object that can be obtained, for example, from forge.md.sha1 or
* forge.md.md5.
*
* @author Dave Longley
*
* Copyright (c) 2010-2012 Digital Bazaar, Inc. All rights reserved.
*/
var forge$d = forge$m;
/* HMAC API */
var hmac = forge$d.hmac = forge$d.hmac || {};
/**
* Creates an HMAC object that uses the given message digest object.
*
* @return an HMAC object.
*/
hmac.create = function() {
// the hmac key to use
var _key = null;
// the message digest to use
var _md = null;
// the inner padding
var _ipadding = null;
// the outer padding
var _opadding = null;
// hmac context
var ctx = {};
/**
* Starts or restarts the HMAC with the given key and message digest.
*
* @param md the message digest to use, null to reuse the previous one,
* a string to use builtin 'sha1', 'md5', 'sha256'.
* @param key the key to use as a string, array of bytes, byte buffer,
* or null to reuse the previous key.
*/
ctx.start = function(md, key) {
if(md !== null) {
if(typeof md === 'string') {
// create builtin message digest
md = md.toLowerCase();
if(md in forge$d.md.algorithms) {
_md = forge$d.md.algorithms[md].create();
} else {
throw new Error('Unknown hash algorithm "' + md + '"');
}
} else {
// store message digest
_md = md;
}
}
if(key === null) {
// reuse previous key
key = _key;
} else {
if(typeof key === 'string') {
// convert string into byte buffer
key = forge$d.util.createBuffer(key);
} else if(forge$d.util.isArray(key)) {
// convert byte array into byte buffer
var tmp = key;
key = forge$d.util.createBuffer();
for(var i = 0; i < tmp.length; ++i) {
key.putByte(tmp[i]);
}
}
// if key is longer than blocksize, hash it
var keylen = key.length();
if(keylen > _md.blockLength) {
_md.start();
_md.update(key.bytes());
key = _md.digest();
}
// mix key into inner and outer padding
// ipadding = [0x36 * blocksize] ^ key
// opadding = [0x5C * blocksize] ^ key
_ipadding = forge$d.util.createBuffer();
_opadding = forge$d.util.createBuffer();
keylen = key.length();
for(var i = 0; i < keylen; ++i) {
var tmp = key.at(i);
_ipadding.putByte(0x36 ^ tmp);
_opadding.putByte(0x5C ^ tmp);
}
// if key is shorter than blocksize, add additional padding
if(keylen < _md.blockLength) {
var tmp = _md.blockLength - keylen;
for(var i = 0; i < tmp; ++i) {
_ipadding.putByte(0x36);
_opadding.putByte(0x5C);
}
}
_key = key;
_ipadding = _ipadding.bytes();
_opadding = _opadding.bytes();
}
// digest is done like so: hash(opadding | hash(ipadding | message))
// prepare to do inner hash
// hash(ipadding | message)
_md.start();
_md.update(_ipadding);
};
/**
* Updates the HMAC with the given message bytes.
*
* @param bytes the bytes to update with.
*/
ctx.update = function(bytes) {
_md.update(bytes);
};
/**
* Produces the Message Authentication Code (MAC).
*
* @return a byte buffer containing the digest value.
*/
ctx.getMac = function() {
// digest is done like so: hash(opadding | hash(ipadding | message))
// here we do the outer hashing
var inner = _md.digest().bytes();
_md.start();
_md.update(_opadding);
_md.update(inner);
return _md.digest();
};
// alias for getMac
ctx.digest = ctx.getMac;
return ctx;
};
var require$$8 = /*@__PURE__*/getAugmentedNamespace(nodeCrypto$1);
/**
* Password-Based Key-Derivation Function #2 implementation.
*
* See RFC 2898 for details.
*
* @author Dave Longley
*
* Copyright (c) 2010-2013 Digital Bazaar, Inc.
*/
var forge$c = forge$m;
var pkcs5 = forge$c.pkcs5 = forge$c.pkcs5 || {};
var crypto$2;
if(forge$c.util.isNodejs && !forge$c.options.usePureJavaScript) {
crypto$2 = require$$8;
}
/**
* Derives a key from a password.
*
* @param p the password as a binary-encoded string of bytes.
* @param s the salt as a binary-encoded string of bytes.
* @param c the iteration count, a positive integer.
* @param dkLen the intended length, in bytes, of the derived key,
* (max: 2^32 - 1) * hash length of the PRF.
* @param [md] the message digest (or algorithm identifier as a string) to use
* in the PRF, defaults to SHA-1.
* @param [callback(err, key)] presence triggers asynchronous version, called
* once the operation completes.
*
* @return the derived key, as a binary-encoded string of bytes, for the
* synchronous version (if no callback is specified).
*/
forge$c.pbkdf2 = pkcs5.pbkdf2 = function(
p, s, c, dkLen, md, callback) {
if(typeof md === 'function') {
callback = md;
md = null;
}
// use native implementation if possible and not disabled, note that
// some node versions only support SHA-1, others allow digest to be changed
if(forge$c.util.isNodejs && !forge$c.options.usePureJavaScript &&
crypto$2.pbkdf2 && (md === null || typeof md !== 'object') &&
(crypto$2.pbkdf2Sync.length > 4 || (!md || md === 'sha1'))) {
if(typeof md !== 'string') {
// default prf to SHA-1
md = 'sha1';
}
p = Buffer.from(p, 'binary');
s = Buffer.from(s, 'binary');
if(!callback) {
if(crypto$2.pbkdf2Sync.length === 4) {
return crypto$2.pbkdf2Sync(p, s, c, dkLen).toString('binary');
}
return crypto$2.pbkdf2Sync(p, s, c, dkLen, md).toString('binary');
}
if(crypto$2.pbkdf2Sync.length === 4) {
return crypto$2.pbkdf2(p, s, c, dkLen, function(err, key) {
if(err) {
return callback(err);
}
callback(null, key.toString('binary'));
});
}
return crypto$2.pbkdf2(p, s, c, dkLen, md, function(err, key) {
if(err) {
return callback(err);
}
callback(null, key.toString('binary'));
});
}
if(typeof md === 'undefined' || md === null) {
// default prf to SHA-1
md = 'sha1';
}
if(typeof md === 'string') {
if(!(md in forge$c.md.algorithms)) {
throw new Error('Unknown hash algorithm: ' + md);
}
md = forge$c.md[md].create();
}
var hLen = md.digestLength;
/* 1. If dkLen > (2^32 - 1) * hLen, output "derived key too long" and
stop. */
if(dkLen > (0xFFFFFFFF * hLen)) {
var err = new Error('Derived key is too long.');
if(callback) {
return callback(err);
}
throw err;
}
/* 2. Let len be the number of hLen-octet blocks in the derived key,
rounding up, and let r be the number of octets in the last
block:
len = CEIL(dkLen / hLen),
r = dkLen - (len - 1) * hLen. */
var len = Math.ceil(dkLen / hLen);
var r = dkLen - (len - 1) * hLen;
/* 3. For each block of the derived key apply the function F defined
below to the password P, the salt S, the iteration count c, and
the block index to compute the block:
T_1 = F(P, S, c, 1),
T_2 = F(P, S, c, 2),
...
T_len = F(P, S, c, len),
where the function F is defined as the exclusive-or sum of the
first c iterates of the underlying pseudorandom function PRF
applied to the password P and the concatenation of the salt S
and the block index i:
F(P, S, c, i) = u_1 XOR u_2 XOR ... XOR u_c
where
u_1 = PRF(P, S || INT(i)),
u_2 = PRF(P, u_1),
...
u_c = PRF(P, u_{c-1}).
Here, INT(i) is a four-octet encoding of the integer i, most
significant octet first. */
var prf = forge$c.hmac.create();
prf.start(md, p);
var dk = '';
var xor, u_c, u_c1;
// sync version
if(!callback) {
for(var i = 1; i <= len; ++i) {
// PRF(P, S || INT(i)) (first iteration)
prf.start(null, null);
prf.update(s);
prf.update(forge$c.util.int32ToBytes(i));
xor = u_c1 = prf.digest().getBytes();
// PRF(P, u_{c-1}) (other iterations)
for(var j = 2; j <= c; ++j) {
prf.start(null, null);
prf.update(u_c1);
u_c = prf.digest().getBytes();
// F(p, s, c, i)
xor = forge$c.util.xorBytes(xor, u_c, hLen);
u_c1 = u_c;
}
/* 4. Concatenate the blocks and extract the first dkLen octets to
produce a derived key DK:
DK = T_1 || T_2 || ... || T_len<0..r-1> */
dk += (i < len) ? xor : xor.substr(0, r);
}
/* 5. Output the derived key DK. */
return dk;
}
// async version
var i = 1, j;
function outer() {
if(i > len) {
// done
return callback(null, dk);
}
// PRF(P, S || INT(i)) (first iteration)
prf.start(null, null);
prf.update(s);
prf.update(forge$c.util.int32ToBytes(i));
xor = u_c1 = prf.digest().getBytes();
// PRF(P, u_{c-1}) (other iterations)
j = 2;
inner();
}
function inner() {
if(j <= c) {
prf.start(null, null);
prf.update(u_c1);
u_c = prf.digest().getBytes();
// F(p, s, c, i)
xor = forge$c.util.xorBytes(xor, u_c, hLen);
u_c1 = u_c;
++j;
return forge$c.util.setImmediate(inner);
}
/* 4. Concatenate the blocks and extract the first dkLen octets to
produce a derived key DK:
DK = T_1 || T_2 || ... || T_len<0..r-1> */
dk += (i < len) ? xor : xor.substr(0, r);
++i;
outer();
}
outer();
};
/**
* Javascript implementation of basic PEM (Privacy Enhanced Mail) algorithms.
*
* See: RFC 1421.
*
* @author Dave Longley
*
* Copyright (c) 2013-2014 Digital Bazaar, Inc.
*
* A Forge PEM object has the following fields:
*
* type: identifies the type of message (eg: "RSA PRIVATE KEY").
*
* procType: identifies the type of processing performed on the message,
* it has two subfields: version and type, eg: 4,ENCRYPTED.
*
* contentDomain: identifies the type of content in the message, typically
* only uses the value: "RFC822".
*
* dekInfo: identifies the message encryption algorithm and mode and includes
* any parameters for the algorithm, it has two subfields: algorithm and
* parameters, eg: DES-CBC,F8143EDE5960C597.
*
* headers: contains all other PEM encapsulated headers -- where order is
* significant (for pairing data like recipient ID + key info).
*
* body: the binary-encoded body.
*/
var forge$b = forge$m;
// shortcut for pem API
var pem = forge$b.pem = forge$b.pem || {};
/**
* Encodes (serializes) the given PEM object.
*
* @param msg the PEM message object to encode.
* @param options the options to use:
* maxline the maximum characters per line for the body, (default: 64).
*
* @return the PEM-formatted string.
*/
pem.encode = function(msg, options) {
options = options || {};
var rval = '-----BEGIN ' + msg.type + '-----\r\n';
// encode special headers
var header;
if(msg.procType) {
header = {
name: 'Proc-Type',
values: [String(msg.procType.version), msg.procType.type]
};
rval += foldHeader(header);
}
if(msg.contentDomain) {
header = {name: 'Content-Domain', values: [msg.contentDomain]};
rval += foldHeader(header);
}
if(msg.dekInfo) {
header = {name: 'DEK-Info', values: [msg.dekInfo.algorithm]};
if(msg.dekInfo.parameters) {
header.values.push(msg.dekInfo.parameters);
}
rval += foldHeader(header);
}
if(msg.headers) {
// encode all other headers
for(var i = 0; i < msg.headers.length; ++i) {
rval += foldHeader(msg.headers[i]);
}
}
// terminate header
if(msg.procType) {
rval += '\r\n';
}
// add body
rval += forge$b.util.encode64(msg.body, options.maxline || 64) + '\r\n';
rval += '-----END ' + msg.type + '-----\r\n';
return rval;
};
/**
* Decodes (deserializes) all PEM messages found in the given string.
*
* @param str the PEM-formatted string to decode.
*
* @return the PEM message objects in an array.
*/
pem.decode = function(str) {
var rval = [];
// split string into PEM messages (be lenient w/EOF on BEGIN line)
var rMessage = /\s*-----BEGIN ([A-Z0-9- ]+)-----\r?\n?([\x21-\x7e\s]+?(?:\r?\n\r?\n))?([:A-Za-z0-9+\/=\s]+?)-----END \1-----/g;
var rHeader = /([\x21-\x7e]+):\s*([\x21-\x7e\s^:]+)/;
var rCRLF = /\r?\n/;
var match;
while(true) {
match = rMessage.exec(str);
if(!match) {
break;
}
// accept "NEW CERTIFICATE REQUEST" as "CERTIFICATE REQUEST"
// https://datatracker.ietf.org/doc/html/rfc7468#section-7
var type = match[1];
if(type === 'NEW CERTIFICATE REQUEST') {
type = 'CERTIFICATE REQUEST';
}
var msg = {
type: type,
procType: null,
contentDomain: null,
dekInfo: null,
headers: [],
body: forge$b.util.decode64(match[3])
};
rval.push(msg);
// no headers
if(!match[2]) {
continue;
}
// parse headers
var lines = match[2].split(rCRLF);
var li = 0;
while(match && li < lines.length) {
// get line, trim any rhs whitespace
var line = lines[li].replace(/\s+$/, '');
// RFC2822 unfold any following folded lines
for(var nl = li + 1; nl < lines.length; ++nl) {
var next = lines[nl];
if(!/\s/.test(next[0])) {
break;
}
line += next;
li = nl;
}
// parse header
match = line.match(rHeader);
if(match) {
var header = {name: match[1], values: []};
var values = match[2].split(',');
for(var vi = 0; vi < values.length; ++vi) {
header.values.push(ltrim(values[vi]));
}
// Proc-Type must be the first header
if(!msg.procType) {
if(header.name !== 'Proc-Type') {
throw new Error('Invalid PEM formatted message. The first ' +
'encapsulated header must be "Proc-Type".');
} else if(header.values.length !== 2) {
throw new Error('Invalid PEM formatted message. The "Proc-Type" ' +
'header must have two subfields.');
}
msg.procType = {version: values[0], type: values[1]};
} else if(!msg.contentDomain && header.name === 'Content-Domain') {
// special-case Content-Domain
msg.contentDomain = values[0] || '';
} else if(!msg.dekInfo && header.name === 'DEK-Info') {
// special-case DEK-Info
if(header.values.length === 0) {
throw new Error('Invalid PEM formatted message. The "DEK-Info" ' +
'header must have at least one subfield.');
}
msg.dekInfo = {algorithm: values[0], parameters: values[1] || null};
} else {
msg.headers.push(header);
}
}
++li;
}
if(msg.procType === 'ENCRYPTED' && !msg.dekInfo) {
throw new Error('Invalid PEM formatted message. The "DEK-Info" ' +
'header must be present if "Proc-Type" is "ENCRYPTED".');
}
}
if(rval.length === 0) {
throw new Error('Invalid PEM formatted message.');
}
return rval;
};
function foldHeader(header) {
var rval = header.name + ': ';
// ensure values with CRLF are folded
var values = [];
var insertSpace = function(match, $1) {
return ' ' + $1;
};
for(var i = 0; i < header.values.length; ++i) {
values.push(header.values[i].replace(/^(\S+\r\n)/, insertSpace));
}
rval += values.join(',') + '\r\n';
// do folding
var length = 0;
var candidate = -1;
for(var i = 0; i < rval.length; ++i, ++length) {
if(length > 65 && candidate !== -1) {
var insert = rval[candidate];
if(insert === ',') {
++candidate;
rval = rval.substr(0, candidate) + '\r\n ' + rval.substr(candidate);
} else {
rval = rval.substr(0, candidate) +
'\r\n' + insert + rval.substr(candidate + 1);
}
length = (i - candidate - 1);
candidate = -1;
++i;
} else if(rval[i] === ' ' || rval[i] === '\t' || rval[i] === ',') {
candidate = i;
}
}
return rval;
}
function ltrim(str) {
return str.replace(/^\s+/, '');
}
/**
* Secure Hash Algorithm with 256-bit digest (SHA-256) implementation.
*
* See FIPS 180-2 for details.
*
* @author Dave Longley
*
* Copyright (c) 2010-2015 Digital Bazaar, Inc.
*/
var forge$a = forge$m;
var sha256 = forge$a.sha256 = forge$a.sha256 || {};
forge$a.md.sha256 = forge$a.md.algorithms.sha256 = sha256;
/**
* Creates a SHA-256 message digest object.
*
* @return a message digest object.
*/
sha256.create = function() {
// do initialization as necessary
if(!_initialized$2) {
_init$2();
}
// SHA-256 state contains eight 32-bit integers
var _state = null;
// input buffer
var _input = forge$a.util.createBuffer();
// used for word storage
var _w = new Array(64);
// message digest object
var md = {
algorithm: 'sha256',
blockLength: 64,
digestLength: 32,
// 56-bit length of message so far (does not including padding)
messageLength: 0,
// true message length
fullMessageLength: null,
// size of message length in bytes
messageLengthSize: 8
};
/**
* Starts the digest.
*
* @return this digest object.
*/
md.start = function() {
// up to 56-bit message length for convenience
md.messageLength = 0;
// full message length (set md.messageLength64 for backwards-compatibility)
md.fullMessageLength = md.messageLength64 = [];
var int32s = md.messageLengthSize / 4;
for(var i = 0; i < int32s; ++i) {
md.fullMessageLength.push(0);
}
_input = forge$a.util.createBuffer();
_state = {
h0: 0x6A09E667,
h1: 0xBB67AE85,
h2: 0x3C6EF372,
h3: 0xA54FF53A,
h4: 0x510E527F,
h5: 0x9B05688C,
h6: 0x1F83D9AB,
h7: 0x5BE0CD19
};
return md;
};
// start digest automatically for first time
md.start();
/**
* Updates the digest with the given message input. The given input can
* treated as raw input (no encoding will be applied) or an encoding of
* 'utf8' maybe given to encode the input using UTF-8.
*
* @param msg the message input to update with.
* @param encoding the encoding to use (default: 'raw', other: 'utf8').
*
* @return this digest object.
*/
md.update = function(msg, encoding) {
if(encoding === 'utf8') {
msg = forge$a.util.encodeUtf8(msg);
}
// update message length
var len = msg.length;
md.messageLength += len;
len = [(len / 0x100000000) >>> 0, len >>> 0];
for(var i = md.fullMessageLength.length - 1; i >= 0; --i) {
md.fullMessageLength[i] += len[1];
len[1] = len[0] + ((md.fullMessageLength[i] / 0x100000000) >>> 0);
md.fullMessageLength[i] = md.fullMessageLength[i] >>> 0;
len[0] = ((len[1] / 0x100000000) >>> 0);
}
// add bytes to input buffer
_input.putBytes(msg);
// process bytes
_update$2(_state, _w, _input);
// compact input buffer every 2K or if empty
if(_input.read > 2048 || _input.length() === 0) {
_input.compact();
}
return md;
};
/**
* Produces the digest.
*
* @return a byte buffer containing the digest value.
*/
md.digest = function() {
/* Note: Here we copy the remaining bytes in the input buffer and
add the appropriate SHA-256 padding. Then we do the final update
on a copy of the state so that if the user wants to get
intermediate digests they can do so. */
/* Determine the number of bytes that must be added to the message
to ensure its length is congruent to 448 mod 512. In other words,
the data to be digested must be a multiple of 512 bits (or 128 bytes).
This data includes the message, some padding, and the length of the
message. Since the length of the message will be encoded as 8 bytes (64
bits), that means that the last segment of the data must have 56 bytes
(448 bits) of message and padding. Therefore, the length of the message
plus the padding must be congruent to 448 mod 512 because
512 - 128 = 448.
In order to fill up the message length it must be filled with
padding that begins with 1 bit followed by all 0 bits. Padding
must *always* be present, so if the message length is already
congruent to 448 mod 512, then 512 padding bits must be added. */
var finalBlock = forge$a.util.createBuffer();
finalBlock.putBytes(_input.bytes());
// compute remaining size to be digested (include message length size)
var remaining = (
md.fullMessageLength[md.fullMessageLength.length - 1] +
md.messageLengthSize);
// add padding for overflow blockSize - overflow
// _padding starts with 1 byte with first bit is set (byte value 128), then
// there may be up to (blockSize - 1) other pad bytes
var overflow = remaining & (md.blockLength - 1);
finalBlock.putBytes(_padding$2.substr(0, md.blockLength - overflow));
// serialize message length in bits in big-endian order; since length
// is stored in bytes we multiply by 8 and add carry from next int
var next, carry;
var bits = md.fullMessageLength[0] * 8;
for(var i = 0; i < md.fullMessageLength.length - 1; ++i) {
next = md.fullMessageLength[i + 1] * 8;
carry = (next / 0x100000000) >>> 0;
bits += carry;
finalBlock.putInt32(bits >>> 0);
bits = next >>> 0;
}
finalBlock.putInt32(bits);
var s2 = {
h0: _state.h0,
h1: _state.h1,
h2: _state.h2,
h3: _state.h3,
h4: _state.h4,
h5: _state.h5,
h6: _state.h6,
h7: _state.h7
};
_update$2(s2, _w, finalBlock);
var rval = forge$a.util.createBuffer();
rval.putInt32(s2.h0);
rval.putInt32(s2.h1);
rval.putInt32(s2.h2);
rval.putInt32(s2.h3);
rval.putInt32(s2.h4);
rval.putInt32(s2.h5);
rval.putInt32(s2.h6);
rval.putInt32(s2.h7);
return rval;
};
return md;
};
// sha-256 padding bytes not initialized yet
var _padding$2 = null;
var _initialized$2 = false;
// table of constants
var _k$1 = null;
/**
* Initializes the constant tables.
*/
function _init$2() {
// create padding
_padding$2 = String.fromCharCode(128);
_padding$2 += forge$a.util.fillString(String.fromCharCode(0x00), 64);
// create K table for SHA-256
_k$1 = [
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2];
// now initialized
_initialized$2 = true;
}
/**
* Updates a SHA-256 state with the given byte buffer.
*
* @param s the SHA-256 state to update.
* @param w the array to use to store words.
* @param bytes the byte buffer to update with.
*/
function _update$2(s, w, bytes) {
// consume 512 bit (64 byte) chunks
var t1, t2, s0, s1, ch, maj, i, a, b, c, d, e, f, g, h;
var len = bytes.length();
while(len >= 64) {
// the w array will be populated with sixteen 32-bit big-endian words
// and then extended into 64 32-bit words according to SHA-256
for(i = 0; i < 16; ++i) {
w[i] = bytes.getInt32();
}
for(; i < 64; ++i) {
// XOR word 2 words ago rot right 17, rot right 19, shft right 10
t1 = w[i - 2];
t1 =
((t1 >>> 17) | (t1 << 15)) ^
((t1 >>> 19) | (t1 << 13)) ^
(t1 >>> 10);
// XOR word 15 words ago rot right 7, rot right 18, shft right 3
t2 = w[i - 15];
t2 =
((t2 >>> 7) | (t2 << 25)) ^
((t2 >>> 18) | (t2 << 14)) ^
(t2 >>> 3);
// sum(t1, word 7 ago, t2, word 16 ago) modulo 2^32
w[i] = (t1 + w[i - 7] + t2 + w[i - 16]) | 0;
}
// initialize hash value for this chunk
a = s.h0;
b = s.h1;
c = s.h2;
d = s.h3;
e = s.h4;
f = s.h5;
g = s.h6;
h = s.h7;
// round function
for(i = 0; i < 64; ++i) {
// Sum1(e)
s1 =
((e >>> 6) | (e << 26)) ^
((e >>> 11) | (e << 21)) ^
((e >>> 25) | (e << 7));
// Ch(e, f, g) (optimized the same way as SHA-1)
ch = g ^ (e & (f ^ g));
// Sum0(a)
s0 =
((a >>> 2) | (a << 30)) ^
((a >>> 13) | (a << 19)) ^
((a >>> 22) | (a << 10));
// Maj(a, b, c) (optimized the same way as SHA-1)
maj = (a & b) | (c & (a ^ b));
// main algorithm
t1 = h + s1 + ch + _k$1[i] + w[i];
t2 = s0 + maj;
h = g;
g = f;
f = e;
// `>>> 0` necessary to avoid iOS/Safari 10 optimization bug
// can't truncate with `| 0`
e = (d + t1) >>> 0;
d = c;
c = b;
b = a;
// `>>> 0` necessary to avoid iOS/Safari 10 optimization bug
// can't truncate with `| 0`
a = (t1 + t2) >>> 0;
}
// update hash state
s.h0 = (s.h0 + a) | 0;
s.h1 = (s.h1 + b) | 0;
s.h2 = (s.h2 + c) | 0;
s.h3 = (s.h3 + d) | 0;
s.h4 = (s.h4 + e) | 0;
s.h5 = (s.h5 + f) | 0;
s.h6 = (s.h6 + g) | 0;
s.h7 = (s.h7 + h) | 0;
len -= 64;
}
}
/**
* A javascript implementation of a cryptographically-secure
* Pseudo Random Number Generator (PRNG). The Fortuna algorithm is followed
* here though the use of SHA-256 is not enforced; when generating an
* a PRNG context, the hashing algorithm and block cipher used for
* the generator are specified via a plugin.
*
* @author Dave Longley
*
* Copyright (c) 2010-2014 Digital Bazaar, Inc.
*/
var forge$9 = forge$m;
var _crypto$1 = null;
if(forge$9.util.isNodejs && !forge$9.options.usePureJavaScript &&
!process.versions['node-webkit']) {
_crypto$1 = require$$8;
}
/* PRNG API */
var prng = forge$9.prng = forge$9.prng || {};
/**
* Creates a new PRNG context.
*
* A PRNG plugin must be passed in that will provide:
*
* 1. A function that initializes the key and seed of a PRNG context. It
* will be given a 16 byte key and a 16 byte seed. Any key expansion
* or transformation of the seed from a byte string into an array of
* integers (or similar) should be performed.
* 2. The cryptographic function used by the generator. It takes a key and
* a seed.
* 3. A seed increment function. It takes the seed and returns seed + 1.
* 4. An api to create a message digest.
*
* For an example, see random.js.
*
* @param plugin the PRNG plugin to use.
*/
prng.create = function(plugin) {
var ctx = {
plugin: plugin,
key: null,
seed: null,
time: null,
// number of reseeds so far
reseeds: 0,
// amount of data generated so far
generated: 0,
// no initial key bytes
keyBytes: ''
};
// create 32 entropy pools (each is a message digest)
var md = plugin.md;
var pools = new Array(32);
for(var i = 0; i < 32; ++i) {
pools[i] = md.create();
}
ctx.pools = pools;
// entropy pools are written to cyclically, starting at index 0
ctx.pool = 0;
/**
* Generates random bytes. The bytes may be generated synchronously or
* asynchronously. Web workers must use the asynchronous interface or
* else the behavior is undefined.
*
* @param count the number of random bytes to generate.
* @param [callback(err, bytes)] called once the operation completes.
*
* @return count random bytes as a string.
*/
ctx.generate = function(count, callback) {
// do synchronously
if(!callback) {
return ctx.generateSync(count);
}
// simple generator using counter-based CBC
var cipher = ctx.plugin.cipher;
var increment = ctx.plugin.increment;
var formatKey = ctx.plugin.formatKey;
var formatSeed = ctx.plugin.formatSeed;
var b = forge$9.util.createBuffer();
// paranoid deviation from Fortuna:
// reset key for every request to protect previously
// generated random bytes should the key be discovered;
// there is no 100ms based reseeding because of this
// forced reseed for every `generate` call
ctx.key = null;
generate();
function generate(err) {
if(err) {
return callback(err);
}
// sufficient bytes generated
if(b.length() >= count) {
return callback(null, b.getBytes(count));
}
// if amount of data generated is greater than 1 MiB, trigger reseed
if(ctx.generated > 0xfffff) {
ctx.key = null;
}
if(ctx.key === null) {
// prevent stack overflow
return forge$9.util.nextTick(function() {
_reseed(generate);
});
}
// generate the random bytes
var bytes = cipher(ctx.key, ctx.seed);
ctx.generated += bytes.length;
b.putBytes(bytes);
// generate bytes for a new key and seed
ctx.key = formatKey(cipher(ctx.key, increment(ctx.seed)));
ctx.seed = formatSeed(cipher(ctx.key, ctx.seed));
forge$9.util.setImmediate(generate);
}
};
/**
* Generates random bytes synchronously.
*
* @param count the number of random bytes to generate.
*
* @return count random bytes as a string.
*/
ctx.generateSync = function(count) {
// simple generator using counter-based CBC
var cipher = ctx.plugin.cipher;
var increment = ctx.plugin.increment;
var formatKey = ctx.plugin.formatKey;
var formatSeed = ctx.plugin.formatSeed;
// paranoid deviation from Fortuna:
// reset key for every request to protect previously
// generated random bytes should the key be discovered;
// there is no 100ms based reseeding because of this
// forced reseed for every `generateSync` call
ctx.key = null;
var b = forge$9.util.createBuffer();
while(b.length() < count) {
// if amount of data generated is greater than 1 MiB, trigger reseed
if(ctx.generated > 0xfffff) {
ctx.key = null;
}
if(ctx.key === null) {
_reseedSync();
}
// generate the random bytes
var bytes = cipher(ctx.key, ctx.seed);
ctx.generated += bytes.length;
b.putBytes(bytes);
// generate bytes for a new key and seed
ctx.key = formatKey(cipher(ctx.key, increment(ctx.seed)));
ctx.seed = formatSeed(cipher(ctx.key, ctx.seed));
}
return b.getBytes(count);
};
/**
* Private function that asynchronously reseeds a generator.
*
* @param callback(err) called once the operation completes.
*/
function _reseed(callback) {
if(ctx.pools[0].messageLength >= 32) {
_seed();
return callback();
}
// not enough seed data...
var needed = (32 - ctx.pools[0].messageLength) << 5;
ctx.seedFile(needed, function(err, bytes) {
if(err) {
return callback(err);
}
ctx.collect(bytes);
_seed();
callback();
});
}
/**
* Private function that synchronously reseeds a generator.
*/
function _reseedSync() {
if(ctx.pools[0].messageLength >= 32) {
return _seed();
}
// not enough seed data...
var needed = (32 - ctx.pools[0].messageLength) << 5;
ctx.collect(ctx.seedFileSync(needed));
_seed();
}
/**
* Private function that seeds a generator once enough bytes are available.
*/
function _seed() {
// update reseed count
ctx.reseeds = (ctx.reseeds === 0xffffffff) ? 0 : ctx.reseeds + 1;
// goal is to update `key` via:
// key = hash(key + s)
// where 's' is all collected entropy from selected pools, then...
// create a plugin-based message digest
var md = ctx.plugin.md.create();
// consume current key bytes
md.update(ctx.keyBytes);
// digest the entropy of pools whose index k meet the
// condition 'n mod 2^k == 0' where n is the number of reseeds
var _2powK = 1;
for(var k = 0; k < 32; ++k) {
if(ctx.reseeds % _2powK === 0) {
md.update(ctx.pools[k].digest().getBytes());
ctx.pools[k].start();
}
_2powK = _2powK << 1;
}
// get digest for key bytes
ctx.keyBytes = md.digest().getBytes();
// paranoid deviation from Fortuna:
// update `seed` via `seed = hash(key)`
// instead of initializing to zero once and only
// ever incrementing it
md.start();
md.update(ctx.keyBytes);
var seedBytes = md.digest().getBytes();
// update state
ctx.key = ctx.plugin.formatKey(ctx.keyBytes);
ctx.seed = ctx.plugin.formatSeed(seedBytes);
ctx.generated = 0;
}
/**
* The built-in default seedFile. This seedFile is used when entropy
* is needed immediately.
*
* @param needed the number of bytes that are needed.
*
* @return the random bytes.
*/
function defaultSeedFile(needed) {
// use window.crypto.getRandomValues strong source of entropy if available
var getRandomValues = null;
var globalScope = forge$9.util.globalScope;
var _crypto = globalScope.crypto || globalScope.msCrypto;
if(_crypto && _crypto.getRandomValues) {
getRandomValues = function(arr) {
return _crypto.getRandomValues(arr);
};
}
var b = forge$9.util.createBuffer();
if(getRandomValues) {
while(b.length() < needed) {
// max byte length is 65536 before QuotaExceededError is thrown
// http://www.w3.org/TR/WebCryptoAPI/#RandomSource-method-getRandomValues
var count = Math.max(1, Math.min(needed - b.length(), 65536) / 4);
var entropy = new Uint32Array(Math.floor(count));
try {
getRandomValues(entropy);
for(var i = 0; i < entropy.length; ++i) {
b.putInt32(entropy[i]);
}
} catch(e) {
/* only ignore QuotaExceededError */
if(!(typeof QuotaExceededError !== 'undefined' &&
e instanceof QuotaExceededError)) {
throw e;
}
}
}
}
// be sad and add some weak random data
if(b.length() < needed) {
/* Draws from Park-Miller "minimal standard" 31 bit PRNG,
implemented with David G. Carta's optimization: with 32 bit math
and without division (Public Domain). */
var hi, lo, next;
var seed = Math.floor(Math.random() * 0x010000);
while(b.length() < needed) {
lo = 16807 * (seed & 0xFFFF);
hi = 16807 * (seed >> 16);
lo += (hi & 0x7FFF) << 16;
lo += hi >> 15;
lo = (lo & 0x7FFFFFFF) + (lo >> 31);
seed = lo & 0xFFFFFFFF;
// consume lower 3 bytes of seed
for(var i = 0; i < 3; ++i) {
// throw in more pseudo random
next = seed >>> (i << 3);
next ^= Math.floor(Math.random() * 0x0100);
b.putByte(next & 0xFF);
}
}
}
return b.getBytes(needed);
}
// initialize seed file APIs
if(_crypto$1) {
// use nodejs async API
ctx.seedFile = function(needed, callback) {
_crypto$1.randomBytes(needed, function(err, bytes) {
if(err) {
return callback(err);
}
callback(null, bytes.toString());
});
};
// use nodejs sync API
ctx.seedFileSync = function(needed) {
return _crypto$1.randomBytes(needed).toString();
};
} else {
ctx.seedFile = function(needed, callback) {
try {
callback(null, defaultSeedFile(needed));
} catch(e) {
callback(e);
}
};
ctx.seedFileSync = defaultSeedFile;
}
/**
* Adds entropy to a prng ctx's accumulator.
*
* @param bytes the bytes of entropy as a string.
*/
ctx.collect = function(bytes) {
// iterate over pools distributing entropy cyclically
var count = bytes.length;
for(var i = 0; i < count; ++i) {
ctx.pools[ctx.pool].update(bytes.substr(i, 1));
ctx.pool = (ctx.pool === 31) ? 0 : ctx.pool + 1;
}
};
/**
* Collects an integer of n bits.
*
* @param i the integer entropy.
* @param n the number of bits in the integer.
*/
ctx.collectInt = function(i, n) {
var bytes = '';
for(var x = 0; x < n; x += 8) {
bytes += String.fromCharCode((i >> x) & 0xFF);
}
ctx.collect(bytes);
};
/**
* Registers a Web Worker to receive immediate entropy from the main thread.
* This method is required until Web Workers can access the native crypto
* API. This method should be called twice for each created worker, once in
* the main thread, and once in the worker itself.
*
* @param worker the worker to register.
*/
ctx.registerWorker = function(worker) {
// worker receives random bytes
if(worker === self) {
ctx.seedFile = function(needed, callback) {
function listener(e) {
var data = e.data;
if(data.forge && data.forge.prng) {
self.removeEventListener('message', listener);
callback(data.forge.prng.err, data.forge.prng.bytes);
}
}
self.addEventListener('message', listener);
self.postMessage({forge: {prng: {needed: needed}}});
};
} else {
// main thread sends random bytes upon request
var listener = function(e) {
var data = e.data;
if(data.forge && data.forge.prng) {
ctx.seedFile(data.forge.prng.needed, function(err, bytes) {
worker.postMessage({forge: {prng: {err: err, bytes: bytes}}});
});
}
};
// TODO: do we need to remove the event listener when the worker dies?
worker.addEventListener('message', listener);
}
};
return ctx;
};
/**
* An API for getting cryptographically-secure random bytes. The bytes are
* generated using the Fortuna algorithm devised by Bruce Schneier and
* Niels Ferguson.
*
* Getting strong random bytes is not yet easy to do in javascript. The only
* truish random entropy that can be collected is from the mouse, keyboard, or
* from timing with respect to page loads, etc. This generator makes a poor
* attempt at providing random bytes when those sources haven't yet provided
* enough entropy to initially seed or to reseed the PRNG.
*
* @author Dave Longley
*
* Copyright (c) 2009-2014 Digital Bazaar, Inc.
*/
var forge$8 = forge$m;
(function() {
// forge.random already defined
if(forge$8.random && forge$8.random.getBytes) {
return;
}
(function(jQuery) {
// the default prng plugin, uses AES-128
var prng_aes = {};
var _prng_aes_output = new Array(4);
var _prng_aes_buffer = forge$8.util.createBuffer();
prng_aes.formatKey = function(key) {
// convert the key into 32-bit integers
var tmp = forge$8.util.createBuffer(key);
key = new Array(4);
key[0] = tmp.getInt32();
key[1] = tmp.getInt32();
key[2] = tmp.getInt32();
key[3] = tmp.getInt32();
// return the expanded key
return forge$8.aes._expandKey(key, false);
};
prng_aes.formatSeed = function(seed) {
// convert seed into 32-bit integers
var tmp = forge$8.util.createBuffer(seed);
seed = new Array(4);
seed[0] = tmp.getInt32();
seed[1] = tmp.getInt32();
seed[2] = tmp.getInt32();
seed[3] = tmp.getInt32();
return seed;
};
prng_aes.cipher = function(key, seed) {
forge$8.aes._updateBlock(key, seed, _prng_aes_output, false);
_prng_aes_buffer.putInt32(_prng_aes_output[0]);
_prng_aes_buffer.putInt32(_prng_aes_output[1]);
_prng_aes_buffer.putInt32(_prng_aes_output[2]);
_prng_aes_buffer.putInt32(_prng_aes_output[3]);
return _prng_aes_buffer.getBytes();
};
prng_aes.increment = function(seed) {
// FIXME: do we care about carry or signed issues?
++seed[3];
return seed;
};
prng_aes.md = forge$8.md.sha256;
/**
* Creates a new PRNG.
*/
function spawnPrng() {
var ctx = forge$8.prng.create(prng_aes);
/**
* Gets random bytes. If a native secure crypto API is unavailable, this
* method tries to make the bytes more unpredictable by drawing from data that
* can be collected from the user of the browser, eg: mouse movement.
*
* If a callback is given, this method will be called asynchronously.
*
* @param count the number of random bytes to get.
* @param [callback(err, bytes)] called once the operation completes.
*
* @return the random bytes in a string.
*/
ctx.getBytes = function(count, callback) {
return ctx.generate(count, callback);
};
/**
* Gets random bytes asynchronously. If a native secure crypto API is
* unavailable, this method tries to make the bytes more unpredictable by
* drawing from data that can be collected from the user of the browser,
* eg: mouse movement.
*
* @param count the number of random bytes to get.
*
* @return the random bytes in a string.
*/
ctx.getBytesSync = function(count) {
return ctx.generate(count);
};
return ctx;
}
// create default prng context
var _ctx = spawnPrng();
// add other sources of entropy only if window.crypto.getRandomValues is not
// available -- otherwise this source will be automatically used by the prng
var getRandomValues = null;
var globalScope = forge$8.util.globalScope;
var _crypto = globalScope.crypto || globalScope.msCrypto;
if(_crypto && _crypto.getRandomValues) {
getRandomValues = function(arr) {
return _crypto.getRandomValues(arr);
};
}
if((!forge$8.util.isNodejs && !getRandomValues)) {
// get load time entropy
_ctx.collectInt(+new Date(), 32);
// add some entropy from navigator object
if(typeof(navigator) !== 'undefined') {
var _navBytes = '';
for(var key in navigator) {
try {
if(typeof(navigator[key]) == 'string') {
_navBytes += navigator[key];
}
} catch(e) {
/* Some navigator keys might not be accessible, e.g. the geolocation
attribute throws an exception if touched in Mozilla chrome://
context.
Silently ignore this and just don't use this as a source of
entropy. */
}
}
_ctx.collect(_navBytes);
_navBytes = null;
}
// add mouse and keyboard collectors if jquery is available
if(jQuery) {
// set up mouse entropy capture
jQuery().mousemove(function(e) {
// add mouse coords
_ctx.collectInt(e.clientX, 16);
_ctx.collectInt(e.clientY, 16);
});
// set up keyboard entropy capture
jQuery().keypress(function(e) {
_ctx.collectInt(e.charCode, 8);
});
}
}
/* Random API */
if(!forge$8.random) {
forge$8.random = _ctx;
} else {
// extend forge.random with _ctx
for(var key in _ctx) {
forge$8.random[key] = _ctx[key];
}
}
// expose spawn PRNG
forge$8.random.createInstance = spawnPrng;
})(typeof(jQuery) !== 'undefined' ? jQuery : null);
})();
/**
* RC2 implementation.
*
* @author Stefan Siegl
*
* Copyright (c) 2012 Stefan Siegl <stesie@brokenpipe.de>
*
* Information on the RC2 cipher is available from RFC #2268,
* http://www.ietf.org/rfc/rfc2268.txt
*/
var forge$7 = forge$m;
var piTable = [
0xd9, 0x78, 0xf9, 0xc4, 0x19, 0xdd, 0xb5, 0xed, 0x28, 0xe9, 0xfd, 0x79, 0x4a, 0xa0, 0xd8, 0x9d,
0xc6, 0x7e, 0x37, 0x83, 0x2b, 0x76, 0x53, 0x8e, 0x62, 0x4c, 0x64, 0x88, 0x44, 0x8b, 0xfb, 0xa2,
0x17, 0x9a, 0x59, 0xf5, 0x87, 0xb3, 0x4f, 0x13, 0x61, 0x45, 0x6d, 0x8d, 0x09, 0x81, 0x7d, 0x32,
0xbd, 0x8f, 0x40, 0xeb, 0x86, 0xb7, 0x7b, 0x0b, 0xf0, 0x95, 0x21, 0x22, 0x5c, 0x6b, 0x4e, 0x82,
0x54, 0xd6, 0x65, 0x93, 0xce, 0x60, 0xb2, 0x1c, 0x73, 0x56, 0xc0, 0x14, 0xa7, 0x8c, 0xf1, 0xdc,
0x12, 0x75, 0xca, 0x1f, 0x3b, 0xbe, 0xe4, 0xd1, 0x42, 0x3d, 0xd4, 0x30, 0xa3, 0x3c, 0xb6, 0x26,
0x6f, 0xbf, 0x0e, 0xda, 0x46, 0x69, 0x07, 0x57, 0x27, 0xf2, 0x1d, 0x9b, 0xbc, 0x94, 0x43, 0x03,
0xf8, 0x11, 0xc7, 0xf6, 0x90, 0xef, 0x3e, 0xe7, 0x06, 0xc3, 0xd5, 0x2f, 0xc8, 0x66, 0x1e, 0xd7,
0x08, 0xe8, 0xea, 0xde, 0x80, 0x52, 0xee, 0xf7, 0x84, 0xaa, 0x72, 0xac, 0x35, 0x4d, 0x6a, 0x2a,
0x96, 0x1a, 0xd2, 0x71, 0x5a, 0x15, 0x49, 0x74, 0x4b, 0x9f, 0xd0, 0x5e, 0x04, 0x18, 0xa4, 0xec,
0xc2, 0xe0, 0x41, 0x6e, 0x0f, 0x51, 0xcb, 0xcc, 0x24, 0x91, 0xaf, 0x50, 0xa1, 0xf4, 0x70, 0x39,
0x99, 0x7c, 0x3a, 0x85, 0x23, 0xb8, 0xb4, 0x7a, 0xfc, 0x02, 0x36, 0x5b, 0x25, 0x55, 0x97, 0x31,
0x2d, 0x5d, 0xfa, 0x98, 0xe3, 0x8a, 0x92, 0xae, 0x05, 0xdf, 0x29, 0x10, 0x67, 0x6c, 0xba, 0xc9,
0xd3, 0x00, 0xe6, 0xcf, 0xe1, 0x9e, 0xa8, 0x2c, 0x63, 0x16, 0x01, 0x3f, 0x58, 0xe2, 0x89, 0xa9,
0x0d, 0x38, 0x34, 0x1b, 0xab, 0x33, 0xff, 0xb0, 0xbb, 0x48, 0x0c, 0x5f, 0xb9, 0xb1, 0xcd, 0x2e,
0xc5, 0xf3, 0xdb, 0x47, 0xe5, 0xa5, 0x9c, 0x77, 0x0a, 0xa6, 0x20, 0x68, 0xfe, 0x7f, 0xc1, 0xad
];
var s = [1, 2, 3, 5];
/**
* Rotate a word left by given number of bits.
*
* Bits that are shifted out on the left are put back in on the right
* hand side.
*
* @param word The word to shift left.
* @param bits The number of bits to shift by.
* @return The rotated word.
*/
var rol = function(word, bits) {
return ((word << bits) & 0xffff) | ((word & 0xffff) >> (16 - bits));
};
/**
* Rotate a word right by given number of bits.
*
* Bits that are shifted out on the right are put back in on the left
* hand side.
*
* @param word The word to shift right.
* @param bits The number of bits to shift by.
* @return The rotated word.
*/
var ror = function(word, bits) {
return ((word & 0xffff) >> bits) | ((word << (16 - bits)) & 0xffff);
};
/* RC2 API */
forge$7.rc2 = forge$7.rc2 || {};
/**
* Perform RC2 key expansion as per RFC #2268, section 2.
*
* @param key variable-length user key (between 1 and 128 bytes)
* @param effKeyBits number of effective key bits (default: 128)
* @return the expanded RC2 key (ByteBuffer of 128 bytes)
*/
forge$7.rc2.expandKey = function(key, effKeyBits) {
if(typeof key === 'string') {
key = forge$7.util.createBuffer(key);
}
effKeyBits = effKeyBits || 128;
/* introduce variables that match the names used in RFC #2268 */
var L = key;
var T = key.length();
var T1 = effKeyBits;
var T8 = Math.ceil(T1 / 8);
var TM = 0xff >> (T1 & 0x07);
var i;
for(i = T; i < 128; i++) {
L.putByte(piTable[(L.at(i - 1) + L.at(i - T)) & 0xff]);
}
L.setAt(128 - T8, piTable[L.at(128 - T8) & TM]);
for(i = 127 - T8; i >= 0; i--) {
L.setAt(i, piTable[L.at(i + 1) ^ L.at(i + T8)]);
}
return L;
};
/**
* Creates a RC2 cipher object.
*
* @param key the symmetric key to use (as base for key generation).
* @param bits the number of effective key bits.
* @param encrypt false for decryption, true for encryption.
*
* @return the cipher.
*/
var createCipher = function(key, bits, encrypt) {
var _finish = false, _input = null, _output = null, _iv = null;
var mixRound, mashRound;
var i, j, K = [];
/* Expand key and fill into K[] Array */
key = forge$7.rc2.expandKey(key, bits);
for(i = 0; i < 64; i++) {
K.push(key.getInt16Le());
}
if(encrypt) {
/**
* Perform one mixing round "in place".
*
* @param R Array of four words to perform mixing on.
*/
mixRound = function(R) {
for(i = 0; i < 4; i++) {
R[i] += K[j] + (R[(i + 3) % 4] & R[(i + 2) % 4]) +
((~R[(i + 3) % 4]) & R[(i + 1) % 4]);
R[i] = rol(R[i], s[i]);
j++;
}
};
/**
* Perform one mashing round "in place".
*
* @param R Array of four words to perform mashing on.
*/
mashRound = function(R) {
for(i = 0; i < 4; i++) {
R[i] += K[R[(i + 3) % 4] & 63];
}
};
} else {
/**
* Perform one r-mixing round "in place".
*
* @param R Array of four words to perform mixing on.
*/
mixRound = function(R) {
for(i = 3; i >= 0; i--) {
R[i] = ror(R[i], s[i]);
R[i] -= K[j] + (R[(i + 3) % 4] & R[(i + 2) % 4]) +
((~R[(i + 3) % 4]) & R[(i + 1) % 4]);
j--;
}
};
/**
* Perform one r-mashing round "in place".
*
* @param R Array of four words to perform mashing on.
*/
mashRound = function(R) {
for(i = 3; i >= 0; i--) {
R[i] -= K[R[(i + 3) % 4] & 63];
}
};
}
/**
* Run the specified cipher execution plan.
*
* This function takes four words from the input buffer, applies the IV on
* it (if requested) and runs the provided execution plan.
*
* The plan must be put together in form of a array of arrays. Where the
* outer one is simply a list of steps to perform and the inner one needs
* to have two elements: the first one telling how many rounds to perform,
* the second one telling what to do (i.e. the function to call).
*
* @param {Array} plan The plan to execute.
*/
var runPlan = function(plan) {
var R = [];
/* Get data from input buffer and fill the four words into R */
for(i = 0; i < 4; i++) {
var val = _input.getInt16Le();
if(_iv !== null) {
if(encrypt) {
/* We're encrypting, apply the IV first. */
val ^= _iv.getInt16Le();
} else {
/* We're decryption, keep cipher text for next block. */
_iv.putInt16Le(val);
}
}
R.push(val & 0xffff);
}
/* Reset global "j" variable as per spec. */
j = encrypt ? 0 : 63;
/* Run execution plan. */
for(var ptr = 0; ptr < plan.length; ptr++) {
for(var ctr = 0; ctr < plan[ptr][0]; ctr++) {
plan[ptr][1](R);
}
}
/* Write back result to output buffer. */
for(i = 0; i < 4; i++) {
if(_iv !== null) {
if(encrypt) {
/* We're encrypting in CBC-mode, feed back encrypted bytes into
IV buffer to carry it forward to next block. */
_iv.putInt16Le(R[i]);
} else {
R[i] ^= _iv.getInt16Le();
}
}
_output.putInt16Le(R[i]);
}
};
/* Create cipher object */
var cipher = null;
cipher = {
/**
* Starts or restarts the encryption or decryption process, whichever
* was previously configured.
*
* To use the cipher in CBC mode, iv may be given either as a string
* of bytes, or as a byte buffer. For ECB mode, give null as iv.
*
* @param iv the initialization vector to use, null for ECB mode.
* @param output the output the buffer to write to, null to create one.
*/
start: function(iv, output) {
if(iv) {
/* CBC mode */
if(typeof iv === 'string') {
iv = forge$7.util.createBuffer(iv);
}
}
_finish = false;
_input = forge$7.util.createBuffer();
_output = output || new forge$7.util.createBuffer();
_iv = iv;
cipher.output = _output;
},
/**
* Updates the next block.
*
* @param input the buffer to read from.
*/
update: function(input) {
if(!_finish) {
// not finishing, so fill the input buffer with more input
_input.putBuffer(input);
}
while(_input.length() >= 8) {
runPlan([
[ 5, mixRound ],
[ 1, mashRound ],
[ 6, mixRound ],
[ 1, mashRound ],
[ 5, mixRound ]
]);
}
},
/**
* Finishes encrypting or decrypting.
*
* @param pad a padding function to use, null for PKCS#7 padding,
* signature(blockSize, buffer, decrypt).
*
* @return true if successful, false on error.
*/
finish: function(pad) {
var rval = true;
if(encrypt) {
if(pad) {
rval = pad(8, _input, !encrypt);
} else {
// add PKCS#7 padding to block (each pad byte is the
// value of the number of pad bytes)
var padding = (_input.length() === 8) ? 8 : (8 - _input.length());
_input.fillWithByte(padding, padding);
}
}
if(rval) {
// do final update
_finish = true;
cipher.update();
}
if(!encrypt) {
// check for error: input data not a multiple of block size
rval = (_input.length() === 0);
if(rval) {
if(pad) {
rval = pad(8, _output, !encrypt);
} else {
// ensure padding byte count is valid
var len = _output.length();
var count = _output.at(len - 1);
if(count > len) {
rval = false;
} else {
// trim off padding bytes
_output.truncate(count);
}
}
}
}
return rval;
}
};
return cipher;
};
/**
* Creates an RC2 cipher object to encrypt data in ECB or CBC mode using the
* given symmetric key. The output will be stored in the 'output' member
* of the returned cipher.
*
* The key and iv may be given as a string of bytes or a byte buffer.
* The cipher is initialized to use 128 effective key bits.
*
* @param key the symmetric key to use.
* @param iv the initialization vector to use.
* @param output the buffer to write to, null to create one.
*
* @return the cipher.
*/
forge$7.rc2.startEncrypting = function(key, iv, output) {
var cipher = forge$7.rc2.createEncryptionCipher(key, 128);
cipher.start(iv, output);
return cipher;
};
/**
* Creates an RC2 cipher object to encrypt data in ECB or CBC mode using the
* given symmetric key.
*
* The key may be given as a string of bytes or a byte buffer.
*
* To start encrypting call start() on the cipher with an iv and optional
* output buffer.
*
* @param key the symmetric key to use.
*
* @return the cipher.
*/
forge$7.rc2.createEncryptionCipher = function(key, bits) {
return createCipher(key, bits, true);
};
/**
* Creates an RC2 cipher object to decrypt data in ECB or CBC mode using the
* given symmetric key. The output will be stored in the 'output' member
* of the returned cipher.
*
* The key and iv may be given as a string of bytes or a byte buffer.
* The cipher is initialized to use 128 effective key bits.
*
* @param key the symmetric key to use.
* @param iv the initialization vector to use.
* @param output the buffer to write to, null to create one.
*
* @return the cipher.
*/
forge$7.rc2.startDecrypting = function(key, iv, output) {
var cipher = forge$7.rc2.createDecryptionCipher(key, 128);
cipher.start(iv, output);
return cipher;
};
/**
* Creates an RC2 cipher object to decrypt data in ECB or CBC mode using the
* given symmetric key.
*
* The key may be given as a string of bytes or a byte buffer.
*
* To start decrypting call start() on the cipher with an iv and optional
* output buffer.
*
* @param key the symmetric key to use.
*
* @return the cipher.
*/
forge$7.rc2.createDecryptionCipher = function(key, bits) {
return createCipher(key, bits, false);
};
// Copyright (c) 2005 Tom Wu
// All Rights Reserved.
// See "LICENSE" for details.
// Basic JavaScript BN library - subset useful for RSA encryption.
/*
Licensing (LICENSE)
-------------------
This software is covered under the following copyright:
*/
/*
* Copyright (c) 2003-2005 Tom Wu
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
* EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
* WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
*
* IN NO EVENT SHALL TOM WU BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
* INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER
* RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF
* THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT
* OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* In addition, the following condition applies:
*
* All redistributions must retain an intact copy of this copyright notice
* and disclaimer.
*/
/*
Address all questions regarding this license to:
Tom Wu
tjw@cs.Stanford.EDU
*/
var forge$6 = forge$m;
forge$6.jsbn = forge$6.jsbn || {};
// Bits per digit
var dbits;
// (public) Constructor
function BigInteger$2(a,b,c) {
this.data = [];
if(a != null)
if("number" == typeof a) this.fromNumber(a,b,c);
else if(b == null && "string" != typeof a) this.fromString(a,256);
else this.fromString(a,b);
}
forge$6.jsbn.BigInteger = BigInteger$2;
// return new, unset BigInteger
function nbi() { return new BigInteger$2(null); }
// am: Compute w_j += (x*this_i), propagate carries,
// c is initial carry, returns final carry.
// c < 3*dvalue, x < 2*dvalue, this_i < dvalue
// We need to select the fastest one that works in this environment.
// am1: use a single mult and divide to get the high bits,
// max digit bits should be 26 because
// max internal value = 2*dvalue^2-2*dvalue (< 2^53)
function am1(i,x,w,j,c,n) {
while(--n >= 0) {
var v = x*this.data[i++]+w.data[j]+c;
c = Math.floor(v/0x4000000);
w.data[j++] = v&0x3ffffff;
}
return c;
}
// am2 avoids a big mult-and-extract completely.
// Max digit bits should be <= 30 because we do bitwise ops
// on values up to 2*hdvalue^2-hdvalue-1 (< 2^31)
function am2(i,x,w,j,c,n) {
var xl = x&0x7fff, xh = x>>15;
while(--n >= 0) {
var l = this.data[i]&0x7fff;
var h = this.data[i++]>>15;
var m = xh*l+h*xl;
l = xl*l+((m&0x7fff)<<15)+w.data[j]+(c&0x3fffffff);
c = (l>>>30)+(m>>>15)+xh*h+(c>>>30);
w.data[j++] = l&0x3fffffff;
}
return c;
}
// Alternately, set max digit bits to 28 since some
// browsers slow down when dealing with 32-bit numbers.
function am3(i,x,w,j,c,n) {
var xl = x&0x3fff, xh = x>>14;
while(--n >= 0) {
var l = this.data[i]&0x3fff;
var h = this.data[i++]>>14;
var m = xh*l+h*xl;
l = xl*l+((m&0x3fff)<<14)+w.data[j]+c;
c = (l>>28)+(m>>14)+xh*h;
w.data[j++] = l&0xfffffff;
}
return c;
}
// node.js (no browser)
if(typeof(navigator) === 'undefined')
{
BigInteger$2.prototype.am = am3;
dbits = 28;
} else if((navigator.appName == "Microsoft Internet Explorer")) {
BigInteger$2.prototype.am = am2;
dbits = 30;
} else if((navigator.appName != "Netscape")) {
BigInteger$2.prototype.am = am1;
dbits = 26;
} else { // Mozilla/Netscape seems to prefer am3
BigInteger$2.prototype.am = am3;
dbits = 28;
}
BigInteger$2.prototype.DB = dbits;
BigInteger$2.prototype.DM = ((1<<dbits)-1);
BigInteger$2.prototype.DV = (1<<dbits);
var BI_FP = 52;
BigInteger$2.prototype.FV = Math.pow(2,BI_FP);
BigInteger$2.prototype.F1 = BI_FP-dbits;
BigInteger$2.prototype.F2 = 2*dbits-BI_FP;
// Digit conversions
var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz";
var BI_RC = new Array();
var rr,vv;
rr = "0".charCodeAt(0);
for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv;
rr = "a".charCodeAt(0);
for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
rr = "A".charCodeAt(0);
for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
function int2char(n) { return BI_RM.charAt(n); }
function intAt(s,i) {
var c = BI_RC[s.charCodeAt(i)];
return (c==null)?-1:c;
}
// (protected) copy this to r
function bnpCopyTo(r) {
for(var i = this.t-1; i >= 0; --i) r.data[i] = this.data[i];
r.t = this.t;
r.s = this.s;
}
// (protected) set from integer value x, -DV <= x < DV
function bnpFromInt(x) {
this.t = 1;
this.s = (x<0)?-1:0;
if(x > 0) this.data[0] = x;
else if(x < -1) this.data[0] = x+this.DV;
else this.t = 0;
}
// return bigint initialized to value
function nbv(i) { var r = nbi(); r.fromInt(i); return r; }
// (protected) set from string and radix
function bnpFromString(s,b) {
var k;
if(b == 16) k = 4;
else if(b == 8) k = 3;
else if(b == 256) k = 8; // byte array
else if(b == 2) k = 1;
else if(b == 32) k = 5;
else if(b == 4) k = 2;
else { this.fromRadix(s,b); return; }
this.t = 0;
this.s = 0;
var i = s.length, mi = false, sh = 0;
while(--i >= 0) {
var x = (k==8)?s[i]&0xff:intAt(s,i);
if(x < 0) {
if(s.charAt(i) == "-") mi = true;
continue;
}
mi = false;
if(sh == 0)
this.data[this.t++] = x;
else if(sh+k > this.DB) {
this.data[this.t-1] |= (x&((1<<(this.DB-sh))-1))<<sh;
this.data[this.t++] = (x>>(this.DB-sh));
} else
this.data[this.t-1] |= x<<sh;
sh += k;
if(sh >= this.DB) sh -= this.DB;
}
if(k == 8 && (s[0]&0x80) != 0) {
this.s = -1;
if(sh > 0) this.data[this.t-1] |= ((1<<(this.DB-sh))-1)<<sh;
}
this.clamp();
if(mi) BigInteger$2.ZERO.subTo(this,this);
}
// (protected) clamp off excess high words
function bnpClamp() {
var c = this.s&this.DM;
while(this.t > 0 && this.data[this.t-1] == c) --this.t;
}
// (public) return string representation in given radix
function bnToString(b) {
if(this.s < 0) return "-"+this.negate().toString(b);
var k;
if(b == 16) k = 4;
else if(b == 8) k = 3;
else if(b == 2) k = 1;
else if(b == 32) k = 5;
else if(b == 4) k = 2;
else return this.toRadix(b);
var km = (1<<k)-1, d, m = false, r = "", i = this.t;
var p = this.DB-(i*this.DB)%k;
if(i-- > 0) {
if(p < this.DB && (d = this.data[i]>>p) > 0) { m = true; r = int2char(d); }
while(i >= 0) {
if(p < k) {
d = (this.data[i]&((1<<p)-1))<<(k-p);
d |= this.data[--i]>>(p+=this.DB-k);
} else {
d = (this.data[i]>>(p-=k))&km;
if(p <= 0) { p += this.DB; --i; }
}
if(d > 0) m = true;
if(m) r += int2char(d);
}
}
return m?r:"0";
}
// (public) -this
function bnNegate() { var r = nbi(); BigInteger$2.ZERO.subTo(this,r); return r; }
// (public) |this|
function bnAbs() { return (this.s<0)?this.negate():this; }
// (public) return + if this > a, - if this < a, 0 if equal
function bnCompareTo(a) {
var r = this.s-a.s;
if(r != 0) return r;
var i = this.t;
r = i-a.t;
if(r != 0) return (this.s<0)?-r:r;
while(--i >= 0) if((r=this.data[i]-a.data[i]) != 0) return r;
return 0;
}
// returns bit length of the integer x
function nbits(x) {
var r = 1, t;
if((t=x>>>16) != 0) { x = t; r += 16; }
if((t=x>>8) != 0) { x = t; r += 8; }
if((t=x>>4) != 0) { x = t; r += 4; }
if((t=x>>2) != 0) { x = t; r += 2; }
if((t=x>>1) != 0) { x = t; r += 1; }
return r;
}
// (public) return the number of bits in "this"
function bnBitLength() {
if(this.t <= 0) return 0;
return this.DB*(this.t-1)+nbits(this.data[this.t-1]^(this.s&this.DM));
}
// (protected) r = this << n*DB
function bnpDLShiftTo(n,r) {
var i;
for(i = this.t-1; i >= 0; --i) r.data[i+n] = this.data[i];
for(i = n-1; i >= 0; --i) r.data[i] = 0;
r.t = this.t+n;
r.s = this.s;
}
// (protected) r = this >> n*DB
function bnpDRShiftTo(n,r) {
for(var i = n; i < this.t; ++i) r.data[i-n] = this.data[i];
r.t = Math.max(this.t-n,0);
r.s = this.s;
}
// (protected) r = this << n
function bnpLShiftTo(n,r) {
var bs = n%this.DB;
var cbs = this.DB-bs;
var bm = (1<<cbs)-1;
var ds = Math.floor(n/this.DB), c = (this.s<<bs)&this.DM, i;
for(i = this.t-1; i >= 0; --i) {
r.data[i+ds+1] = (this.data[i]>>cbs)|c;
c = (this.data[i]&bm)<<bs;
}
for(i = ds-1; i >= 0; --i) r.data[i] = 0;
r.data[ds] = c;
r.t = this.t+ds+1;
r.s = this.s;
r.clamp();
}
// (protected) r = this >> n
function bnpRShiftTo(n,r) {
r.s = this.s;
var ds = Math.floor(n/this.DB);
if(ds >= this.t) { r.t = 0; return; }
var bs = n%this.DB;
var cbs = this.DB-bs;
var bm = (1<<bs)-1;
r.data[0] = this.data[ds]>>bs;
for(var i = ds+1; i < this.t; ++i) {
r.data[i-ds-1] |= (this.data[i]&bm)<<cbs;
r.data[i-ds] = this.data[i]>>bs;
}
if(bs > 0) r.data[this.t-ds-1] |= (this.s&bm)<<cbs;
r.t = this.t-ds;
r.clamp();
}
// (protected) r = this - a
function bnpSubTo(a,r) {
var i = 0, c = 0, m = Math.min(a.t,this.t);
while(i < m) {
c += this.data[i]-a.data[i];
r.data[i++] = c&this.DM;
c >>= this.DB;
}
if(a.t < this.t) {
c -= a.s;
while(i < this.t) {
c += this.data[i];
r.data[i++] = c&this.DM;
c >>= this.DB;
}
c += this.s;
} else {
c += this.s;
while(i < a.t) {
c -= a.data[i];
r.data[i++] = c&this.DM;
c >>= this.DB;
}
c -= a.s;
}
r.s = (c<0)?-1:0;
if(c < -1) r.data[i++] = this.DV+c;
else if(c > 0) r.data[i++] = c;
r.t = i;
r.clamp();
}
// (protected) r = this * a, r != this,a (HAC 14.12)
// "this" should be the larger one if appropriate.
function bnpMultiplyTo(a,r) {
var x = this.abs(), y = a.abs();
var i = x.t;
r.t = i+y.t;
while(--i >= 0) r.data[i] = 0;
for(i = 0; i < y.t; ++i) r.data[i+x.t] = x.am(0,y.data[i],r,i,0,x.t);
r.s = 0;
r.clamp();
if(this.s != a.s) BigInteger$2.ZERO.subTo(r,r);
}
// (protected) r = this^2, r != this (HAC 14.16)
function bnpSquareTo(r) {
var x = this.abs();
var i = r.t = 2*x.t;
while(--i >= 0) r.data[i] = 0;
for(i = 0; i < x.t-1; ++i) {
var c = x.am(i,x.data[i],r,2*i,0,1);
if((r.data[i+x.t]+=x.am(i+1,2*x.data[i],r,2*i+1,c,x.t-i-1)) >= x.DV) {
r.data[i+x.t] -= x.DV;
r.data[i+x.t+1] = 1;
}
}
if(r.t > 0) r.data[r.t-1] += x.am(i,x.data[i],r,2*i,0,1);
r.s = 0;
r.clamp();
}
// (protected) divide this by m, quotient and remainder to q, r (HAC 14.20)
// r != q, this != m. q or r may be null.
function bnpDivRemTo(m,q,r) {
var pm = m.abs();
if(pm.t <= 0) return;
var pt = this.abs();
if(pt.t < pm.t) {
if(q != null) q.fromInt(0);
if(r != null) this.copyTo(r);
return;
}
if(r == null) r = nbi();
var y = nbi(), ts = this.s, ms = m.s;
var nsh = this.DB-nbits(pm.data[pm.t-1]); // normalize modulus
if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); } else { pm.copyTo(y); pt.copyTo(r); }
var ys = y.t;
var y0 = y.data[ys-1];
if(y0 == 0) return;
var yt = y0*(1<<this.F1)+((ys>1)?y.data[ys-2]>>this.F2:0);
var d1 = this.FV/yt, d2 = (1<<this.F1)/yt, e = 1<<this.F2;
var i = r.t, j = i-ys, t = (q==null)?nbi():q;
y.dlShiftTo(j,t);
if(r.compareTo(t) >= 0) {
r.data[r.t++] = 1;
r.subTo(t,r);
}
BigInteger$2.ONE.dlShiftTo(ys,t);
t.subTo(y,y); // "negative" y so we can replace sub with am later
while(y.t < ys) y.data[y.t++] = 0;
while(--j >= 0) {
// Estimate quotient digit
var qd = (r.data[--i]==y0)?this.DM:Math.floor(r.data[i]*d1+(r.data[i-1]+e)*d2);
if((r.data[i]+=y.am(0,qd,r,j,0,ys)) < qd) { // Try it out
y.dlShiftTo(j,t);
r.subTo(t,r);
while(r.data[i] < --qd) r.subTo(t,r);
}
}
if(q != null) {
r.drShiftTo(ys,q);
if(ts != ms) BigInteger$2.ZERO.subTo(q,q);
}
r.t = ys;
r.clamp();
if(nsh > 0) r.rShiftTo(nsh,r); // Denormalize remainder
if(ts < 0) BigInteger$2.ZERO.subTo(r,r);
}
// (public) this mod a
function bnMod(a) {
var r = nbi();
this.abs().divRemTo(a,null,r);
if(this.s < 0 && r.compareTo(BigInteger$2.ZERO) > 0) a.subTo(r,r);
return r;
}
// Modular reduction using "classic" algorithm
function Classic(m) { this.m = m; }
function cConvert(x) {
if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m);
else return x;
}
function cRevert(x) { return x; }
function cReduce(x) { x.divRemTo(this.m,null,x); }
function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
Classic.prototype.convert = cConvert;
Classic.prototype.revert = cRevert;
Classic.prototype.reduce = cReduce;
Classic.prototype.mulTo = cMulTo;
Classic.prototype.sqrTo = cSqrTo;
// (protected) return "-1/this % 2^DB"; useful for Mont. reduction
// justification:
// xy == 1 (mod m)
// xy = 1+km
// xy(2-xy) = (1+km)(1-km)
// x[y(2-xy)] = 1-k^2m^2
// x[y(2-xy)] == 1 (mod m^2)
// if y is 1/x mod m, then y(2-xy) is 1/x mod m^2
// should reduce x and y(2-xy) by m^2 at each step to keep size bounded.
// JS multiply "overflows" differently from C/C++, so care is needed here.
function bnpInvDigit() {
if(this.t < 1) return 0;
var x = this.data[0];
if((x&1) == 0) return 0;
var y = x&3; // y == 1/x mod 2^2
y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4
y = (y*(2-(x&0xff)*y))&0xff; // y == 1/x mod 2^8
y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; // y == 1/x mod 2^16
// last step - calculate inverse mod DV directly;
// assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints
y = (y*(2-x*y%this.DV))%this.DV; // y == 1/x mod 2^dbits
// we really want the negative inverse, and -DV < y < DV
return (y>0)?this.DV-y:-y;
}
// Montgomery reduction
function Montgomery(m) {
this.m = m;
this.mp = m.invDigit();
this.mpl = this.mp&0x7fff;
this.mph = this.mp>>15;
this.um = (1<<(m.DB-15))-1;
this.mt2 = 2*m.t;
}
// xR mod m
function montConvert(x) {
var r = nbi();
x.abs().dlShiftTo(this.m.t,r);
r.divRemTo(this.m,null,r);
if(x.s < 0 && r.compareTo(BigInteger$2.ZERO) > 0) this.m.subTo(r,r);
return r;
}
// x/R mod m
function montRevert(x) {
var r = nbi();
x.copyTo(r);
this.reduce(r);
return r;
}
// x = x/R mod m (HAC 14.32)
function montReduce(x) {
while(x.t <= this.mt2) // pad x so am has enough room later
x.data[x.t++] = 0;
for(var i = 0; i < this.m.t; ++i) {
// faster way of calculating u0 = x.data[i]*mp mod DV
var j = x.data[i]&0x7fff;
var u0 = (j*this.mpl+(((j*this.mph+(x.data[i]>>15)*this.mpl)&this.um)<<15))&x.DM;
// use am to combine the multiply-shift-add into one call
j = i+this.m.t;
x.data[j] += this.m.am(0,u0,x,i,0,this.m.t);
// propagate carry
while(x.data[j] >= x.DV) { x.data[j] -= x.DV; x.data[++j]++; }
}
x.clamp();
x.drShiftTo(this.m.t,x);
if(x.compareTo(this.m) >= 0) x.subTo(this.m,x);
}
// r = "x^2/R mod m"; x != r
function montSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
// r = "xy/R mod m"; x,y != r
function montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
Montgomery.prototype.convert = montConvert;
Montgomery.prototype.revert = montRevert;
Montgomery.prototype.reduce = montReduce;
Montgomery.prototype.mulTo = montMulTo;
Montgomery.prototype.sqrTo = montSqrTo;
// (protected) true iff this is even
function bnpIsEven() { return ((this.t>0)?(this.data[0]&1):this.s) == 0; }
// (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79)
function bnpExp(e,z) {
if(e > 0xffffffff || e < 1) return BigInteger$2.ONE;
var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1;
g.copyTo(r);
while(--i >= 0) {
z.sqrTo(r,r2);
if((e&(1<<i)) > 0) z.mulTo(r2,g,r);
else { var t = r; r = r2; r2 = t; }
}
return z.revert(r);
}
// (public) this^e % m, 0 <= e < 2^32
function bnModPowInt(e,m) {
var z;
if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m);
return this.exp(e,z);
}
// protected
BigInteger$2.prototype.copyTo = bnpCopyTo;
BigInteger$2.prototype.fromInt = bnpFromInt;
BigInteger$2.prototype.fromString = bnpFromString;
BigInteger$2.prototype.clamp = bnpClamp;
BigInteger$2.prototype.dlShiftTo = bnpDLShiftTo;
BigInteger$2.prototype.drShiftTo = bnpDRShiftTo;
BigInteger$2.prototype.lShiftTo = bnpLShiftTo;
BigInteger$2.prototype.rShiftTo = bnpRShiftTo;
BigInteger$2.prototype.subTo = bnpSubTo;
BigInteger$2.prototype.multiplyTo = bnpMultiplyTo;
BigInteger$2.prototype.squareTo = bnpSquareTo;
BigInteger$2.prototype.divRemTo = bnpDivRemTo;
BigInteger$2.prototype.invDigit = bnpInvDigit;
BigInteger$2.prototype.isEven = bnpIsEven;
BigInteger$2.prototype.exp = bnpExp;
// public
BigInteger$2.prototype.toString = bnToString;
BigInteger$2.prototype.negate = bnNegate;
BigInteger$2.prototype.abs = bnAbs;
BigInteger$2.prototype.compareTo = bnCompareTo;
BigInteger$2.prototype.bitLength = bnBitLength;
BigInteger$2.prototype.mod = bnMod;
BigInteger$2.prototype.modPowInt = bnModPowInt;
// "constants"
BigInteger$2.ZERO = nbv(0);
BigInteger$2.ONE = nbv(1);
// jsbn2 lib
//Copyright (c) 2005-2009 Tom Wu
//All Rights Reserved.
//See "LICENSE" for details (See jsbn.js for LICENSE).
//Extended JavaScript BN functions, required for RSA private ops.
//Version 1.1: new BigInteger("0", 10) returns "proper" zero
//(public)
function bnClone() { var r = nbi(); this.copyTo(r); return r; }
//(public) return value as integer
function bnIntValue() {
if(this.s < 0) {
if(this.t == 1) return this.data[0]-this.DV;
else if(this.t == 0) return -1;
} else if(this.t == 1) return this.data[0];
else if(this.t == 0) return 0;
// assumes 16 < DB < 32
return ((this.data[1]&((1<<(32-this.DB))-1))<<this.DB)|this.data[0];
}
//(public) return value as byte
function bnByteValue() { return (this.t==0)?this.s:(this.data[0]<<24)>>24; }
//(public) return value as short (assumes DB>=16)
function bnShortValue() { return (this.t==0)?this.s:(this.data[0]<<16)>>16; }
//(protected) return x s.t. r^x < DV
function bnpChunkSize(r) { return Math.floor(Math.LN2*this.DB/Math.log(r)); }
//(public) 0 if this == 0, 1 if this > 0
function bnSigNum() {
if(this.s < 0) return -1;
else if(this.t <= 0 || (this.t == 1 && this.data[0] <= 0)) return 0;
else return 1;
}
//(protected) convert to radix string
function bnpToRadix(b) {
if(b == null) b = 10;
if(this.signum() == 0 || b < 2 || b > 36) return "0";
var cs = this.chunkSize(b);
var a = Math.pow(b,cs);
var d = nbv(a), y = nbi(), z = nbi(), r = "";
this.divRemTo(d,y,z);
while(y.signum() > 0) {
r = (a+z.intValue()).toString(b).substr(1) + r;
y.divRemTo(d,y,z);
}
return z.intValue().toString(b) + r;
}
//(protected) convert from radix string
function bnpFromRadix(s,b) {
this.fromInt(0);
if(b == null) b = 10;
var cs = this.chunkSize(b);
var d = Math.pow(b,cs), mi = false, j = 0, w = 0;
for(var i = 0; i < s.length; ++i) {
var x = intAt(s,i);
if(x < 0) {
if(s.charAt(i) == "-" && this.signum() == 0) mi = true;
continue;
}
w = b*w+x;
if(++j >= cs) {
this.dMultiply(d);
this.dAddOffset(w,0);
j = 0;
w = 0;
}
}
if(j > 0) {
this.dMultiply(Math.pow(b,j));
this.dAddOffset(w,0);
}
if(mi) BigInteger$2.ZERO.subTo(this,this);
}
//(protected) alternate constructor
function bnpFromNumber(a,b,c) {
if("number" == typeof b) {
// new BigInteger(int,int,RNG)
if(a < 2) this.fromInt(1);
else {
this.fromNumber(a,c);
if(!this.testBit(a-1)) // force MSB set
this.bitwiseTo(BigInteger$2.ONE.shiftLeft(a-1),op_or,this);
if(this.isEven()) this.dAddOffset(1,0); // force odd
while(!this.isProbablePrime(b)) {
this.dAddOffset(2,0);
if(this.bitLength() > a) this.subTo(BigInteger$2.ONE.shiftLeft(a-1),this);
}
}
} else {
// new BigInteger(int,RNG)
var x = new Array(), t = a&7;
x.length = (a>>3)+1;
b.nextBytes(x);
if(t > 0) x[0] &= ((1<<t)-1); else x[0] = 0;
this.fromString(x,256);
}
}
//(public) convert to bigendian byte array
function bnToByteArray() {
var i = this.t, r = new Array();
r[0] = this.s;
var p = this.DB-(i*this.DB)%8, d, k = 0;
if(i-- > 0) {
if(p < this.DB && (d = this.data[i]>>p) != (this.s&this.DM)>>p)
r[k++] = d|(this.s<<(this.DB-p));
while(i >= 0) {
if(p < 8) {
d = (this.data[i]&((1<<p)-1))<<(8-p);
d |= this.data[--i]>>(p+=this.DB-8);
} else {
d = (this.data[i]>>(p-=8))&0xff;
if(p <= 0) { p += this.DB; --i; }
}
if((d&0x80) != 0) d |= -256;
if(k == 0 && (this.s&0x80) != (d&0x80)) ++k;
if(k > 0 || d != this.s) r[k++] = d;
}
}
return r;
}
function bnEquals(a) { return(this.compareTo(a)==0); }
function bnMin(a) { return (this.compareTo(a)<0)?this:a; }
function bnMax(a) { return (this.compareTo(a)>0)?this:a; }
//(protected) r = this op a (bitwise)
function bnpBitwiseTo(a,op,r) {
var i, f, m = Math.min(a.t,this.t);
for(i = 0; i < m; ++i) r.data[i] = op(this.data[i],a.data[i]);
if(a.t < this.t) {
f = a.s&this.DM;
for(i = m; i < this.t; ++i) r.data[i] = op(this.data[i],f);
r.t = this.t;
} else {
f = this.s&this.DM;
for(i = m; i < a.t; ++i) r.data[i] = op(f,a.data[i]);
r.t = a.t;
}
r.s = op(this.s,a.s);
r.clamp();
}
//(public) this & a
function op_and(x,y) { return x&y; }
function bnAnd(a) { var r = nbi(); this.bitwiseTo(a,op_and,r); return r; }
//(public) this | a
function op_or(x,y) { return x|y; }
function bnOr(a) { var r = nbi(); this.bitwiseTo(a,op_or,r); return r; }
//(public) this ^ a
function op_xor(x,y) { return x^y; }
function bnXor(a) { var r = nbi(); this.bitwiseTo(a,op_xor,r); return r; }
//(public) this & ~a
function op_andnot(x,y) { return x&~y; }
function bnAndNot(a) { var r = nbi(); this.bitwiseTo(a,op_andnot,r); return r; }
//(public) ~this
function bnNot() {
var r = nbi();
for(var i = 0; i < this.t; ++i) r.data[i] = this.DM&~this.data[i];
r.t = this.t;
r.s = ~this.s;
return r;
}
//(public) this << n
function bnShiftLeft(n) {
var r = nbi();
if(n < 0) this.rShiftTo(-n,r); else this.lShiftTo(n,r);
return r;
}
//(public) this >> n
function bnShiftRight(n) {
var r = nbi();
if(n < 0) this.lShiftTo(-n,r); else this.rShiftTo(n,r);
return r;
}
//return index of lowest 1-bit in x, x < 2^31
function lbit(x) {
if(x == 0) return -1;
var r = 0;
if((x&0xffff) == 0) { x >>= 16; r += 16; }
if((x&0xff) == 0) { x >>= 8; r += 8; }
if((x&0xf) == 0) { x >>= 4; r += 4; }
if((x&3) == 0) { x >>= 2; r += 2; }
if((x&1) == 0) ++r;
return r;
}
//(public) returns index of lowest 1-bit (or -1 if none)
function bnGetLowestSetBit() {
for(var i = 0; i < this.t; ++i)
if(this.data[i] != 0) return i*this.DB+lbit(this.data[i]);
if(this.s < 0) return this.t*this.DB;
return -1;
}
//return number of 1 bits in x
function cbit(x) {
var r = 0;
while(x != 0) { x &= x-1; ++r; }
return r;
}
//(public) return number of set bits
function bnBitCount() {
var r = 0, x = this.s&this.DM;
for(var i = 0; i < this.t; ++i) r += cbit(this.data[i]^x);
return r;
}
//(public) true iff nth bit is set
function bnTestBit(n) {
var j = Math.floor(n/this.DB);
if(j >= this.t) return(this.s!=0);
return((this.data[j]&(1<<(n%this.DB)))!=0);
}
//(protected) this op (1<<n)
function bnpChangeBit(n,op) {
var r = BigInteger$2.ONE.shiftLeft(n);
this.bitwiseTo(r,op,r);
return r;
}
//(public) this | (1<<n)
function bnSetBit(n) { return this.changeBit(n,op_or); }
//(public) this & ~(1<<n)
function bnClearBit(n) { return this.changeBit(n,op_andnot); }
//(public) this ^ (1<<n)
function bnFlipBit(n) { return this.changeBit(n,op_xor); }
//(protected) r = this + a
function bnpAddTo(a,r) {
var i = 0, c = 0, m = Math.min(a.t,this.t);
while(i < m) {
c += this.data[i]+a.data[i];
r.data[i++] = c&this.DM;
c >>= this.DB;
}
if(a.t < this.t) {
c += a.s;
while(i < this.t) {
c += this.data[i];
r.data[i++] = c&this.DM;
c >>= this.DB;
}
c += this.s;
} else {
c += this.s;
while(i < a.t) {
c += a.data[i];
r.data[i++] = c&this.DM;
c >>= this.DB;
}
c += a.s;
}
r.s = (c<0)?-1:0;
if(c > 0) r.data[i++] = c;
else if(c < -1) r.data[i++] = this.DV+c;
r.t = i;
r.clamp();
}
//(public) this + a
function bnAdd(a) { var r = nbi(); this.addTo(a,r); return r; }
//(public) this - a
function bnSubtract(a) { var r = nbi(); this.subTo(a,r); return r; }
//(public) this * a
function bnMultiply(a) { var r = nbi(); this.multiplyTo(a,r); return r; }
//(public) this / a
function bnDivide(a) { var r = nbi(); this.divRemTo(a,r,null); return r; }
//(public) this % a
function bnRemainder(a) { var r = nbi(); this.divRemTo(a,null,r); return r; }
//(public) [this/a,this%a]
function bnDivideAndRemainder(a) {
var q = nbi(), r = nbi();
this.divRemTo(a,q,r);
return new Array(q,r);
}
//(protected) this *= n, this >= 0, 1 < n < DV
function bnpDMultiply(n) {
this.data[this.t] = this.am(0,n-1,this,0,0,this.t);
++this.t;
this.clamp();
}
//(protected) this += n << w words, this >= 0
function bnpDAddOffset(n,w) {
if(n == 0) return;
while(this.t <= w) this.data[this.t++] = 0;
this.data[w] += n;
while(this.data[w] >= this.DV) {
this.data[w] -= this.DV;
if(++w >= this.t) this.data[this.t++] = 0;
++this.data[w];
}
}
//A "null" reducer
function NullExp() {}
function nNop(x) { return x; }
function nMulTo(x,y,r) { x.multiplyTo(y,r); }
function nSqrTo(x,r) { x.squareTo(r); }
NullExp.prototype.convert = nNop;
NullExp.prototype.revert = nNop;
NullExp.prototype.mulTo = nMulTo;
NullExp.prototype.sqrTo = nSqrTo;
//(public) this^e
function bnPow(e) { return this.exp(e,new NullExp()); }
//(protected) r = lower n words of "this * a", a.t <= n
//"this" should be the larger one if appropriate.
function bnpMultiplyLowerTo(a,n,r) {
var i = Math.min(this.t+a.t,n);
r.s = 0; // assumes a,this >= 0
r.t = i;
while(i > 0) r.data[--i] = 0;
var j;
for(j = r.t-this.t; i < j; ++i) r.data[i+this.t] = this.am(0,a.data[i],r,i,0,this.t);
for(j = Math.min(a.t,n); i < j; ++i) this.am(0,a.data[i],r,i,0,n-i);
r.clamp();
}
//(protected) r = "this * a" without lower n words, n > 0
//"this" should be the larger one if appropriate.
function bnpMultiplyUpperTo(a,n,r) {
--n;
var i = r.t = this.t+a.t-n;
r.s = 0; // assumes a,this >= 0
while(--i >= 0) r.data[i] = 0;
for(i = Math.max(n-this.t,0); i < a.t; ++i)
r.data[this.t+i-n] = this.am(n-i,a.data[i],r,0,0,this.t+i-n);
r.clamp();
r.drShiftTo(1,r);
}
//Barrett modular reduction
function Barrett(m) {
// setup Barrett
this.r2 = nbi();
this.q3 = nbi();
BigInteger$2.ONE.dlShiftTo(2*m.t,this.r2);
this.mu = this.r2.divide(m);
this.m = m;
}
function barrettConvert(x) {
if(x.s < 0 || x.t > 2*this.m.t) return x.mod(this.m);
else if(x.compareTo(this.m) < 0) return x;
else { var r = nbi(); x.copyTo(r); this.reduce(r); return r; }
}
function barrettRevert(x) { return x; }
//x = x mod m (HAC 14.42)
function barrettReduce(x) {
x.drShiftTo(this.m.t-1,this.r2);
if(x.t > this.m.t+1) { x.t = this.m.t+1; x.clamp(); }
this.mu.multiplyUpperTo(this.r2,this.m.t+1,this.q3);
this.m.multiplyLowerTo(this.q3,this.m.t+1,this.r2);
while(x.compareTo(this.r2) < 0) x.dAddOffset(1,this.m.t+1);
x.subTo(this.r2,x);
while(x.compareTo(this.m) >= 0) x.subTo(this.m,x);
}
//r = x^2 mod m; x != r
function barrettSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
//r = x*y mod m; x,y != r
function barrettMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
Barrett.prototype.convert = barrettConvert;
Barrett.prototype.revert = barrettRevert;
Barrett.prototype.reduce = barrettReduce;
Barrett.prototype.mulTo = barrettMulTo;
Barrett.prototype.sqrTo = barrettSqrTo;
//(public) this^e % m (HAC 14.85)
function bnModPow(e,m) {
var i = e.bitLength(), k, r = nbv(1), z;
if(i <= 0) return r;
else if(i < 18) k = 1;
else if(i < 48) k = 3;
else if(i < 144) k = 4;
else if(i < 768) k = 5;
else k = 6;
if(i < 8)
z = new Classic(m);
else if(m.isEven())
z = new Barrett(m);
else
z = new Montgomery(m);
// precomputation
var g = new Array(), n = 3, k1 = k-1, km = (1<<k)-1;
g[1] = z.convert(this);
if(k > 1) {
var g2 = nbi();
z.sqrTo(g[1],g2);
while(n <= km) {
g[n] = nbi();
z.mulTo(g2,g[n-2],g[n]);
n += 2;
}
}
var j = e.t-1, w, is1 = true, r2 = nbi(), t;
i = nbits(e.data[j])-1;
while(j >= 0) {
if(i >= k1) w = (e.data[j]>>(i-k1))&km;
else {
w = (e.data[j]&((1<<(i+1))-1))<<(k1-i);
if(j > 0) w |= e.data[j-1]>>(this.DB+i-k1);
}
n = k;
while((w&1) == 0) { w >>= 1; --n; }
if((i -= n) < 0) { i += this.DB; --j; }
if(is1) { // ret == 1, don't bother squaring or multiplying it
g[w].copyTo(r);
is1 = false;
} else {
while(n > 1) { z.sqrTo(r,r2); z.sqrTo(r2,r); n -= 2; }
if(n > 0) z.sqrTo(r,r2); else { t = r; r = r2; r2 = t; }
z.mulTo(r2,g[w],r);
}
while(j >= 0 && (e.data[j]&(1<<i)) == 0) {
z.sqrTo(r,r2); t = r; r = r2; r2 = t;
if(--i < 0) { i = this.DB-1; --j; }
}
}
return z.revert(r);
}
//(public) gcd(this,a) (HAC 14.54)
function bnGCD(a) {
var x = (this.s<0)?this.negate():this.clone();
var y = (a.s<0)?a.negate():a.clone();
if(x.compareTo(y) < 0) { var t = x; x = y; y = t; }
var i = x.getLowestSetBit(), g = y.getLowestSetBit();
if(g < 0) return x;
if(i < g) g = i;
if(g > 0) {
x.rShiftTo(g,x);
y.rShiftTo(g,y);
}
while(x.signum() > 0) {
if((i = x.getLowestSetBit()) > 0) x.rShiftTo(i,x);
if((i = y.getLowestSetBit()) > 0) y.rShiftTo(i,y);
if(x.compareTo(y) >= 0) {
x.subTo(y,x);
x.rShiftTo(1,x);
} else {
y.subTo(x,y);
y.rShiftTo(1,y);
}
}
if(g > 0) y.lShiftTo(g,y);
return y;
}
//(protected) this % n, n < 2^26
function bnpModInt(n) {
if(n <= 0) return 0;
var d = this.DV%n, r = (this.s<0)?n-1:0;
if(this.t > 0)
if(d == 0) r = this.data[0]%n;
else for(var i = this.t-1; i >= 0; --i) r = (d*r+this.data[i])%n;
return r;
}
//(public) 1/this % m (HAC 14.61)
function bnModInverse(m) {
var ac = m.isEven();
if((this.isEven() && ac) || m.signum() == 0) return BigInteger$2.ZERO;
var u = m.clone(), v = this.clone();
var a = nbv(1), b = nbv(0), c = nbv(0), d = nbv(1);
while(u.signum() != 0) {
while(u.isEven()) {
u.rShiftTo(1,u);
if(ac) {
if(!a.isEven() || !b.isEven()) { a.addTo(this,a); b.subTo(m,b); }
a.rShiftTo(1,a);
} else if(!b.isEven()) b.subTo(m,b);
b.rShiftTo(1,b);
}
while(v.isEven()) {
v.rShiftTo(1,v);
if(ac) {
if(!c.isEven() || !d.isEven()) { c.addTo(this,c); d.subTo(m,d); }
c.rShiftTo(1,c);
} else if(!d.isEven()) d.subTo(m,d);
d.rShiftTo(1,d);
}
if(u.compareTo(v) >= 0) {
u.subTo(v,u);
if(ac) a.subTo(c,a);
b.subTo(d,b);
} else {
v.subTo(u,v);
if(ac) c.subTo(a,c);
d.subTo(b,d);
}
}
if(v.compareTo(BigInteger$2.ONE) != 0) return BigInteger$2.ZERO;
if(d.compareTo(m) >= 0) return d.subtract(m);
if(d.signum() < 0) d.addTo(m,d); else return d;
if(d.signum() < 0) return d.add(m); else return d;
}
var lowprimes = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509];
var lplim = (1<<26)/lowprimes[lowprimes.length-1];
//(public) test primality with certainty >= 1-.5^t
function bnIsProbablePrime(t) {
var i, x = this.abs();
if(x.t == 1 && x.data[0] <= lowprimes[lowprimes.length-1]) {
for(i = 0; i < lowprimes.length; ++i)
if(x.data[0] == lowprimes[i]) return true;
return false;
}
if(x.isEven()) return false;
i = 1;
while(i < lowprimes.length) {
var m = lowprimes[i], j = i+1;
while(j < lowprimes.length && m < lplim) m *= lowprimes[j++];
m = x.modInt(m);
while(i < j) if(m%lowprimes[i++] == 0) return false;
}
return x.millerRabin(t);
}
//(protected) true if probably prime (HAC 4.24, Miller-Rabin)
function bnpMillerRabin(t) {
var n1 = this.subtract(BigInteger$2.ONE);
var k = n1.getLowestSetBit();
if(k <= 0) return false;
var r = n1.shiftRight(k);
var prng = bnGetPrng();
var a;
for(var i = 0; i < t; ++i) {
// select witness 'a' at random from between 1 and n1
do {
a = new BigInteger$2(this.bitLength(), prng);
}
while(a.compareTo(BigInteger$2.ONE) <= 0 || a.compareTo(n1) >= 0);
var y = a.modPow(r,this);
if(y.compareTo(BigInteger$2.ONE) != 0 && y.compareTo(n1) != 0) {
var j = 1;
while(j++ < k && y.compareTo(n1) != 0) {
y = y.modPowInt(2,this);
if(y.compareTo(BigInteger$2.ONE) == 0) return false;
}
if(y.compareTo(n1) != 0) return false;
}
}
return true;
}
// get pseudo random number generator
function bnGetPrng() {
// create prng with api that matches BigInteger secure random
return {
// x is an array to fill with bytes
nextBytes: function(x) {
for(var i = 0; i < x.length; ++i) {
x[i] = Math.floor(Math.random() * 0x0100);
}
}
};
}
//protected
BigInteger$2.prototype.chunkSize = bnpChunkSize;
BigInteger$2.prototype.toRadix = bnpToRadix;
BigInteger$2.prototype.fromRadix = bnpFromRadix;
BigInteger$2.prototype.fromNumber = bnpFromNumber;
BigInteger$2.prototype.bitwiseTo = bnpBitwiseTo;
BigInteger$2.prototype.changeBit = bnpChangeBit;
BigInteger$2.prototype.addTo = bnpAddTo;
BigInteger$2.prototype.dMultiply = bnpDMultiply;
BigInteger$2.prototype.dAddOffset = bnpDAddOffset;
BigInteger$2.prototype.multiplyLowerTo = bnpMultiplyLowerTo;
BigInteger$2.prototype.multiplyUpperTo = bnpMultiplyUpperTo;
BigInteger$2.prototype.modInt = bnpModInt;
BigInteger$2.prototype.millerRabin = bnpMillerRabin;
//public
BigInteger$2.prototype.clone = bnClone;
BigInteger$2.prototype.intValue = bnIntValue;
BigInteger$2.prototype.byteValue = bnByteValue;
BigInteger$2.prototype.shortValue = bnShortValue;
BigInteger$2.prototype.signum = bnSigNum;
BigInteger$2.prototype.toByteArray = bnToByteArray;
BigInteger$2.prototype.equals = bnEquals;
BigInteger$2.prototype.min = bnMin;
BigInteger$2.prototype.max = bnMax;
BigInteger$2.prototype.and = bnAnd;
BigInteger$2.prototype.or = bnOr;
BigInteger$2.prototype.xor = bnXor;
BigInteger$2.prototype.andNot = bnAndNot;
BigInteger$2.prototype.not = bnNot;
BigInteger$2.prototype.shiftLeft = bnShiftLeft;
BigInteger$2.prototype.shiftRight = bnShiftRight;
BigInteger$2.prototype.getLowestSetBit = bnGetLowestSetBit;
BigInteger$2.prototype.bitCount = bnBitCount;
BigInteger$2.prototype.testBit = bnTestBit;
BigInteger$2.prototype.setBit = bnSetBit;
BigInteger$2.prototype.clearBit = bnClearBit;
BigInteger$2.prototype.flipBit = bnFlipBit;
BigInteger$2.prototype.add = bnAdd;
BigInteger$2.prototype.subtract = bnSubtract;
BigInteger$2.prototype.multiply = bnMultiply;
BigInteger$2.prototype.divide = bnDivide;
BigInteger$2.prototype.remainder = bnRemainder;
BigInteger$2.prototype.divideAndRemainder = bnDivideAndRemainder;
BigInteger$2.prototype.modPow = bnModPow;
BigInteger$2.prototype.modInverse = bnModInverse;
BigInteger$2.prototype.pow = bnPow;
BigInteger$2.prototype.gcd = bnGCD;
BigInteger$2.prototype.isProbablePrime = bnIsProbablePrime;
/**
* Secure Hash Algorithm with 160-bit digest (SHA-1) implementation.
*
* @author Dave Longley
*
* Copyright (c) 2010-2015 Digital Bazaar, Inc.
*/
var forge$5 = forge$m;
var sha1$1 = forge$5.sha1 = forge$5.sha1 || {};
forge$5.md.sha1 = forge$5.md.algorithms.sha1 = sha1$1;
/**
* Creates a SHA-1 message digest object.
*
* @return a message digest object.
*/
sha1$1.create = function() {
// do initialization as necessary
if(!_initialized$1) {
_init$1();
}
// SHA-1 state contains five 32-bit integers
var _state = null;
// input buffer
var _input = forge$5.util.createBuffer();
// used for word storage
var _w = new Array(80);
// message digest object
var md = {
algorithm: 'sha1',
blockLength: 64,
digestLength: 20,
// 56-bit length of message so far (does not including padding)
messageLength: 0,
// true message length
fullMessageLength: null,
// size of message length in bytes
messageLengthSize: 8
};
/**
* Starts the digest.
*
* @return this digest object.
*/
md.start = function() {
// up to 56-bit message length for convenience
md.messageLength = 0;
// full message length (set md.messageLength64 for backwards-compatibility)
md.fullMessageLength = md.messageLength64 = [];
var int32s = md.messageLengthSize / 4;
for(var i = 0; i < int32s; ++i) {
md.fullMessageLength.push(0);
}
_input = forge$5.util.createBuffer();
_state = {
h0: 0x67452301,
h1: 0xEFCDAB89,
h2: 0x98BADCFE,
h3: 0x10325476,
h4: 0xC3D2E1F0
};
return md;
};
// start digest automatically for first time
md.start();
/**
* Updates the digest with the given message input. The given input can
* treated as raw input (no encoding will be applied) or an encoding of
* 'utf8' maybe given to encode the input using UTF-8.
*
* @param msg the message input to update with.
* @param encoding the encoding to use (default: 'raw', other: 'utf8').
*
* @return this digest object.
*/
md.update = function(msg, encoding) {
if(encoding === 'utf8') {
msg = forge$5.util.encodeUtf8(msg);
}
// update message length
var len = msg.length;
md.messageLength += len;
len = [(len / 0x100000000) >>> 0, len >>> 0];
for(var i = md.fullMessageLength.length - 1; i >= 0; --i) {
md.fullMessageLength[i] += len[1];
len[1] = len[0] + ((md.fullMessageLength[i] / 0x100000000) >>> 0);
md.fullMessageLength[i] = md.fullMessageLength[i] >>> 0;
len[0] = ((len[1] / 0x100000000) >>> 0);
}
// add bytes to input buffer
_input.putBytes(msg);
// process bytes
_update$1(_state, _w, _input);
// compact input buffer every 2K or if empty
if(_input.read > 2048 || _input.length() === 0) {
_input.compact();
}
return md;
};
/**
* Produces the digest.
*
* @return a byte buffer containing the digest value.
*/
md.digest = function() {
/* Note: Here we copy the remaining bytes in the input buffer and
add the appropriate SHA-1 padding. Then we do the final update
on a copy of the state so that if the user wants to get
intermediate digests they can do so. */
/* Determine the number of bytes that must be added to the message
to ensure its length is congruent to 448 mod 512. In other words,
the data to be digested must be a multiple of 512 bits (or 128 bytes).
This data includes the message, some padding, and the length of the
message. Since the length of the message will be encoded as 8 bytes (64
bits), that means that the last segment of the data must have 56 bytes
(448 bits) of message and padding. Therefore, the length of the message
plus the padding must be congruent to 448 mod 512 because
512 - 128 = 448.
In order to fill up the message length it must be filled with
padding that begins with 1 bit followed by all 0 bits. Padding
must *always* be present, so if the message length is already
congruent to 448 mod 512, then 512 padding bits must be added. */
var finalBlock = forge$5.util.createBuffer();
finalBlock.putBytes(_input.bytes());
// compute remaining size to be digested (include message length size)
var remaining = (
md.fullMessageLength[md.fullMessageLength.length - 1] +
md.messageLengthSize);
// add padding for overflow blockSize - overflow
// _padding starts with 1 byte with first bit is set (byte value 128), then
// there may be up to (blockSize - 1) other pad bytes
var overflow = remaining & (md.blockLength - 1);
finalBlock.putBytes(_padding$1.substr(0, md.blockLength - overflow));
// serialize message length in bits in big-endian order; since length
// is stored in bytes we multiply by 8 and add carry from next int
var next, carry;
var bits = md.fullMessageLength[0] * 8;
for(var i = 0; i < md.fullMessageLength.length - 1; ++i) {
next = md.fullMessageLength[i + 1] * 8;
carry = (next / 0x100000000) >>> 0;
bits += carry;
finalBlock.putInt32(bits >>> 0);
bits = next >>> 0;
}
finalBlock.putInt32(bits);
var s2 = {
h0: _state.h0,
h1: _state.h1,
h2: _state.h2,
h3: _state.h3,
h4: _state.h4
};
_update$1(s2, _w, finalBlock);
var rval = forge$5.util.createBuffer();
rval.putInt32(s2.h0);
rval.putInt32(s2.h1);
rval.putInt32(s2.h2);
rval.putInt32(s2.h3);
rval.putInt32(s2.h4);
return rval;
};
return md;
};
// sha-1 padding bytes not initialized yet
var _padding$1 = null;
var _initialized$1 = false;
/**
* Initializes the constant tables.
*/
function _init$1() {
// create padding
_padding$1 = String.fromCharCode(128);
_padding$1 += forge$5.util.fillString(String.fromCharCode(0x00), 64);
// now initialized
_initialized$1 = true;
}
/**
* Updates a SHA-1 state with the given byte buffer.
*
* @param s the SHA-1 state to update.
* @param w the array to use to store words.
* @param bytes the byte buffer to update with.
*/
function _update$1(s, w, bytes) {
// consume 512 bit (64 byte) chunks
var t, a, b, c, d, e, f, i;
var len = bytes.length();
while(len >= 64) {
// the w array will be populated with sixteen 32-bit big-endian words
// and then extended into 80 32-bit words according to SHA-1 algorithm
// and for 32-79 using Max Locktyukhin's optimization
// initialize hash value for this chunk
a = s.h0;
b = s.h1;
c = s.h2;
d = s.h3;
e = s.h4;
// round 1
for(i = 0; i < 16; ++i) {
t = bytes.getInt32();
w[i] = t;
f = d ^ (b & (c ^ d));
t = ((a << 5) | (a >>> 27)) + f + e + 0x5A827999 + t;
e = d;
d = c;
// `>>> 0` necessary to avoid iOS/Safari 10 optimization bug
c = ((b << 30) | (b >>> 2)) >>> 0;
b = a;
a = t;
}
for(; i < 20; ++i) {
t = (w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]);
t = (t << 1) | (t >>> 31);
w[i] = t;
f = d ^ (b & (c ^ d));
t = ((a << 5) | (a >>> 27)) + f + e + 0x5A827999 + t;
e = d;
d = c;
// `>>> 0` necessary to avoid iOS/Safari 10 optimization bug
c = ((b << 30) | (b >>> 2)) >>> 0;
b = a;
a = t;
}
// round 2
for(; i < 32; ++i) {
t = (w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]);
t = (t << 1) | (t >>> 31);
w[i] = t;
f = b ^ c ^ d;
t = ((a << 5) | (a >>> 27)) + f + e + 0x6ED9EBA1 + t;
e = d;
d = c;
// `>>> 0` necessary to avoid iOS/Safari 10 optimization bug
c = ((b << 30) | (b >>> 2)) >>> 0;
b = a;
a = t;
}
for(; i < 40; ++i) {
t = (w[i - 6] ^ w[i - 16] ^ w[i - 28] ^ w[i - 32]);
t = (t << 2) | (t >>> 30);
w[i] = t;
f = b ^ c ^ d;
t = ((a << 5) | (a >>> 27)) + f + e + 0x6ED9EBA1 + t;
e = d;
d = c;
// `>>> 0` necessary to avoid iOS/Safari 10 optimization bug
c = ((b << 30) | (b >>> 2)) >>> 0;
b = a;
a = t;
}
// round 3
for(; i < 60; ++i) {
t = (w[i - 6] ^ w[i - 16] ^ w[i - 28] ^ w[i - 32]);
t = (t << 2) | (t >>> 30);
w[i] = t;
f = (b & c) | (d & (b ^ c));
t = ((a << 5) | (a >>> 27)) + f + e + 0x8F1BBCDC + t;
e = d;
d = c;
// `>>> 0` necessary to avoid iOS/Safari 10 optimization bug
c = ((b << 30) | (b >>> 2)) >>> 0;
b = a;
a = t;
}
// round 4
for(; i < 80; ++i) {
t = (w[i - 6] ^ w[i - 16] ^ w[i - 28] ^ w[i - 32]);
t = (t << 2) | (t >>> 30);
w[i] = t;
f = b ^ c ^ d;
t = ((a << 5) | (a >>> 27)) + f + e + 0xCA62C1D6 + t;
e = d;
d = c;
// `>>> 0` necessary to avoid iOS/Safari 10 optimization bug
c = ((b << 30) | (b >>> 2)) >>> 0;
b = a;
a = t;
}
// update hash state
s.h0 = (s.h0 + a) | 0;
s.h1 = (s.h1 + b) | 0;
s.h2 = (s.h2 + c) | 0;
s.h3 = (s.h3 + d) | 0;
s.h4 = (s.h4 + e) | 0;
len -= 64;
}
}
/**
* Partial implementation of PKCS#1 v2.2: RSA-OEAP
*
* Modified but based on the following MIT and BSD licensed code:
*
* https://github.com/kjur/jsjws/blob/master/rsa.js:
*
* The 'jsjws'(JSON Web Signature JavaScript Library) License
*
* Copyright (c) 2012 Kenji Urushima
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* http://webrsa.cvs.sourceforge.net/viewvc/webrsa/Client/RSAES-OAEP.js?content-type=text%2Fplain:
*
* RSAES-OAEP.js
* $Id: RSAES-OAEP.js,v 1.1.1.1 2003/03/19 15:37:20 ellispritchard Exp $
* JavaScript Implementation of PKCS #1 v2.1 RSA CRYPTOGRAPHY STANDARD (RSA Laboratories, June 14, 2002)
* Copyright (C) Ellis Pritchard, Guardian Unlimited 2003.
* Contact: ellis@nukinetics.com
* Distributed under the BSD License.
*
* Official documentation: http://www.rsa.com/rsalabs/node.asp?id=2125
*
* @author Evan Jones (http://evanjones.ca/)
* @author Dave Longley
*
* Copyright (c) 2013-2014 Digital Bazaar, Inc.
*/
var forge$4 = forge$m;
// shortcut for PKCS#1 API
var pkcs1 = forge$4.pkcs1 = forge$4.pkcs1 || {};
/**
* Encode the given RSAES-OAEP message (M) using key, with optional label (L)
* and seed.
*
* This method does not perform RSA encryption, it only encodes the message
* using RSAES-OAEP.
*
* @param key the RSA key to use.
* @param message the message to encode.
* @param options the options to use:
* label an optional label to use.
* seed the seed to use.
* md the message digest object to use, undefined for SHA-1.
* mgf1 optional mgf1 parameters:
* md the message digest object to use for MGF1.
*
* @return the encoded message bytes.
*/
pkcs1.encode_rsa_oaep = function(key, message, options) {
// parse arguments
var label;
var seed;
var md;
var mgf1Md;
// legacy args (label, seed, md)
if(typeof options === 'string') {
label = options;
seed = arguments[3] || undefined;
md = arguments[4] || undefined;
} else if(options) {
label = options.label || undefined;
seed = options.seed || undefined;
md = options.md || undefined;
if(options.mgf1 && options.mgf1.md) {
mgf1Md = options.mgf1.md;
}
}
// default OAEP to SHA-1 message digest
if(!md) {
md = forge$4.md.sha1.create();
} else {
md.start();
}
// default MGF-1 to same as OAEP
if(!mgf1Md) {
mgf1Md = md;
}
// compute length in bytes and check output
var keyLength = Math.ceil(key.n.bitLength() / 8);
var maxLength = keyLength - 2 * md.digestLength - 2;
if(message.length > maxLength) {
var error = new Error('RSAES-OAEP input message length is too long.');
error.length = message.length;
error.maxLength = maxLength;
throw error;
}
if(!label) {
label = '';
}
md.update(label, 'raw');
var lHash = md.digest();
var PS = '';
var PS_length = maxLength - message.length;
for(var i = 0; i < PS_length; i++) {
PS += '\x00';
}
var DB = lHash.getBytes() + PS + '\x01' + message;
if(!seed) {
seed = forge$4.random.getBytes(md.digestLength);
} else if(seed.length !== md.digestLength) {
var error = new Error('Invalid RSAES-OAEP seed. The seed length must ' +
'match the digest length.');
error.seedLength = seed.length;
error.digestLength = md.digestLength;
throw error;
}
var dbMask = rsa_mgf1(seed, keyLength - md.digestLength - 1, mgf1Md);
var maskedDB = forge$4.util.xorBytes(DB, dbMask, DB.length);
var seedMask = rsa_mgf1(maskedDB, md.digestLength, mgf1Md);
var maskedSeed = forge$4.util.xorBytes(seed, seedMask, seed.length);
// return encoded message
return '\x00' + maskedSeed + maskedDB;
};
/**
* Decode the given RSAES-OAEP encoded message (EM) using key, with optional
* label (L).
*
* This method does not perform RSA decryption, it only decodes the message
* using RSAES-OAEP.
*
* @param key the RSA key to use.
* @param em the encoded message to decode.
* @param options the options to use:
* label an optional label to use.
* md the message digest object to use for OAEP, undefined for SHA-1.
* mgf1 optional mgf1 parameters:
* md the message digest object to use for MGF1.
*
* @return the decoded message bytes.
*/
pkcs1.decode_rsa_oaep = function(key, em, options) {
// parse args
var label;
var md;
var mgf1Md;
// legacy args
if(typeof options === 'string') {
label = options;
md = arguments[3] || undefined;
} else if(options) {
label = options.label || undefined;
md = options.md || undefined;
if(options.mgf1 && options.mgf1.md) {
mgf1Md = options.mgf1.md;
}
}
// compute length in bytes
var keyLength = Math.ceil(key.n.bitLength() / 8);
if(em.length !== keyLength) {
var error = new Error('RSAES-OAEP encoded message length is invalid.');
error.length = em.length;
error.expectedLength = keyLength;
throw error;
}
// default OAEP to SHA-1 message digest
if(md === undefined) {
md = forge$4.md.sha1.create();
} else {
md.start();
}
// default MGF-1 to same as OAEP
if(!mgf1Md) {
mgf1Md = md;
}
if(keyLength < 2 * md.digestLength + 2) {
throw new Error('RSAES-OAEP key is too short for the hash function.');
}
if(!label) {
label = '';
}
md.update(label, 'raw');
var lHash = md.digest().getBytes();
// split the message into its parts
var y = em.charAt(0);
var maskedSeed = em.substring(1, md.digestLength + 1);
var maskedDB = em.substring(1 + md.digestLength);
var seedMask = rsa_mgf1(maskedDB, md.digestLength, mgf1Md);
var seed = forge$4.util.xorBytes(maskedSeed, seedMask, maskedSeed.length);
var dbMask = rsa_mgf1(seed, keyLength - md.digestLength - 1, mgf1Md);
var db = forge$4.util.xorBytes(maskedDB, dbMask, maskedDB.length);
var lHashPrime = db.substring(0, md.digestLength);
// constant time check that all values match what is expected
var error = (y !== '\x00');
// constant time check lHash vs lHashPrime
for(var i = 0; i < md.digestLength; ++i) {
error |= (lHash.charAt(i) !== lHashPrime.charAt(i));
}
// "constant time" find the 0x1 byte separating the padding (zeros) from the
// message
// TODO: It must be possible to do this in a better/smarter way?
var in_ps = 1;
var index = md.digestLength;
for(var j = md.digestLength; j < db.length; j++) {
var code = db.charCodeAt(j);
var is_0 = (code & 0x1) ^ 0x1;
// non-zero if not 0 or 1 in the ps section
var error_mask = in_ps ? 0xfffe : 0x0000;
error |= (code & error_mask);
// latch in_ps to zero after we find 0x1
in_ps = in_ps & is_0;
index += in_ps;
}
if(error || db.charCodeAt(index) !== 0x1) {
throw new Error('Invalid RSAES-OAEP padding.');
}
return db.substring(index + 1);
};
function rsa_mgf1(seed, maskLength, hash) {
// default to SHA-1 message digest
if(!hash) {
hash = forge$4.md.sha1.create();
}
var t = '';
var count = Math.ceil(maskLength / hash.digestLength);
for(var i = 0; i < count; ++i) {
var c = String.fromCharCode(
(i >> 24) & 0xFF, (i >> 16) & 0xFF, (i >> 8) & 0xFF, i & 0xFF);
hash.start();
hash.update(seed + c);
t += hash.digest().getBytes();
}
return t.substring(0, maskLength);
}
/**
* Prime number generation API.
*
* @author Dave Longley
*
* Copyright (c) 2014 Digital Bazaar, Inc.
*/
var forge$3 = forge$m;
(function() {
// forge.prime already defined
if(forge$3.prime) {
return;
}
/* PRIME API */
var prime = forge$3.prime = forge$3.prime || {};
var BigInteger = forge$3.jsbn.BigInteger;
// primes are 30k+i for i = 1, 7, 11, 13, 17, 19, 23, 29
var GCD_30_DELTA = [6, 4, 2, 4, 2, 4, 6, 2];
var THIRTY = new BigInteger(null);
THIRTY.fromInt(30);
var op_or = function(x, y) {return x|y;};
/**
* Generates a random probable prime with the given number of bits.
*
* Alternative algorithms can be specified by name as a string or as an
* object with custom options like so:
*
* {
* name: 'PRIMEINC',
* options: {
* maxBlockTime: <the maximum amount of time to block the main
* thread before allowing I/O other JS to run>,
* millerRabinTests: <the number of miller-rabin tests to run>,
* workerScript: <the worker script URL>,
* workers: <the number of web workers (if supported) to use,
* -1 to use estimated cores minus one>.
* workLoad: the size of the work load, ie: number of possible prime
* numbers for each web worker to check per work assignment,
* (default: 100).
* }
* }
*
* @param bits the number of bits for the prime number.
* @param options the options to use.
* [algorithm] the algorithm to use (default: 'PRIMEINC').
* [prng] a custom crypto-secure pseudo-random number generator to use,
* that must define "getBytesSync".
*
* @return callback(err, num) called once the operation completes.
*/
prime.generateProbablePrime = function(bits, options, callback) {
if(typeof options === 'function') {
callback = options;
options = {};
}
options = options || {};
// default to PRIMEINC algorithm
var algorithm = options.algorithm || 'PRIMEINC';
if(typeof algorithm === 'string') {
algorithm = {name: algorithm};
}
algorithm.options = algorithm.options || {};
// create prng with api that matches BigInteger secure random
var prng = options.prng || forge$3.random;
var rng = {
// x is an array to fill with bytes
nextBytes: function(x) {
var b = prng.getBytesSync(x.length);
for(var i = 0; i < x.length; ++i) {
x[i] = b.charCodeAt(i);
}
}
};
if(algorithm.name === 'PRIMEINC') {
return primeincFindPrime(bits, rng, algorithm.options, callback);
}
throw new Error('Invalid prime generation algorithm: ' + algorithm.name);
};
function primeincFindPrime(bits, rng, options, callback) {
if('workers' in options) {
return primeincFindPrimeWithWorkers(bits, rng, options, callback);
}
return primeincFindPrimeWithoutWorkers(bits, rng, options, callback);
}
function primeincFindPrimeWithoutWorkers(bits, rng, options, callback) {
// initialize random number
var num = generateRandom(bits, rng);
/* Note: All primes are of the form 30k+i for i < 30 and gcd(30, i)=1. The
number we are given is always aligned at 30k + 1. Each time the number is
determined not to be prime we add to get to the next 'i', eg: if the number
was at 30k + 1 we add 6. */
var deltaIdx = 0;
// get required number of MR tests
var mrTests = getMillerRabinTests(num.bitLength());
if('millerRabinTests' in options) {
mrTests = options.millerRabinTests;
}
// find prime nearest to 'num' for maxBlockTime ms
// 10 ms gives 5ms of leeway for other calculations before dropping
// below 60fps (1000/60 == 16.67), but in reality, the number will
// likely be higher due to an 'atomic' big int modPow
var maxBlockTime = 10;
if('maxBlockTime' in options) {
maxBlockTime = options.maxBlockTime;
}
_primeinc(num, bits, rng, deltaIdx, mrTests, maxBlockTime, callback);
}
function _primeinc(num, bits, rng, deltaIdx, mrTests, maxBlockTime, callback) {
var start = +new Date();
do {
// overflow, regenerate random number
if(num.bitLength() > bits) {
num = generateRandom(bits, rng);
}
// do primality test
if(num.isProbablePrime(mrTests)) {
return callback(null, num);
}
// get next potential prime
num.dAddOffset(GCD_30_DELTA[deltaIdx++ % 8], 0);
} while(maxBlockTime < 0 || (+new Date() - start < maxBlockTime));
// keep trying later
forge$3.util.setImmediate(function() {
_primeinc(num, bits, rng, deltaIdx, mrTests, maxBlockTime, callback);
});
}
// NOTE: This algorithm is indeterminate in nature because workers
// run in parallel looking at different segments of numbers. Even if this
// algorithm is run twice with the same input from a predictable RNG, it
// may produce different outputs.
function primeincFindPrimeWithWorkers(bits, rng, options, callback) {
// web workers unavailable
if(typeof Worker === 'undefined') {
return primeincFindPrimeWithoutWorkers(bits, rng, options, callback);
}
// initialize random number
var num = generateRandom(bits, rng);
// use web workers to generate keys
var numWorkers = options.workers;
var workLoad = options.workLoad || 100;
var range = workLoad * 30 / 8;
var workerScript = options.workerScript || 'forge/prime.worker.js';
if(numWorkers === -1) {
return forge$3.util.estimateCores(function(err, cores) {
if(err) {
// default to 2
cores = 2;
}
numWorkers = cores - 1;
generate();
});
}
generate();
function generate() {
// require at least 1 worker
numWorkers = Math.max(1, numWorkers);
// TODO: consider optimizing by starting workers outside getPrime() ...
// note that in order to clean up they will have to be made internally
// asynchronous which may actually be slower
// start workers immediately
var workers = [];
for(var i = 0; i < numWorkers; ++i) {
// FIXME: fix path or use blob URLs
workers[i] = new Worker(workerScript);
}
// listen for requests from workers and assign ranges to find prime
for(var i = 0; i < numWorkers; ++i) {
workers[i].addEventListener('message', workerMessage);
}
/* Note: The distribution of random numbers is unknown. Therefore, each
web worker is continuously allocated a range of numbers to check for a
random number until one is found.
Every 30 numbers will be checked just 8 times, because prime numbers
have the form:
30k+i, for i < 30 and gcd(30, i)=1 (there are 8 values of i for this)
Therefore, if we want a web worker to run N checks before asking for
a new range of numbers, each range must contain N*30/8 numbers.
For 100 checks (workLoad), this is a range of 375. */
var found = false;
function workerMessage(e) {
// ignore message, prime already found
if(found) {
return;
}
var data = e.data;
if(data.found) {
// terminate all workers
for(var i = 0; i < workers.length; ++i) {
workers[i].terminate();
}
found = true;
return callback(null, new BigInteger(data.prime, 16));
}
// overflow, regenerate random number
if(num.bitLength() > bits) {
num = generateRandom(bits, rng);
}
// assign new range to check
var hex = num.toString(16);
// start prime search
e.target.postMessage({
hex: hex,
workLoad: workLoad
});
num.dAddOffset(range, 0);
}
}
}
/**
* Generates a random number using the given number of bits and RNG.
*
* @param bits the number of bits for the number.
* @param rng the random number generator to use.
*
* @return the random number.
*/
function generateRandom(bits, rng) {
var num = new BigInteger(bits, rng);
// force MSB set
var bits1 = bits - 1;
if(!num.testBit(bits1)) {
num.bitwiseTo(BigInteger.ONE.shiftLeft(bits1), op_or, num);
}
// align number on 30k+1 boundary
num.dAddOffset(31 - num.mod(THIRTY).byteValue(), 0);
return num;
}
/**
* Returns the required number of Miller-Rabin tests to generate a
* prime with an error probability of (1/2)^80.
*
* See Handbook of Applied Cryptography Chapter 4, Table 4.4.
*
* @param bits the bit size.
*
* @return the required number of iterations.
*/
function getMillerRabinTests(bits) {
if(bits <= 100) return 27;
if(bits <= 150) return 18;
if(bits <= 200) return 15;
if(bits <= 250) return 12;
if(bits <= 300) return 9;
if(bits <= 350) return 8;
if(bits <= 400) return 7;
if(bits <= 500) return 6;
if(bits <= 600) return 5;
if(bits <= 800) return 4;
if(bits <= 1250) return 3;
return 2;
}
})();
/**
* Javascript implementation of basic RSA algorithms.
*
* @author Dave Longley
*
* Copyright (c) 2010-2014 Digital Bazaar, Inc.
*
* The only algorithm currently supported for PKI is RSA.
*
* An RSA key is often stored in ASN.1 DER format. The SubjectPublicKeyInfo
* ASN.1 structure is composed of an algorithm of type AlgorithmIdentifier
* and a subjectPublicKey of type bit string.
*
* The AlgorithmIdentifier contains an Object Identifier (OID) and parameters
* for the algorithm, if any. In the case of RSA, there aren't any.
*
* SubjectPublicKeyInfo ::= SEQUENCE {
* algorithm AlgorithmIdentifier,
* subjectPublicKey BIT STRING
* }
*
* AlgorithmIdentifer ::= SEQUENCE {
* algorithm OBJECT IDENTIFIER,
* parameters ANY DEFINED BY algorithm OPTIONAL
* }
*
* For an RSA public key, the subjectPublicKey is:
*
* RSAPublicKey ::= SEQUENCE {
* modulus INTEGER, -- n
* publicExponent INTEGER -- e
* }
*
* PrivateKeyInfo ::= SEQUENCE {
* version Version,
* privateKeyAlgorithm PrivateKeyAlgorithmIdentifier,
* privateKey PrivateKey,
* attributes [0] IMPLICIT Attributes OPTIONAL
* }
*
* Version ::= INTEGER
* PrivateKeyAlgorithmIdentifier ::= AlgorithmIdentifier
* PrivateKey ::= OCTET STRING
* Attributes ::= SET OF Attribute
*
* An RSA private key as the following structure:
*
* RSAPrivateKey ::= SEQUENCE {
* version Version,
* modulus INTEGER, -- n
* publicExponent INTEGER, -- e
* privateExponent INTEGER, -- d
* prime1 INTEGER, -- p
* prime2 INTEGER, -- q
* exponent1 INTEGER, -- d mod (p-1)
* exponent2 INTEGER, -- d mod (q-1)
* coefficient INTEGER -- (inverse of q) mod p
* }
*
* Version ::= INTEGER
*
* The OID for the RSA key algorithm is: 1.2.840.113549.1.1.1
*/
var forge$2 = forge$m;
if(typeof BigInteger$1 === 'undefined') {
var BigInteger$1 = forge$2.jsbn.BigInteger;
}
var _crypto = forge$2.util.isNodejs ? require$$8 : null;
// shortcut for asn.1 API
var asn1$1 = forge$2.asn1;
// shortcut for util API
var util = forge$2.util;
/*
* RSA encryption and decryption, see RFC 2313.
*/
forge$2.pki = forge$2.pki || {};
forge$2.pki.rsa = forge$2.rsa = forge$2.rsa || {};
var pki$1 = forge$2.pki;
// for finding primes, which are 30k+i for i = 1, 7, 11, 13, 17, 19, 23, 29
var GCD_30_DELTA = [6, 4, 2, 4, 2, 4, 6, 2];
// validator for a PrivateKeyInfo structure
var privateKeyValidator = {
// PrivateKeyInfo
name: 'PrivateKeyInfo',
tagClass: asn1$1.Class.UNIVERSAL,
type: asn1$1.Type.SEQUENCE,
constructed: true,
value: [{
// Version (INTEGER)
name: 'PrivateKeyInfo.version',
tagClass: asn1$1.Class.UNIVERSAL,
type: asn1$1.Type.INTEGER,
constructed: false,
capture: 'privateKeyVersion'
}, {
// privateKeyAlgorithm
name: 'PrivateKeyInfo.privateKeyAlgorithm',
tagClass: asn1$1.Class.UNIVERSAL,
type: asn1$1.Type.SEQUENCE,
constructed: true,
value: [{
name: 'AlgorithmIdentifier.algorithm',
tagClass: asn1$1.Class.UNIVERSAL,
type: asn1$1.Type.OID,
constructed: false,
capture: 'privateKeyOid'
}]
}, {
// PrivateKey
name: 'PrivateKeyInfo',
tagClass: asn1$1.Class.UNIVERSAL,
type: asn1$1.Type.OCTETSTRING,
constructed: false,
capture: 'privateKey'
}]
};
// validator for an RSA private key
var rsaPrivateKeyValidator = {
// RSAPrivateKey
name: 'RSAPrivateKey',
tagClass: asn1$1.Class.UNIVERSAL,
type: asn1$1.Type.SEQUENCE,
constructed: true,
value: [{
// Version (INTEGER)
name: 'RSAPrivateKey.version',
tagClass: asn1$1.Class.UNIVERSAL,
type: asn1$1.Type.INTEGER,
constructed: false,
capture: 'privateKeyVersion'
}, {
// modulus (n)
name: 'RSAPrivateKey.modulus',
tagClass: asn1$1.Class.UNIVERSAL,
type: asn1$1.Type.INTEGER,
constructed: false,
capture: 'privateKeyModulus'
}, {
// publicExponent (e)
name: 'RSAPrivateKey.publicExponent',
tagClass: asn1$1.Class.UNIVERSAL,
type: asn1$1.Type.INTEGER,
constructed: false,
capture: 'privateKeyPublicExponent'
}, {
// privateExponent (d)
name: 'RSAPrivateKey.privateExponent',
tagClass: asn1$1.Class.UNIVERSAL,
type: asn1$1.Type.INTEGER,
constructed: false,
capture: 'privateKeyPrivateExponent'
}, {
// prime1 (p)
name: 'RSAPrivateKey.prime1',
tagClass: asn1$1.Class.UNIVERSAL,
type: asn1$1.Type.INTEGER,
constructed: false,
capture: 'privateKeyPrime1'
}, {
// prime2 (q)
name: 'RSAPrivateKey.prime2',
tagClass: asn1$1.Class.UNIVERSAL,
type: asn1$1.Type.INTEGER,
constructed: false,
capture: 'privateKeyPrime2'
}, {
// exponent1 (d mod (p-1))
name: 'RSAPrivateKey.exponent1',
tagClass: asn1$1.Class.UNIVERSAL,
type: asn1$1.Type.INTEGER,
constructed: false,
capture: 'privateKeyExponent1'
}, {
// exponent2 (d mod (q-1))
name: 'RSAPrivateKey.exponent2',
tagClass: asn1$1.Class.UNIVERSAL,
type: asn1$1.Type.INTEGER,
constructed: false,
capture: 'privateKeyExponent2'
}, {
// coefficient ((inverse of q) mod p)
name: 'RSAPrivateKey.coefficient',
tagClass: asn1$1.Class.UNIVERSAL,
type: asn1$1.Type.INTEGER,
constructed: false,
capture: 'privateKeyCoefficient'
}]
};
// validator for an RSA public key
var rsaPublicKeyValidator = {
// RSAPublicKey
name: 'RSAPublicKey',
tagClass: asn1$1.Class.UNIVERSAL,
type: asn1$1.Type.SEQUENCE,
constructed: true,
value: [{
// modulus (n)
name: 'RSAPublicKey.modulus',
tagClass: asn1$1.Class.UNIVERSAL,
type: asn1$1.Type.INTEGER,
constructed: false,
capture: 'publicKeyModulus'
}, {
// publicExponent (e)
name: 'RSAPublicKey.exponent',
tagClass: asn1$1.Class.UNIVERSAL,
type: asn1$1.Type.INTEGER,
constructed: false,
capture: 'publicKeyExponent'
}]
};
// validator for an SubjectPublicKeyInfo structure
// Note: Currently only works with an RSA public key
var publicKeyValidator = forge$2.pki.rsa.publicKeyValidator = {
name: 'SubjectPublicKeyInfo',
tagClass: asn1$1.Class.UNIVERSAL,
type: asn1$1.Type.SEQUENCE,
constructed: true,
captureAsn1: 'subjectPublicKeyInfo',
value: [{
name: 'SubjectPublicKeyInfo.AlgorithmIdentifier',
tagClass: asn1$1.Class.UNIVERSAL,
type: asn1$1.Type.SEQUENCE,
constructed: true,
value: [{
name: 'AlgorithmIdentifier.algorithm',
tagClass: asn1$1.Class.UNIVERSAL,
type: asn1$1.Type.OID,
constructed: false,
capture: 'publicKeyOid'
}]
}, {
// subjectPublicKey
name: 'SubjectPublicKeyInfo.subjectPublicKey',
tagClass: asn1$1.Class.UNIVERSAL,
type: asn1$1.Type.BITSTRING,
constructed: false,
value: [{
// RSAPublicKey
name: 'SubjectPublicKeyInfo.subjectPublicKey.RSAPublicKey',
tagClass: asn1$1.Class.UNIVERSAL,
type: asn1$1.Type.SEQUENCE,
constructed: true,
optional: true,
captureAsn1: 'rsaPublicKey'
}]
}]
};
// validator for a DigestInfo structure
var digestInfoValidator = {
name: 'DigestInfo',
tagClass: asn1$1.Class.UNIVERSAL,
type: asn1$1.Type.SEQUENCE,
constructed: true,
value: [{
name: 'DigestInfo.DigestAlgorithm',
tagClass: asn1$1.Class.UNIVERSAL,
type: asn1$1.Type.SEQUENCE,
constructed: true,
value: [{
name: 'DigestInfo.DigestAlgorithm.algorithmIdentifier',
tagClass: asn1$1.Class.UNIVERSAL,
type: asn1$1.Type.OID,
constructed: false,
capture: 'algorithmIdentifier'
}, {
// NULL paramters
name: 'DigestInfo.DigestAlgorithm.parameters',
tagClass: asn1$1.Class.UNIVERSAL,
type: asn1$1.Type.NULL,
// captured only to check existence for md2 and md5
capture: 'parameters',
optional: true,
constructed: false
}]
}, {
// digest
name: 'DigestInfo.digest',
tagClass: asn1$1.Class.UNIVERSAL,
type: asn1$1.Type.OCTETSTRING,
constructed: false,
capture: 'digest'
}]
};
/**
* Wrap digest in DigestInfo object.
*
* This function implements EMSA-PKCS1-v1_5-ENCODE as per RFC 3447.
*
* DigestInfo ::= SEQUENCE {
* digestAlgorithm DigestAlgorithmIdentifier,
* digest Digest
* }
*
* DigestAlgorithmIdentifier ::= AlgorithmIdentifier
* Digest ::= OCTET STRING
*
* @param md the message digest object with the hash to sign.
*
* @return the encoded message (ready for RSA encrytion)
*/
var emsaPkcs1v15encode = function(md) {
// get the oid for the algorithm
var oid;
if(md.algorithm in pki$1.oids) {
oid = pki$1.oids[md.algorithm];
} else {
var error = new Error('Unknown message digest algorithm.');
error.algorithm = md.algorithm;
throw error;
}
var oidBytes = asn1$1.oidToDer(oid).getBytes();
// create the digest info
var digestInfo = asn1$1.create(
asn1$1.Class.UNIVERSAL, asn1$1.Type.SEQUENCE, true, []);
var digestAlgorithm = asn1$1.create(
asn1$1.Class.UNIVERSAL, asn1$1.Type.SEQUENCE, true, []);
digestAlgorithm.value.push(asn1$1.create(
asn1$1.Class.UNIVERSAL, asn1$1.Type.OID, false, oidBytes));
digestAlgorithm.value.push(asn1$1.create(
asn1$1.Class.UNIVERSAL, asn1$1.Type.NULL, false, ''));
var digest = asn1$1.create(
asn1$1.Class.UNIVERSAL, asn1$1.Type.OCTETSTRING,
false, md.digest().getBytes());
digestInfo.value.push(digestAlgorithm);
digestInfo.value.push(digest);
// encode digest info
return asn1$1.toDer(digestInfo).getBytes();
};
/**
* Performs x^c mod n (RSA encryption or decryption operation).
*
* @param x the number to raise and mod.
* @param key the key to use.
* @param pub true if the key is public, false if private.
*
* @return the result of x^c mod n.
*/
var _modPow = function(x, key, pub) {
if(pub) {
return x.modPow(key.e, key.n);
}
if(!key.p || !key.q) {
// allow calculation without CRT params (slow)
return x.modPow(key.d, key.n);
}
// pre-compute dP, dQ, and qInv if necessary
if(!key.dP) {
key.dP = key.d.mod(key.p.subtract(BigInteger$1.ONE));
}
if(!key.dQ) {
key.dQ = key.d.mod(key.q.subtract(BigInteger$1.ONE));
}
if(!key.qInv) {
key.qInv = key.q.modInverse(key.p);
}
/* Chinese remainder theorem (CRT) states:
Suppose n1, n2, ..., nk are positive integers which are pairwise
coprime (n1 and n2 have no common factors other than 1). For any
integers x1, x2, ..., xk there exists an integer x solving the
system of simultaneous congruences (where ~= means modularly
congruent so a ~= b mod n means a mod n = b mod n):
x ~= x1 mod n1
x ~= x2 mod n2
...
x ~= xk mod nk
This system of congruences has a single simultaneous solution x
between 0 and n - 1. Furthermore, each xk solution and x itself
is congruent modulo the product n = n1*n2*...*nk.
So x1 mod n = x2 mod n = xk mod n = x mod n.
The single simultaneous solution x can be solved with the following
equation:
x = sum(xi*ri*si) mod n where ri = n/ni and si = ri^-1 mod ni.
Where x is less than n, xi = x mod ni.
For RSA we are only concerned with k = 2. The modulus n = pq, where
p and q are coprime. The RSA decryption algorithm is:
y = x^d mod n
Given the above:
x1 = x^d mod p
r1 = n/p = q
s1 = q^-1 mod p
x2 = x^d mod q
r2 = n/q = p
s2 = p^-1 mod q
So y = (x1r1s1 + x2r2s2) mod n
= ((x^d mod p)q(q^-1 mod p) + (x^d mod q)p(p^-1 mod q)) mod n
According to Fermat's Little Theorem, if the modulus P is prime,
for any integer A not evenly divisible by P, A^(P-1) ~= 1 mod P.
Since A is not divisible by P it follows that if:
N ~= M mod (P - 1), then A^N mod P = A^M mod P. Therefore:
A^N mod P = A^(M mod (P - 1)) mod P. (The latter takes less effort
to calculate). In order to calculate x^d mod p more quickly the
exponent d mod (p - 1) is stored in the RSA private key (the same
is done for x^d mod q). These values are referred to as dP and dQ
respectively. Therefore we now have:
y = ((x^dP mod p)q(q^-1 mod p) + (x^dQ mod q)p(p^-1 mod q)) mod n
Since we'll be reducing x^dP by modulo p (same for q) we can also
reduce x by p (and q respectively) before hand. Therefore, let
xp = ((x mod p)^dP mod p), and
xq = ((x mod q)^dQ mod q), yielding:
y = (xp*q*(q^-1 mod p) + xq*p*(p^-1 mod q)) mod n
This can be further reduced to a simple algorithm that only
requires 1 inverse (the q inverse is used) to be used and stored.
The algorithm is called Garner's algorithm. If qInv is the
inverse of q, we simply calculate:
y = (qInv*(xp - xq) mod p) * q + xq
However, there are two further complications. First, we need to
ensure that xp > xq to prevent signed BigIntegers from being used
so we add p until this is true (since we will be mod'ing with
p anyway). Then, there is a known timing attack on algorithms
using the CRT. To mitigate this risk, "cryptographic blinding"
should be used. This requires simply generating a random number r
between 0 and n-1 and its inverse and multiplying x by r^e before
calculating y and then multiplying y by r^-1 afterwards. Note that
r must be coprime with n (gcd(r, n) === 1) in order to have an
inverse.
*/
// cryptographic blinding
var r;
do {
r = new BigInteger$1(
forge$2.util.bytesToHex(forge$2.random.getBytes(key.n.bitLength() / 8)),
16);
} while(r.compareTo(key.n) >= 0 || !r.gcd(key.n).equals(BigInteger$1.ONE));
x = x.multiply(r.modPow(key.e, key.n)).mod(key.n);
// calculate xp and xq
var xp = x.mod(key.p).modPow(key.dP, key.p);
var xq = x.mod(key.q).modPow(key.dQ, key.q);
// xp must be larger than xq to avoid signed bit usage
while(xp.compareTo(xq) < 0) {
xp = xp.add(key.p);
}
// do last step
var y = xp.subtract(xq)
.multiply(key.qInv).mod(key.p)
.multiply(key.q).add(xq);
// remove effect of random for cryptographic blinding
y = y.multiply(r.modInverse(key.n)).mod(key.n);
return y;
};
/**
* NOTE: THIS METHOD IS DEPRECATED, use 'sign' on a private key object or
* 'encrypt' on a public key object instead.
*
* Performs RSA encryption.
*
* The parameter bt controls whether to put padding bytes before the
* message passed in. Set bt to either true or false to disable padding
* completely (in order to handle e.g. EMSA-PSS encoding seperately before),
* signaling whether the encryption operation is a public key operation
* (i.e. encrypting data) or not, i.e. private key operation (data signing).
*
* For PKCS#1 v1.5 padding pass in the block type to use, i.e. either 0x01
* (for signing) or 0x02 (for encryption). The key operation mode (private
* or public) is derived from this flag in that case).
*
* @param m the message to encrypt as a byte string.
* @param key the RSA key to use.
* @param bt for PKCS#1 v1.5 padding, the block type to use
* (0x01 for private key, 0x02 for public),
* to disable padding: true = public key, false = private key.
*
* @return the encrypted bytes as a string.
*/
pki$1.rsa.encrypt = function(m, key, bt) {
var pub = bt;
var eb;
// get the length of the modulus in bytes
var k = Math.ceil(key.n.bitLength() / 8);
if(bt !== false && bt !== true) {
// legacy, default to PKCS#1 v1.5 padding
pub = (bt === 0x02);
eb = _encodePkcs1_v1_5(m, key, bt);
} else {
eb = forge$2.util.createBuffer();
eb.putBytes(m);
}
// load encryption block as big integer 'x'
// FIXME: hex conversion inefficient, get BigInteger w/byte strings
var x = new BigInteger$1(eb.toHex(), 16);
// do RSA encryption
var y = _modPow(x, key, pub);
// convert y into the encrypted data byte string, if y is shorter in
// bytes than k, then prepend zero bytes to fill up ed
// FIXME: hex conversion inefficient, get BigInteger w/byte strings
var yhex = y.toString(16);
var ed = forge$2.util.createBuffer();
var zeros = k - Math.ceil(yhex.length / 2);
while(zeros > 0) {
ed.putByte(0x00);
--zeros;
}
ed.putBytes(forge$2.util.hexToBytes(yhex));
return ed.getBytes();
};
/**
* NOTE: THIS METHOD IS DEPRECATED, use 'decrypt' on a private key object or
* 'verify' on a public key object instead.
*
* Performs RSA decryption.
*
* The parameter ml controls whether to apply PKCS#1 v1.5 padding
* or not. Set ml = false to disable padding removal completely
* (in order to handle e.g. EMSA-PSS later on) and simply pass back
* the RSA encryption block.
*
* @param ed the encrypted data to decrypt in as a byte string.
* @param key the RSA key to use.
* @param pub true for a public key operation, false for private.
* @param ml the message length, if known, false to disable padding.
*
* @return the decrypted message as a byte string.
*/
pki$1.rsa.decrypt = function(ed, key, pub, ml) {
// get the length of the modulus in bytes
var k = Math.ceil(key.n.bitLength() / 8);
// error if the length of the encrypted data ED is not k
if(ed.length !== k) {
var error = new Error('Encrypted message length is invalid.');
error.length = ed.length;
error.expected = k;
throw error;
}
// convert encrypted data into a big integer
// FIXME: hex conversion inefficient, get BigInteger w/byte strings
var y = new BigInteger$1(forge$2.util.createBuffer(ed).toHex(), 16);
// y must be less than the modulus or it wasn't the result of
// a previous mod operation (encryption) using that modulus
if(y.compareTo(key.n) >= 0) {
throw new Error('Encrypted message is invalid.');
}
// do RSA decryption
var x = _modPow(y, key, pub);
// create the encryption block, if x is shorter in bytes than k, then
// prepend zero bytes to fill up eb
// FIXME: hex conversion inefficient, get BigInteger w/byte strings
var xhex = x.toString(16);
var eb = forge$2.util.createBuffer();
var zeros = k - Math.ceil(xhex.length / 2);
while(zeros > 0) {
eb.putByte(0x00);
--zeros;
}
eb.putBytes(forge$2.util.hexToBytes(xhex));
if(ml !== false) {
// legacy, default to PKCS#1 v1.5 padding
return _decodePkcs1_v1_5(eb.getBytes(), key, pub);
}
// return message
return eb.getBytes();
};
/**
* Creates an RSA key-pair generation state object. It is used to allow
* key-generation to be performed in steps. It also allows for a UI to
* display progress updates.
*
* @param bits the size for the private key in bits, defaults to 2048.
* @param e the public exponent to use, defaults to 65537 (0x10001).
* @param [options] the options to use.
* prng a custom crypto-secure pseudo-random number generator to use,
* that must define "getBytesSync".
* algorithm the algorithm to use (default: 'PRIMEINC').
*
* @return the state object to use to generate the key-pair.
*/
pki$1.rsa.createKeyPairGenerationState = function(bits, e, options) {
// TODO: migrate step-based prime generation code to forge.prime
// set default bits
if(typeof(bits) === 'string') {
bits = parseInt(bits, 10);
}
bits = bits || 2048;
// create prng with api that matches BigInteger secure random
options = options || {};
var prng = options.prng || forge$2.random;
var rng = {
// x is an array to fill with bytes
nextBytes: function(x) {
var b = prng.getBytesSync(x.length);
for(var i = 0; i < x.length; ++i) {
x[i] = b.charCodeAt(i);
}
}
};
var algorithm = options.algorithm || 'PRIMEINC';
// create PRIMEINC algorithm state
var rval;
if(algorithm === 'PRIMEINC') {
rval = {
algorithm: algorithm,
state: 0,
bits: bits,
rng: rng,
eInt: e || 65537,
e: new BigInteger$1(null),
p: null,
q: null,
qBits: bits >> 1,
pBits: bits - (bits >> 1),
pqState: 0,
num: null,
keys: null
};
rval.e.fromInt(rval.eInt);
} else {
throw new Error('Invalid key generation algorithm: ' + algorithm);
}
return rval;
};
/**
* Attempts to runs the key-generation algorithm for at most n seconds
* (approximately) using the given state. When key-generation has completed,
* the keys will be stored in state.keys.
*
* To use this function to update a UI while generating a key or to prevent
* causing browser lockups/warnings, set "n" to a value other than 0. A
* simple pattern for generating a key and showing a progress indicator is:
*
* var state = pki.rsa.createKeyPairGenerationState(2048);
* var step = function() {
* // step key-generation, run algorithm for 100 ms, repeat
* if(!forge.pki.rsa.stepKeyPairGenerationState(state, 100)) {
* setTimeout(step, 1);
* } else {
* // key-generation complete
* // TODO: turn off progress indicator here
* // TODO: use the generated key-pair in "state.keys"
* }
* };
* // TODO: turn on progress indicator here
* setTimeout(step, 0);
*
* @param state the state to use.
* @param n the maximum number of milliseconds to run the algorithm for, 0
* to run the algorithm to completion.
*
* @return true if the key-generation completed, false if not.
*/
pki$1.rsa.stepKeyPairGenerationState = function(state, n) {
// set default algorithm if not set
if(!('algorithm' in state)) {
state.algorithm = 'PRIMEINC';
}
// TODO: migrate step-based prime generation code to forge.prime
// TODO: abstract as PRIMEINC algorithm
// do key generation (based on Tom Wu's rsa.js, see jsbn.js license)
// with some minor optimizations and designed to run in steps
// local state vars
var THIRTY = new BigInteger$1(null);
THIRTY.fromInt(30);
var deltaIdx = 0;
var op_or = function(x, y) {return x | y;};
// keep stepping until time limit is reached or done
var t1 = +new Date();
var t2;
var total = 0;
while(state.keys === null && (n <= 0 || total < n)) {
// generate p or q
if(state.state === 0) {
/* Note: All primes are of the form:
30k+i, for i < 30 and gcd(30, i)=1, where there are 8 values for i
When we generate a random number, we always align it at 30k + 1. Each
time the number is determined not to be prime we add to get to the
next 'i', eg: if the number was at 30k + 1 we add 6. */
var bits = (state.p === null) ? state.pBits : state.qBits;
var bits1 = bits - 1;
// get a random number
if(state.pqState === 0) {
state.num = new BigInteger$1(bits, state.rng);
// force MSB set
if(!state.num.testBit(bits1)) {
state.num.bitwiseTo(
BigInteger$1.ONE.shiftLeft(bits1), op_or, state.num);
}
// align number on 30k+1 boundary
state.num.dAddOffset(31 - state.num.mod(THIRTY).byteValue(), 0);
deltaIdx = 0;
++state.pqState;
} else if(state.pqState === 1) {
// try to make the number a prime
if(state.num.bitLength() > bits) {
// overflow, try again
state.pqState = 0;
// do primality test
} else if(state.num.isProbablePrime(
_getMillerRabinTests(state.num.bitLength()))) {
++state.pqState;
} else {
// get next potential prime
state.num.dAddOffset(GCD_30_DELTA[deltaIdx++ % 8], 0);
}
} else if(state.pqState === 2) {
// ensure number is coprime with e
state.pqState =
(state.num.subtract(BigInteger$1.ONE).gcd(state.e)
.compareTo(BigInteger$1.ONE) === 0) ? 3 : 0;
} else if(state.pqState === 3) {
// store p or q
state.pqState = 0;
if(state.p === null) {
state.p = state.num;
} else {
state.q = state.num;
}
// advance state if both p and q are ready
if(state.p !== null && state.q !== null) {
++state.state;
}
state.num = null;
}
} else if(state.state === 1) {
// ensure p is larger than q (swap them if not)
if(state.p.compareTo(state.q) < 0) {
state.num = state.p;
state.p = state.q;
state.q = state.num;
}
++state.state;
} else if(state.state === 2) {
// compute phi: (p - 1)(q - 1) (Euler's totient function)
state.p1 = state.p.subtract(BigInteger$1.ONE);
state.q1 = state.q.subtract(BigInteger$1.ONE);
state.phi = state.p1.multiply(state.q1);
++state.state;
} else if(state.state === 3) {
// ensure e and phi are coprime
if(state.phi.gcd(state.e).compareTo(BigInteger$1.ONE) === 0) {
// phi and e are coprime, advance
++state.state;
} else {
// phi and e aren't coprime, so generate a new p and q
state.p = null;
state.q = null;
state.state = 0;
}
} else if(state.state === 4) {
// create n, ensure n is has the right number of bits
state.n = state.p.multiply(state.q);
// ensure n is right number of bits
if(state.n.bitLength() === state.bits) {
// success, advance
++state.state;
} else {
// failed, get new q
state.q = null;
state.state = 0;
}
} else if(state.state === 5) {
// set keys
var d = state.e.modInverse(state.phi);
state.keys = {
privateKey: pki$1.rsa.setPrivateKey(
state.n, state.e, d, state.p, state.q,
d.mod(state.p1), d.mod(state.q1),
state.q.modInverse(state.p)),
publicKey: pki$1.rsa.setPublicKey(state.n, state.e)
};
}
// update timing
t2 = +new Date();
total += t2 - t1;
t1 = t2;
}
return state.keys !== null;
};
/**
* Generates an RSA public-private key pair in a single call.
*
* To generate a key-pair in steps (to allow for progress updates and to
* prevent blocking or warnings in slow browsers) then use the key-pair
* generation state functions.
*
* To generate a key-pair asynchronously (either through web-workers, if
* available, or by breaking up the work on the main thread), pass a
* callback function.
*
* @param [bits] the size for the private key in bits, defaults to 2048.
* @param [e] the public exponent to use, defaults to 65537.
* @param [options] options for key-pair generation, if given then 'bits'
* and 'e' must *not* be given:
* bits the size for the private key in bits, (default: 2048).
* e the public exponent to use, (default: 65537 (0x10001)).
* workerScript the worker script URL.
* workers the number of web workers (if supported) to use,
* (default: 2).
* workLoad the size of the work load, ie: number of possible prime
* numbers for each web worker to check per work assignment,
* (default: 100).
* prng a custom crypto-secure pseudo-random number generator to use,
* that must define "getBytesSync". Disables use of native APIs.
* algorithm the algorithm to use (default: 'PRIMEINC').
* @param [callback(err, keypair)] called once the operation completes.
*
* @return an object with privateKey and publicKey properties.
*/
pki$1.rsa.generateKeyPair = function(bits, e, options, callback) {
// (bits), (options), (callback)
if(arguments.length === 1) {
if(typeof bits === 'object') {
options = bits;
bits = undefined;
} else if(typeof bits === 'function') {
callback = bits;
bits = undefined;
}
} else if(arguments.length === 2) {
// (bits, e), (bits, options), (bits, callback), (options, callback)
if(typeof bits === 'number') {
if(typeof e === 'function') {
callback = e;
e = undefined;
} else if(typeof e !== 'number') {
options = e;
e = undefined;
}
} else {
options = bits;
callback = e;
bits = undefined;
e = undefined;
}
} else if(arguments.length === 3) {
// (bits, e, options), (bits, e, callback), (bits, options, callback)
if(typeof e === 'number') {
if(typeof options === 'function') {
callback = options;
options = undefined;
}
} else {
callback = options;
options = e;
e = undefined;
}
}
options = options || {};
if(bits === undefined) {
bits = options.bits || 2048;
}
if(e === undefined) {
e = options.e || 0x10001;
}
// use native code if permitted, available, and parameters are acceptable
if(!options.prng &&
bits >= 256 && bits <= 16384 && (e === 0x10001 || e === 3)) {
if(callback) {
// try native async
if(_detectNodeCrypto('generateKeyPair')) {
return _crypto.generateKeyPair('rsa', {
modulusLength: bits,
publicExponent: e,
publicKeyEncoding: {
type: 'spki',
format: 'pem'
},
privateKeyEncoding: {
type: 'pkcs8',
format: 'pem'
}
}, function(err, pub, priv) {
if(err) {
return callback(err);
}
callback(null, {
privateKey: pki$1.privateKeyFromPem(priv),
publicKey: pki$1.publicKeyFromPem(pub)
});
});
}
if(_detectSubtleCrypto('generateKey') &&
_detectSubtleCrypto('exportKey')) {
// use standard native generateKey
return util.globalScope.crypto.subtle.generateKey({
name: 'RSASSA-PKCS1-v1_5',
modulusLength: bits,
publicExponent: _intToUint8Array(e),
hash: {name: 'SHA-256'}
}, true /* key can be exported*/, ['sign', 'verify'])
.then(function(pair) {
return util.globalScope.crypto.subtle.exportKey(
'pkcs8', pair.privateKey);
// avoiding catch(function(err) {...}) to support IE <= 8
}).then(undefined, function(err) {
callback(err);
}).then(function(pkcs8) {
if(pkcs8) {
var privateKey = pki$1.privateKeyFromAsn1(
asn1$1.fromDer(forge$2.util.createBuffer(pkcs8)));
callback(null, {
privateKey: privateKey,
publicKey: pki$1.setRsaPublicKey(privateKey.n, privateKey.e)
});
}
});
}
if(_detectSubtleMsCrypto('generateKey') &&
_detectSubtleMsCrypto('exportKey')) {
var genOp = util.globalScope.msCrypto.subtle.generateKey({
name: 'RSASSA-PKCS1-v1_5',
modulusLength: bits,
publicExponent: _intToUint8Array(e),
hash: {name: 'SHA-256'}
}, true /* key can be exported*/, ['sign', 'verify']);
genOp.oncomplete = function(e) {
var pair = e.target.result;
var exportOp = util.globalScope.msCrypto.subtle.exportKey(
'pkcs8', pair.privateKey);
exportOp.oncomplete = function(e) {
var pkcs8 = e.target.result;
var privateKey = pki$1.privateKeyFromAsn1(
asn1$1.fromDer(forge$2.util.createBuffer(pkcs8)));
callback(null, {
privateKey: privateKey,
publicKey: pki$1.setRsaPublicKey(privateKey.n, privateKey.e)
});
};
exportOp.onerror = function(err) {
callback(err);
};
};
genOp.onerror = function(err) {
callback(err);
};
return;
}
} else {
// try native sync
if(_detectNodeCrypto('generateKeyPairSync')) {
var keypair = _crypto.generateKeyPairSync('rsa', {
modulusLength: bits,
publicExponent: e,
publicKeyEncoding: {
type: 'spki',
format: 'pem'
},
privateKeyEncoding: {
type: 'pkcs8',
format: 'pem'
}
});
return {
privateKey: pki$1.privateKeyFromPem(keypair.privateKey),
publicKey: pki$1.publicKeyFromPem(keypair.publicKey)
};
}
}
}
// use JavaScript implementation
var state = pki$1.rsa.createKeyPairGenerationState(bits, e, options);
if(!callback) {
pki$1.rsa.stepKeyPairGenerationState(state, 0);
return state.keys;
}
_generateKeyPair(state, options, callback);
};
/**
* Sets an RSA public key from BigIntegers modulus and exponent.
*
* @param n the modulus.
* @param e the exponent.
*
* @return the public key.
*/
pki$1.setRsaPublicKey = pki$1.rsa.setPublicKey = function(n, e) {
var key = {
n: n,
e: e
};
/**
* Encrypts the given data with this public key. Newer applications
* should use the 'RSA-OAEP' decryption scheme, 'RSAES-PKCS1-V1_5' is for
* legacy applications.
*
* @param data the byte string to encrypt.
* @param scheme the encryption scheme to use:
* 'RSAES-PKCS1-V1_5' (default),
* 'RSA-OAEP',
* 'RAW', 'NONE', or null to perform raw RSA encryption,
* an object with an 'encode' property set to a function
* with the signature 'function(data, key)' that returns
* a binary-encoded string representing the encoded data.
* @param schemeOptions any scheme-specific options.
*
* @return the encrypted byte string.
*/
key.encrypt = function(data, scheme, schemeOptions) {
if(typeof scheme === 'string') {
scheme = scheme.toUpperCase();
} else if(scheme === undefined) {
scheme = 'RSAES-PKCS1-V1_5';
}
if(scheme === 'RSAES-PKCS1-V1_5') {
scheme = {
encode: function(m, key, pub) {
return _encodePkcs1_v1_5(m, key, 0x02).getBytes();
}
};
} else if(scheme === 'RSA-OAEP' || scheme === 'RSAES-OAEP') {
scheme = {
encode: function(m, key) {
return forge$2.pkcs1.encode_rsa_oaep(key, m, schemeOptions);
}
};
} else if(['RAW', 'NONE', 'NULL', null].indexOf(scheme) !== -1) {
scheme = {encode: function(e) {return e;}};
} else if(typeof scheme === 'string') {
throw new Error('Unsupported encryption scheme: "' + scheme + '".');
}
// do scheme-based encoding then rsa encryption
var e = scheme.encode(data, key, true);
return pki$1.rsa.encrypt(e, key, true);
};
/**
* Verifies the given signature against the given digest.
*
* PKCS#1 supports multiple (currently two) signature schemes:
* RSASSA-PKCS1-V1_5 and RSASSA-PSS.
*
* By default this implementation uses the "old scheme", i.e.
* RSASSA-PKCS1-V1_5, in which case once RSA-decrypted, the
* signature is an OCTET STRING that holds a DigestInfo.
*
* DigestInfo ::= SEQUENCE {
* digestAlgorithm DigestAlgorithmIdentifier,
* digest Digest
* }
* DigestAlgorithmIdentifier ::= AlgorithmIdentifier
* Digest ::= OCTET STRING
*
* To perform PSS signature verification, provide an instance
* of Forge PSS object as the scheme parameter.
*
* @param digest the message digest hash to compare against the signature,
* as a binary-encoded string.
* @param signature the signature to verify, as a binary-encoded string.
* @param scheme signature verification scheme to use:
* 'RSASSA-PKCS1-V1_5' or undefined for RSASSA PKCS#1 v1.5,
* a Forge PSS object for RSASSA-PSS,
* 'NONE' or null for none, DigestInfo will not be expected, but
* PKCS#1 v1.5 padding will still be used.
* @param options optional verify options
* _parseAllDigestBytes testing flag to control parsing of all
* digest bytes. Unsupported and not for general usage.
* (default: true)
*
* @return true if the signature was verified, false if not.
*/
key.verify = function(digest, signature, scheme, options) {
if(typeof scheme === 'string') {
scheme = scheme.toUpperCase();
} else if(scheme === undefined) {
scheme = 'RSASSA-PKCS1-V1_5';
}
if(options === undefined) {
options = {
_parseAllDigestBytes: true
};
}
if(!('_parseAllDigestBytes' in options)) {
options._parseAllDigestBytes = true;
}
if(scheme === 'RSASSA-PKCS1-V1_5') {
scheme = {
verify: function(digest, d) {
// remove padding
d = _decodePkcs1_v1_5(d, key, true);
// d is ASN.1 BER-encoded DigestInfo
var obj = asn1$1.fromDer(d, {
parseAllBytes: options._parseAllDigestBytes
});
// validate DigestInfo
var capture = {};
var errors = [];
if(!asn1$1.validate(obj, digestInfoValidator, capture, errors)) {
var error = new Error(
'ASN.1 object does not contain a valid RSASSA-PKCS1-v1_5 ' +
'DigestInfo value.');
error.errors = errors;
throw error;
}
// check hash algorithm identifier
// see PKCS1-v1-5DigestAlgorithms in RFC 8017
// FIXME: add support to vaidator for strict value choices
var oid = asn1$1.derToOid(capture.algorithmIdentifier);
if(!(oid === forge$2.oids.md2 ||
oid === forge$2.oids.md5 ||
oid === forge$2.oids.sha1 ||
oid === forge$2.oids.sha224 ||
oid === forge$2.oids.sha256 ||
oid === forge$2.oids.sha384 ||
oid === forge$2.oids.sha512 ||
oid === forge$2.oids['sha512-224'] ||
oid === forge$2.oids['sha512-256'])) {
var error = new Error(
'Unknown RSASSA-PKCS1-v1_5 DigestAlgorithm identifier.');
error.oid = oid;
throw error;
}
// special check for md2 and md5 that NULL parameters exist
if(oid === forge$2.oids.md2 || oid === forge$2.oids.md5) {
if(!('parameters' in capture)) {
throw new Error(
'ASN.1 object does not contain a valid RSASSA-PKCS1-v1_5 ' +
'DigestInfo value. ' +
'Missing algorithm identifer NULL parameters.');
}
}
// compare the given digest to the decrypted one
return digest === capture.digest;
}
};
} else if(scheme === 'NONE' || scheme === 'NULL' || scheme === null) {
scheme = {
verify: function(digest, d) {
// remove padding
d = _decodePkcs1_v1_5(d, key, true);
return digest === d;
}
};
}
// do rsa decryption w/o any decoding, then verify -- which does decoding
var d = pki$1.rsa.decrypt(signature, key, true, false);
return scheme.verify(digest, d, key.n.bitLength());
};
return key;
};
/**
* Sets an RSA private key from BigIntegers modulus, exponent, primes,
* prime exponents, and modular multiplicative inverse.
*
* @param n the modulus.
* @param e the public exponent.
* @param d the private exponent ((inverse of e) mod n).
* @param p the first prime.
* @param q the second prime.
* @param dP exponent1 (d mod (p-1)).
* @param dQ exponent2 (d mod (q-1)).
* @param qInv ((inverse of q) mod p)
*
* @return the private key.
*/
pki$1.setRsaPrivateKey = pki$1.rsa.setPrivateKey = function(
n, e, d, p, q, dP, dQ, qInv) {
var key = {
n: n,
e: e,
d: d,
p: p,
q: q,
dP: dP,
dQ: dQ,
qInv: qInv
};
/**
* Decrypts the given data with this private key. The decryption scheme
* must match the one used to encrypt the data.
*
* @param data the byte string to decrypt.
* @param scheme the decryption scheme to use:
* 'RSAES-PKCS1-V1_5' (default),
* 'RSA-OAEP',
* 'RAW', 'NONE', or null to perform raw RSA decryption.
* @param schemeOptions any scheme-specific options.
*
* @return the decrypted byte string.
*/
key.decrypt = function(data, scheme, schemeOptions) {
if(typeof scheme === 'string') {
scheme = scheme.toUpperCase();
} else if(scheme === undefined) {
scheme = 'RSAES-PKCS1-V1_5';
}
// do rsa decryption w/o any decoding
var d = pki$1.rsa.decrypt(data, key, false, false);
if(scheme === 'RSAES-PKCS1-V1_5') {
scheme = {decode: _decodePkcs1_v1_5};
} else if(scheme === 'RSA-OAEP' || scheme === 'RSAES-OAEP') {
scheme = {
decode: function(d, key) {
return forge$2.pkcs1.decode_rsa_oaep(key, d, schemeOptions);
}
};
} else if(['RAW', 'NONE', 'NULL', null].indexOf(scheme) !== -1) {
scheme = {decode: function(d) {return d;}};
} else {
throw new Error('Unsupported encryption scheme: "' + scheme + '".');
}
// decode according to scheme
return scheme.decode(d, key, false);
};
/**
* Signs the given digest, producing a signature.
*
* PKCS#1 supports multiple (currently two) signature schemes:
* RSASSA-PKCS1-V1_5 and RSASSA-PSS.
*
* By default this implementation uses the "old scheme", i.e.
* RSASSA-PKCS1-V1_5. In order to generate a PSS signature, provide
* an instance of Forge PSS object as the scheme parameter.
*
* @param md the message digest object with the hash to sign.
* @param scheme the signature scheme to use:
* 'RSASSA-PKCS1-V1_5' or undefined for RSASSA PKCS#1 v1.5,
* a Forge PSS object for RSASSA-PSS,
* 'NONE' or null for none, DigestInfo will not be used but
* PKCS#1 v1.5 padding will still be used.
*
* @return the signature as a byte string.
*/
key.sign = function(md, scheme) {
/* Note: The internal implementation of RSA operations is being
transitioned away from a PKCS#1 v1.5 hard-coded scheme. Some legacy
code like the use of an encoding block identifier 'bt' will eventually
be removed. */
// private key operation
var bt = false;
if(typeof scheme === 'string') {
scheme = scheme.toUpperCase();
}
if(scheme === undefined || scheme === 'RSASSA-PKCS1-V1_5') {
scheme = {encode: emsaPkcs1v15encode};
bt = 0x01;
} else if(scheme === 'NONE' || scheme === 'NULL' || scheme === null) {
scheme = {encode: function() {return md;}};
bt = 0x01;
}
// encode and then encrypt
var d = scheme.encode(md, key.n.bitLength());
return pki$1.rsa.encrypt(d, key, bt);
};
return key;
};
/**
* Wraps an RSAPrivateKey ASN.1 object in an ASN.1 PrivateKeyInfo object.
*
* @param rsaKey the ASN.1 RSAPrivateKey.
*
* @return the ASN.1 PrivateKeyInfo.
*/
pki$1.wrapRsaPrivateKey = function(rsaKey) {
// PrivateKeyInfo
return asn1$1.create(asn1$1.Class.UNIVERSAL, asn1$1.Type.SEQUENCE, true, [
// version (0)
asn1$1.create(asn1$1.Class.UNIVERSAL, asn1$1.Type.INTEGER, false,
asn1$1.integerToDer(0).getBytes()),
// privateKeyAlgorithm
asn1$1.create(asn1$1.Class.UNIVERSAL, asn1$1.Type.SEQUENCE, true, [
asn1$1.create(
asn1$1.Class.UNIVERSAL, asn1$1.Type.OID, false,
asn1$1.oidToDer(pki$1.oids.rsaEncryption).getBytes()),
asn1$1.create(asn1$1.Class.UNIVERSAL, asn1$1.Type.NULL, false, '')
]),
// PrivateKey
asn1$1.create(asn1$1.Class.UNIVERSAL, asn1$1.Type.OCTETSTRING, false,
asn1$1.toDer(rsaKey).getBytes())
]);
};
/**
* Converts a private key from an ASN.1 object.
*
* @param obj the ASN.1 representation of a PrivateKeyInfo containing an
* RSAPrivateKey or an RSAPrivateKey.
*
* @return the private key.
*/
pki$1.privateKeyFromAsn1 = function(obj) {
// get PrivateKeyInfo
var capture = {};
var errors = [];
if(asn1$1.validate(obj, privateKeyValidator, capture, errors)) {
obj = asn1$1.fromDer(forge$2.util.createBuffer(capture.privateKey));
}
// get RSAPrivateKey
capture = {};
errors = [];
if(!asn1$1.validate(obj, rsaPrivateKeyValidator, capture, errors)) {
var error = new Error('Cannot read private key. ' +
'ASN.1 object does not contain an RSAPrivateKey.');
error.errors = errors;
throw error;
}
// Note: Version is currently ignored.
// capture.privateKeyVersion
// FIXME: inefficient, get a BigInteger that uses byte strings
var n, e, d, p, q, dP, dQ, qInv;
n = forge$2.util.createBuffer(capture.privateKeyModulus).toHex();
e = forge$2.util.createBuffer(capture.privateKeyPublicExponent).toHex();
d = forge$2.util.createBuffer(capture.privateKeyPrivateExponent).toHex();
p = forge$2.util.createBuffer(capture.privateKeyPrime1).toHex();
q = forge$2.util.createBuffer(capture.privateKeyPrime2).toHex();
dP = forge$2.util.createBuffer(capture.privateKeyExponent1).toHex();
dQ = forge$2.util.createBuffer(capture.privateKeyExponent2).toHex();
qInv = forge$2.util.createBuffer(capture.privateKeyCoefficient).toHex();
// set private key
return pki$1.setRsaPrivateKey(
new BigInteger$1(n, 16),
new BigInteger$1(e, 16),
new BigInteger$1(d, 16),
new BigInteger$1(p, 16),
new BigInteger$1(q, 16),
new BigInteger$1(dP, 16),
new BigInteger$1(dQ, 16),
new BigInteger$1(qInv, 16));
};
/**
* Converts a private key to an ASN.1 RSAPrivateKey.
*
* @param key the private key.
*
* @return the ASN.1 representation of an RSAPrivateKey.
*/
pki$1.privateKeyToAsn1 = pki$1.privateKeyToRSAPrivateKey = function(key) {
// RSAPrivateKey
return asn1$1.create(asn1$1.Class.UNIVERSAL, asn1$1.Type.SEQUENCE, true, [
// version (0 = only 2 primes, 1 multiple primes)
asn1$1.create(asn1$1.Class.UNIVERSAL, asn1$1.Type.INTEGER, false,
asn1$1.integerToDer(0).getBytes()),
// modulus (n)
asn1$1.create(asn1$1.Class.UNIVERSAL, asn1$1.Type.INTEGER, false,
_bnToBytes(key.n)),
// publicExponent (e)
asn1$1.create(asn1$1.Class.UNIVERSAL, asn1$1.Type.INTEGER, false,
_bnToBytes(key.e)),
// privateExponent (d)
asn1$1.create(asn1$1.Class.UNIVERSAL, asn1$1.Type.INTEGER, false,
_bnToBytes(key.d)),
// privateKeyPrime1 (p)
asn1$1.create(asn1$1.Class.UNIVERSAL, asn1$1.Type.INTEGER, false,
_bnToBytes(key.p)),
// privateKeyPrime2 (q)
asn1$1.create(asn1$1.Class.UNIVERSAL, asn1$1.Type.INTEGER, false,
_bnToBytes(key.q)),
// privateKeyExponent1 (dP)
asn1$1.create(asn1$1.Class.UNIVERSAL, asn1$1.Type.INTEGER, false,
_bnToBytes(key.dP)),
// privateKeyExponent2 (dQ)
asn1$1.create(asn1$1.Class.UNIVERSAL, asn1$1.Type.INTEGER, false,
_bnToBytes(key.dQ)),
// coefficient (qInv)
asn1$1.create(asn1$1.Class.UNIVERSAL, asn1$1.Type.INTEGER, false,
_bnToBytes(key.qInv))
]);
};
/**
* Converts a public key from an ASN.1 SubjectPublicKeyInfo or RSAPublicKey.
*
* @param obj the asn1 representation of a SubjectPublicKeyInfo or RSAPublicKey.
*
* @return the public key.
*/
pki$1.publicKeyFromAsn1 = function(obj) {
// get SubjectPublicKeyInfo
var capture = {};
var errors = [];
if(asn1$1.validate(obj, publicKeyValidator, capture, errors)) {
// get oid
var oid = asn1$1.derToOid(capture.publicKeyOid);
if(oid !== pki$1.oids.rsaEncryption) {
var error = new Error('Cannot read public key. Unknown OID.');
error.oid = oid;
throw error;
}
obj = capture.rsaPublicKey;
}
// get RSA params
errors = [];
if(!asn1$1.validate(obj, rsaPublicKeyValidator, capture, errors)) {
var error = new Error('Cannot read public key. ' +
'ASN.1 object does not contain an RSAPublicKey.');
error.errors = errors;
throw error;
}
// FIXME: inefficient, get a BigInteger that uses byte strings
var n = forge$2.util.createBuffer(capture.publicKeyModulus).toHex();
var e = forge$2.util.createBuffer(capture.publicKeyExponent).toHex();
// set public key
return pki$1.setRsaPublicKey(
new BigInteger$1(n, 16),
new BigInteger$1(e, 16));
};
/**
* Converts a public key to an ASN.1 SubjectPublicKeyInfo.
*
* @param key the public key.
*
* @return the asn1 representation of a SubjectPublicKeyInfo.
*/
pki$1.publicKeyToAsn1 = pki$1.publicKeyToSubjectPublicKeyInfo = function(key) {
// SubjectPublicKeyInfo
return asn1$1.create(asn1$1.Class.UNIVERSAL, asn1$1.Type.SEQUENCE, true, [
// AlgorithmIdentifier
asn1$1.create(asn1$1.Class.UNIVERSAL, asn1$1.Type.SEQUENCE, true, [
// algorithm
asn1$1.create(asn1$1.Class.UNIVERSAL, asn1$1.Type.OID, false,
asn1$1.oidToDer(pki$1.oids.rsaEncryption).getBytes()),
// parameters (null)
asn1$1.create(asn1$1.Class.UNIVERSAL, asn1$1.Type.NULL, false, '')
]),
// subjectPublicKey
asn1$1.create(asn1$1.Class.UNIVERSAL, asn1$1.Type.BITSTRING, false, [
pki$1.publicKeyToRSAPublicKey(key)
])
]);
};
/**
* Converts a public key to an ASN.1 RSAPublicKey.
*
* @param key the public key.
*
* @return the asn1 representation of a RSAPublicKey.
*/
pki$1.publicKeyToRSAPublicKey = function(key) {
// RSAPublicKey
return asn1$1.create(asn1$1.Class.UNIVERSAL, asn1$1.Type.SEQUENCE, true, [
// modulus (n)
asn1$1.create(asn1$1.Class.UNIVERSAL, asn1$1.Type.INTEGER, false,
_bnToBytes(key.n)),
// publicExponent (e)
asn1$1.create(asn1$1.Class.UNIVERSAL, asn1$1.Type.INTEGER, false,
_bnToBytes(key.e))
]);
};
/**
* Encodes a message using PKCS#1 v1.5 padding.
*
* @param m the message to encode.
* @param key the RSA key to use.
* @param bt the block type to use, i.e. either 0x01 (for signing) or 0x02
* (for encryption).
*
* @return the padded byte buffer.
*/
function _encodePkcs1_v1_5(m, key, bt) {
var eb = forge$2.util.createBuffer();
// get the length of the modulus in bytes
var k = Math.ceil(key.n.bitLength() / 8);
/* use PKCS#1 v1.5 padding */
if(m.length > (k - 11)) {
var error = new Error('Message is too long for PKCS#1 v1.5 padding.');
error.length = m.length;
error.max = k - 11;
throw error;
}
/* A block type BT, a padding string PS, and the data D shall be
formatted into an octet string EB, the encryption block:
EB = 00 || BT || PS || 00 || D
The block type BT shall be a single octet indicating the structure of
the encryption block. For this version of the document it shall have
value 00, 01, or 02. For a private-key operation, the block type
shall be 00 or 01. For a public-key operation, it shall be 02.
The padding string PS shall consist of k-3-||D|| octets. For block
type 00, the octets shall have value 00; for block type 01, they
shall have value FF; and for block type 02, they shall be
pseudorandomly generated and nonzero. This makes the length of the
encryption block EB equal to k. */
// build the encryption block
eb.putByte(0x00);
eb.putByte(bt);
// create the padding
var padNum = k - 3 - m.length;
var padByte;
// private key op
if(bt === 0x00 || bt === 0x01) {
padByte = (bt === 0x00) ? 0x00 : 0xFF;
for(var i = 0; i < padNum; ++i) {
eb.putByte(padByte);
}
} else {
// public key op
// pad with random non-zero values
while(padNum > 0) {
var numZeros = 0;
var padBytes = forge$2.random.getBytes(padNum);
for(var i = 0; i < padNum; ++i) {
padByte = padBytes.charCodeAt(i);
if(padByte === 0) {
++numZeros;
} else {
eb.putByte(padByte);
}
}
padNum = numZeros;
}
}
// zero followed by message
eb.putByte(0x00);
eb.putBytes(m);
return eb;
}
/**
* Decodes a message using PKCS#1 v1.5 padding.
*
* @param em the message to decode.
* @param key the RSA key to use.
* @param pub true if the key is a public key, false if it is private.
* @param ml the message length, if specified.
*
* @return the decoded bytes.
*/
function _decodePkcs1_v1_5(em, key, pub, ml) {
// get the length of the modulus in bytes
var k = Math.ceil(key.n.bitLength() / 8);
/* It is an error if any of the following conditions occurs:
1. The encryption block EB cannot be parsed unambiguously.
2. The padding string PS consists of fewer than eight octets
or is inconsisent with the block type BT.
3. The decryption process is a public-key operation and the block
type BT is not 00 or 01, or the decryption process is a
private-key operation and the block type is not 02.
*/
// parse the encryption block
var eb = forge$2.util.createBuffer(em);
var first = eb.getByte();
var bt = eb.getByte();
if(first !== 0x00 ||
(pub && bt !== 0x00 && bt !== 0x01) ||
(!pub && bt != 0x02) ||
(pub && bt === 0x00 && typeof(ml) === 'undefined')) {
throw new Error('Encryption block is invalid.');
}
var padNum = 0;
if(bt === 0x00) {
// check all padding bytes for 0x00
padNum = k - 3 - ml;
for(var i = 0; i < padNum; ++i) {
if(eb.getByte() !== 0x00) {
throw new Error('Encryption block is invalid.');
}
}
} else if(bt === 0x01) {
// find the first byte that isn't 0xFF, should be after all padding
padNum = 0;
while(eb.length() > 1) {
if(eb.getByte() !== 0xFF) {
--eb.read;
break;
}
++padNum;
}
} else if(bt === 0x02) {
// look for 0x00 byte
padNum = 0;
while(eb.length() > 1) {
if(eb.getByte() === 0x00) {
--eb.read;
break;
}
++padNum;
}
}
// zero must be 0x00 and padNum must be (k - 3 - message length)
var zero = eb.getByte();
if(zero !== 0x00 || padNum !== (k - 3 - eb.length())) {
throw new Error('Encryption block is invalid.');
}
return eb.getBytes();
}
/**
* Runs the key-generation algorithm asynchronously, either in the background
* via Web Workers, or using the main thread and setImmediate.
*
* @param state the key-pair generation state.
* @param [options] options for key-pair generation:
* workerScript the worker script URL.
* workers the number of web workers (if supported) to use,
* (default: 2, -1 to use estimated cores minus one).
* workLoad the size of the work load, ie: number of possible prime
* numbers for each web worker to check per work assignment,
* (default: 100).
* @param callback(err, keypair) called once the operation completes.
*/
function _generateKeyPair(state, options, callback) {
if(typeof options === 'function') {
callback = options;
options = {};
}
options = options || {};
var opts = {
algorithm: {
name: options.algorithm || 'PRIMEINC',
options: {
workers: options.workers || 2,
workLoad: options.workLoad || 100,
workerScript: options.workerScript
}
}
};
if('prng' in options) {
opts.prng = options.prng;
}
generate();
function generate() {
// find p and then q (done in series to simplify)
getPrime(state.pBits, function(err, num) {
if(err) {
return callback(err);
}
state.p = num;
if(state.q !== null) {
return finish(err, state.q);
}
getPrime(state.qBits, finish);
});
}
function getPrime(bits, callback) {
forge$2.prime.generateProbablePrime(bits, opts, callback);
}
function finish(err, num) {
if(err) {
return callback(err);
}
// set q
state.q = num;
// ensure p is larger than q (swap them if not)
if(state.p.compareTo(state.q) < 0) {
var tmp = state.p;
state.p = state.q;
state.q = tmp;
}
// ensure p is coprime with e
if(state.p.subtract(BigInteger$1.ONE).gcd(state.e)
.compareTo(BigInteger$1.ONE) !== 0) {
state.p = null;
generate();
return;
}
// ensure q is coprime with e
if(state.q.subtract(BigInteger$1.ONE).gcd(state.e)
.compareTo(BigInteger$1.ONE) !== 0) {
state.q = null;
getPrime(state.qBits, finish);
return;
}
// compute phi: (p - 1)(q - 1) (Euler's totient function)
state.p1 = state.p.subtract(BigInteger$1.ONE);
state.q1 = state.q.subtract(BigInteger$1.ONE);
state.phi = state.p1.multiply(state.q1);
// ensure e and phi are coprime
if(state.phi.gcd(state.e).compareTo(BigInteger$1.ONE) !== 0) {
// phi and e aren't coprime, so generate a new p and q
state.p = state.q = null;
generate();
return;
}
// create n, ensure n is has the right number of bits
state.n = state.p.multiply(state.q);
if(state.n.bitLength() !== state.bits) {
// failed, get new q
state.q = null;
getPrime(state.qBits, finish);
return;
}
// set keys
var d = state.e.modInverse(state.phi);
state.keys = {
privateKey: pki$1.rsa.setPrivateKey(
state.n, state.e, d, state.p, state.q,
d.mod(state.p1), d.mod(state.q1),
state.q.modInverse(state.p)),
publicKey: pki$1.rsa.setPublicKey(state.n, state.e)
};
callback(null, state.keys);
}
}
/**
* Converts a positive BigInteger into 2's-complement big-endian bytes.
*
* @param b the big integer to convert.
*
* @return the bytes.
*/
function _bnToBytes(b) {
// prepend 0x00 if first byte >= 0x80
var hex = b.toString(16);
if(hex[0] >= '8') {
hex = '00' + hex;
}
var bytes = forge$2.util.hexToBytes(hex);
// ensure integer is minimally-encoded
if(bytes.length > 1 &&
// leading 0x00 for positive integer
((bytes.charCodeAt(0) === 0 &&
(bytes.charCodeAt(1) & 0x80) === 0) ||
// leading 0xFF for negative integer
(bytes.charCodeAt(0) === 0xFF &&
(bytes.charCodeAt(1) & 0x80) === 0x80))) {
return bytes.substr(1);
}
return bytes;
}
/**
* Returns the required number of Miller-Rabin tests to generate a
* prime with an error probability of (1/2)^80.
*
* See Handbook of Applied Cryptography Chapter 4, Table 4.4.
*
* @param bits the bit size.
*
* @return the required number of iterations.
*/
function _getMillerRabinTests(bits) {
if(bits <= 100) return 27;
if(bits <= 150) return 18;
if(bits <= 200) return 15;
if(bits <= 250) return 12;
if(bits <= 300) return 9;
if(bits <= 350) return 8;
if(bits <= 400) return 7;
if(bits <= 500) return 6;
if(bits <= 600) return 5;
if(bits <= 800) return 4;
if(bits <= 1250) return 3;
return 2;
}
/**
* Performs feature detection on the Node crypto interface.
*
* @param fn the feature (function) to detect.
*
* @return true if detected, false if not.
*/
function _detectNodeCrypto(fn) {
return forge$2.util.isNodejs && typeof _crypto[fn] === 'function';
}
/**
* Performs feature detection on the SubtleCrypto interface.
*
* @param fn the feature (function) to detect.
*
* @return true if detected, false if not.
*/
function _detectSubtleCrypto(fn) {
return (typeof util.globalScope !== 'undefined' &&
typeof util.globalScope.crypto === 'object' &&
typeof util.globalScope.crypto.subtle === 'object' &&
typeof util.globalScope.crypto.subtle[fn] === 'function');
}
/**
* Performs feature detection on the deprecated Microsoft Internet Explorer
* outdated SubtleCrypto interface. This function should only be used after
* checking for the modern, standard SubtleCrypto interface.
*
* @param fn the feature (function) to detect.
*
* @return true if detected, false if not.
*/
function _detectSubtleMsCrypto(fn) {
return (typeof util.globalScope !== 'undefined' &&
typeof util.globalScope.msCrypto === 'object' &&
typeof util.globalScope.msCrypto.subtle === 'object' &&
typeof util.globalScope.msCrypto.subtle[fn] === 'function');
}
function _intToUint8Array(x) {
var bytes = forge$2.util.hexToBytes(x.toString(16));
var buffer = new Uint8Array(bytes.length);
for(var i = 0; i < bytes.length; ++i) {
buffer[i] = bytes.charCodeAt(i);
}
return buffer;
}
/**
* Password-based encryption functions.
*
* @author Dave Longley
* @author Stefan Siegl <stesie@brokenpipe.de>
*
* Copyright (c) 2010-2013 Digital Bazaar, Inc.
* Copyright (c) 2012 Stefan Siegl <stesie@brokenpipe.de>
*
* An EncryptedPrivateKeyInfo:
*
* EncryptedPrivateKeyInfo ::= SEQUENCE {
* encryptionAlgorithm EncryptionAlgorithmIdentifier,
* encryptedData EncryptedData }
*
* EncryptionAlgorithmIdentifier ::= AlgorithmIdentifier
*
* EncryptedData ::= OCTET STRING
*/
var forge$1 = forge$m;
if(typeof BigInteger === 'undefined') {
var BigInteger = forge$1.jsbn.BigInteger;
}
// shortcut for asn.1 API
var asn1 = forge$1.asn1;
/* Password-based encryption implementation. */
var pki = forge$1.pki = forge$1.pki || {};
pki.pbe = forge$1.pbe = forge$1.pbe || {};
var oids = pki.oids;
// validator for an EncryptedPrivateKeyInfo structure
// Note: Currently only works w/algorithm params
var encryptedPrivateKeyValidator = {
name: 'EncryptedPrivateKeyInfo',
tagClass: asn1.Class.UNIVERSAL,
type: asn1.Type.SEQUENCE,
constructed: true,
value: [{
name: 'EncryptedPrivateKeyInfo.encryptionAlgorithm',
tagClass: asn1.Class.UNIVERSAL,
type: asn1.Type.SEQUENCE,
constructed: true,
value: [{
name: 'AlgorithmIdentifier.algorithm',
tagClass: asn1.Class.UNIVERSAL,
type: asn1.Type.OID,
constructed: false,
capture: 'encryptionOid'
}, {
name: 'AlgorithmIdentifier.parameters',
tagClass: asn1.Class.UNIVERSAL,
type: asn1.Type.SEQUENCE,
constructed: true,
captureAsn1: 'encryptionParams'
}]
}, {
// encryptedData
name: 'EncryptedPrivateKeyInfo.encryptedData',
tagClass: asn1.Class.UNIVERSAL,
type: asn1.Type.OCTETSTRING,
constructed: false,
capture: 'encryptedData'
}]
};
// validator for a PBES2Algorithms structure
// Note: Currently only works w/PBKDF2 + AES encryption schemes
var PBES2AlgorithmsValidator = {
name: 'PBES2Algorithms',
tagClass: asn1.Class.UNIVERSAL,
type: asn1.Type.SEQUENCE,
constructed: true,
value: [{
name: 'PBES2Algorithms.keyDerivationFunc',
tagClass: asn1.Class.UNIVERSAL,
type: asn1.Type.SEQUENCE,
constructed: true,
value: [{
name: 'PBES2Algorithms.keyDerivationFunc.oid',
tagClass: asn1.Class.UNIVERSAL,
type: asn1.Type.OID,
constructed: false,
capture: 'kdfOid'
}, {
name: 'PBES2Algorithms.params',
tagClass: asn1.Class.UNIVERSAL,
type: asn1.Type.SEQUENCE,
constructed: true,
value: [{
name: 'PBES2Algorithms.params.salt',
tagClass: asn1.Class.UNIVERSAL,
type: asn1.Type.OCTETSTRING,
constructed: false,
capture: 'kdfSalt'
}, {
name: 'PBES2Algorithms.params.iterationCount',
tagClass: asn1.Class.UNIVERSAL,
type: asn1.Type.INTEGER,
constructed: false,
capture: 'kdfIterationCount'
}, {
name: 'PBES2Algorithms.params.keyLength',
tagClass: asn1.Class.UNIVERSAL,
type: asn1.Type.INTEGER,
constructed: false,
optional: true,
capture: 'keyLength'
}, {
// prf
name: 'PBES2Algorithms.params.prf',
tagClass: asn1.Class.UNIVERSAL,
type: asn1.Type.SEQUENCE,
constructed: true,
optional: true,
value: [{
name: 'PBES2Algorithms.params.prf.algorithm',
tagClass: asn1.Class.UNIVERSAL,
type: asn1.Type.OID,
constructed: false,
capture: 'prfOid'
}]
}]
}]
}, {
name: 'PBES2Algorithms.encryptionScheme',
tagClass: asn1.Class.UNIVERSAL,
type: asn1.Type.SEQUENCE,
constructed: true,
value: [{
name: 'PBES2Algorithms.encryptionScheme.oid',
tagClass: asn1.Class.UNIVERSAL,
type: asn1.Type.OID,
constructed: false,
capture: 'encOid'
}, {
name: 'PBES2Algorithms.encryptionScheme.iv',
tagClass: asn1.Class.UNIVERSAL,
type: asn1.Type.OCTETSTRING,
constructed: false,
capture: 'encIv'
}]
}]
};
var pkcs12PbeParamsValidator = {
name: 'pkcs-12PbeParams',
tagClass: asn1.Class.UNIVERSAL,
type: asn1.Type.SEQUENCE,
constructed: true,
value: [{
name: 'pkcs-12PbeParams.salt',
tagClass: asn1.Class.UNIVERSAL,
type: asn1.Type.OCTETSTRING,
constructed: false,
capture: 'salt'
}, {
name: 'pkcs-12PbeParams.iterations',
tagClass: asn1.Class.UNIVERSAL,
type: asn1.Type.INTEGER,
constructed: false,
capture: 'iterations'
}]
};
/**
* Encrypts a ASN.1 PrivateKeyInfo object, producing an EncryptedPrivateKeyInfo.
*
* PBES2Algorithms ALGORITHM-IDENTIFIER ::=
* { {PBES2-params IDENTIFIED BY id-PBES2}, ...}
*
* id-PBES2 OBJECT IDENTIFIER ::= {pkcs-5 13}
*
* PBES2-params ::= SEQUENCE {
* keyDerivationFunc AlgorithmIdentifier {{PBES2-KDFs}},
* encryptionScheme AlgorithmIdentifier {{PBES2-Encs}}
* }
*
* PBES2-KDFs ALGORITHM-IDENTIFIER ::=
* { {PBKDF2-params IDENTIFIED BY id-PBKDF2}, ... }
*
* PBES2-Encs ALGORITHM-IDENTIFIER ::= { ... }
*
* PBKDF2-params ::= SEQUENCE {
* salt CHOICE {
* specified OCTET STRING,
* otherSource AlgorithmIdentifier {{PBKDF2-SaltSources}}
* },
* iterationCount INTEGER (1..MAX),
* keyLength INTEGER (1..MAX) OPTIONAL,
* prf AlgorithmIdentifier {{PBKDF2-PRFs}} DEFAULT algid-hmacWithSHA1
* }
*
* @param obj the ASN.1 PrivateKeyInfo object.
* @param password the password to encrypt with.
* @param options:
* algorithm the encryption algorithm to use
* ('aes128', 'aes192', 'aes256', '3des'), defaults to 'aes128'.
* count the iteration count to use.
* saltSize the salt size to use.
* prfAlgorithm the PRF message digest algorithm to use
* ('sha1', 'sha224', 'sha256', 'sha384', 'sha512')
*
* @return the ASN.1 EncryptedPrivateKeyInfo.
*/
pki.encryptPrivateKeyInfo = function(obj, password, options) {
// set default options
options = options || {};
options.saltSize = options.saltSize || 8;
options.count = options.count || 2048;
options.algorithm = options.algorithm || 'aes128';
options.prfAlgorithm = options.prfAlgorithm || 'sha1';
// generate PBE params
var salt = forge$1.random.getBytesSync(options.saltSize);
var count = options.count;
var countBytes = asn1.integerToDer(count);
var dkLen;
var encryptionAlgorithm;
var encryptedData;
if(options.algorithm.indexOf('aes') === 0 || options.algorithm === 'des') {
// do PBES2
var ivLen, encOid, cipherFn;
switch(options.algorithm) {
case 'aes128':
dkLen = 16;
ivLen = 16;
encOid = oids['aes128-CBC'];
cipherFn = forge$1.aes.createEncryptionCipher;
break;
case 'aes192':
dkLen = 24;
ivLen = 16;
encOid = oids['aes192-CBC'];
cipherFn = forge$1.aes.createEncryptionCipher;
break;
case 'aes256':
dkLen = 32;
ivLen = 16;
encOid = oids['aes256-CBC'];
cipherFn = forge$1.aes.createEncryptionCipher;
break;
case 'des':
dkLen = 8;
ivLen = 8;
encOid = oids['desCBC'];
cipherFn = forge$1.des.createEncryptionCipher;
break;
default:
var error = new Error('Cannot encrypt private key. Unknown encryption algorithm.');
error.algorithm = options.algorithm;
throw error;
}
// get PRF message digest
var prfAlgorithm = 'hmacWith' + options.prfAlgorithm.toUpperCase();
var md = prfAlgorithmToMessageDigest(prfAlgorithm);
// encrypt private key using pbe SHA-1 and AES/DES
var dk = forge$1.pkcs5.pbkdf2(password, salt, count, dkLen, md);
var iv = forge$1.random.getBytesSync(ivLen);
var cipher = cipherFn(dk);
cipher.start(iv);
cipher.update(asn1.toDer(obj));
cipher.finish();
encryptedData = cipher.output.getBytes();
// get PBKDF2-params
var params = createPbkdf2Params(salt, countBytes, dkLen, prfAlgorithm);
encryptionAlgorithm = asn1.create(
asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [
asn1.create(asn1.Class.UNIVERSAL, asn1.Type.OID, false,
asn1.oidToDer(oids['pkcs5PBES2']).getBytes()),
asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [
// keyDerivationFunc
asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [
asn1.create(asn1.Class.UNIVERSAL, asn1.Type.OID, false,
asn1.oidToDer(oids['pkcs5PBKDF2']).getBytes()),
// PBKDF2-params
params
]),
// encryptionScheme
asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [
asn1.create(asn1.Class.UNIVERSAL, asn1.Type.OID, false,
asn1.oidToDer(encOid).getBytes()),
// iv
asn1.create(
asn1.Class.UNIVERSAL, asn1.Type.OCTETSTRING, false, iv)
])
])
]);
} else if(options.algorithm === '3des') {
// Do PKCS12 PBE
dkLen = 24;
var saltBytes = new forge$1.util.ByteBuffer(salt);
var dk = pki.pbe.generatePkcs12Key(password, saltBytes, 1, count, dkLen);
var iv = pki.pbe.generatePkcs12Key(password, saltBytes, 2, count, dkLen);
var cipher = forge$1.des.createEncryptionCipher(dk);
cipher.start(iv);
cipher.update(asn1.toDer(obj));
cipher.finish();
encryptedData = cipher.output.getBytes();
encryptionAlgorithm = asn1.create(
asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [
asn1.create(asn1.Class.UNIVERSAL, asn1.Type.OID, false,
asn1.oidToDer(oids['pbeWithSHAAnd3-KeyTripleDES-CBC']).getBytes()),
// pkcs-12PbeParams
asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [
// salt
asn1.create(asn1.Class.UNIVERSAL, asn1.Type.OCTETSTRING, false, salt),
// iteration count
asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
countBytes.getBytes())
])
]);
} else {
var error = new Error('Cannot encrypt private key. Unknown encryption algorithm.');
error.algorithm = options.algorithm;
throw error;
}
// EncryptedPrivateKeyInfo
var rval = asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [
// encryptionAlgorithm
encryptionAlgorithm,
// encryptedData
asn1.create(
asn1.Class.UNIVERSAL, asn1.Type.OCTETSTRING, false, encryptedData)
]);
return rval;
};
/**
* Decrypts a ASN.1 PrivateKeyInfo object.
*
* @param obj the ASN.1 EncryptedPrivateKeyInfo object.
* @param password the password to decrypt with.
*
* @return the ASN.1 PrivateKeyInfo on success, null on failure.
*/
pki.decryptPrivateKeyInfo = function(obj, password) {
var rval = null;
// get PBE params
var capture = {};
var errors = [];
if(!asn1.validate(obj, encryptedPrivateKeyValidator, capture, errors)) {
var error = new Error('Cannot read encrypted private key. ' +
'ASN.1 object is not a supported EncryptedPrivateKeyInfo.');
error.errors = errors;
throw error;
}
// get cipher
var oid = asn1.derToOid(capture.encryptionOid);
var cipher = pki.pbe.getCipher(oid, capture.encryptionParams, password);
// get encrypted data
var encrypted = forge$1.util.createBuffer(capture.encryptedData);
cipher.update(encrypted);
if(cipher.finish()) {
rval = asn1.fromDer(cipher.output);
}
return rval;
};
/**
* Converts a EncryptedPrivateKeyInfo to PEM format.
*
* @param epki the EncryptedPrivateKeyInfo.
* @param maxline the maximum characters per line, defaults to 64.
*
* @return the PEM-formatted encrypted private key.
*/
pki.encryptedPrivateKeyToPem = function(epki, maxline) {
// convert to DER, then PEM-encode
var msg = {
type: 'ENCRYPTED PRIVATE KEY',
body: asn1.toDer(epki).getBytes()
};
return forge$1.pem.encode(msg, {maxline: maxline});
};
/**
* Converts a PEM-encoded EncryptedPrivateKeyInfo to ASN.1 format. Decryption
* is not performed.
*
* @param pem the EncryptedPrivateKeyInfo in PEM-format.
*
* @return the ASN.1 EncryptedPrivateKeyInfo.
*/
pki.encryptedPrivateKeyFromPem = function(pem) {
var msg = forge$1.pem.decode(pem)[0];
if(msg.type !== 'ENCRYPTED PRIVATE KEY') {
var error = new Error('Could not convert encrypted private key from PEM; ' +
'PEM header type is "ENCRYPTED PRIVATE KEY".');
error.headerType = msg.type;
throw error;
}
if(msg.procType && msg.procType.type === 'ENCRYPTED') {
throw new Error('Could not convert encrypted private key from PEM; ' +
'PEM is encrypted.');
}
// convert DER to ASN.1 object
return asn1.fromDer(msg.body);
};
/**
* Encrypts an RSA private key. By default, the key will be wrapped in
* a PrivateKeyInfo and encrypted to produce a PKCS#8 EncryptedPrivateKeyInfo.
* This is the standard, preferred way to encrypt a private key.
*
* To produce a non-standard PEM-encrypted private key that uses encapsulated
* headers to indicate the encryption algorithm (old-style non-PKCS#8 OpenSSL
* private key encryption), set the 'legacy' option to true. Note: Using this
* option will cause the iteration count to be forced to 1.
*
* Note: The 'des' algorithm is supported, but it is not considered to be
* secure because it only uses a single 56-bit key. If possible, it is highly
* recommended that a different algorithm be used.
*
* @param rsaKey the RSA key to encrypt.
* @param password the password to use.
* @param options:
* algorithm: the encryption algorithm to use
* ('aes128', 'aes192', 'aes256', '3des', 'des').
* count: the iteration count to use.
* saltSize: the salt size to use.
* legacy: output an old non-PKCS#8 PEM-encrypted+encapsulated
* headers (DEK-Info) private key.
*
* @return the PEM-encoded ASN.1 EncryptedPrivateKeyInfo.
*/
pki.encryptRsaPrivateKey = function(rsaKey, password, options) {
// standard PKCS#8
options = options || {};
if(!options.legacy) {
// encrypt PrivateKeyInfo
var rval = pki.wrapRsaPrivateKey(pki.privateKeyToAsn1(rsaKey));
rval = pki.encryptPrivateKeyInfo(rval, password, options);
return pki.encryptedPrivateKeyToPem(rval);
}
// legacy non-PKCS#8
var algorithm;
var iv;
var dkLen;
var cipherFn;
switch(options.algorithm) {
case 'aes128':
algorithm = 'AES-128-CBC';
dkLen = 16;
iv = forge$1.random.getBytesSync(16);
cipherFn = forge$1.aes.createEncryptionCipher;
break;
case 'aes192':
algorithm = 'AES-192-CBC';
dkLen = 24;
iv = forge$1.random.getBytesSync(16);
cipherFn = forge$1.aes.createEncryptionCipher;
break;
case 'aes256':
algorithm = 'AES-256-CBC';
dkLen = 32;
iv = forge$1.random.getBytesSync(16);
cipherFn = forge$1.aes.createEncryptionCipher;
break;
case '3des':
algorithm = 'DES-EDE3-CBC';
dkLen = 24;
iv = forge$1.random.getBytesSync(8);
cipherFn = forge$1.des.createEncryptionCipher;
break;
case 'des':
algorithm = 'DES-CBC';
dkLen = 8;
iv = forge$1.random.getBytesSync(8);
cipherFn = forge$1.des.createEncryptionCipher;
break;
default:
var error = new Error('Could not encrypt RSA private key; unsupported ' +
'encryption algorithm "' + options.algorithm + '".');
error.algorithm = options.algorithm;
throw error;
}
// encrypt private key using OpenSSL legacy key derivation
var dk = forge$1.pbe.opensslDeriveBytes(password, iv.substr(0, 8), dkLen);
var cipher = cipherFn(dk);
cipher.start(iv);
cipher.update(asn1.toDer(pki.privateKeyToAsn1(rsaKey)));
cipher.finish();
var msg = {
type: 'RSA PRIVATE KEY',
procType: {
version: '4',
type: 'ENCRYPTED'
},
dekInfo: {
algorithm: algorithm,
parameters: forge$1.util.bytesToHex(iv).toUpperCase()
},
body: cipher.output.getBytes()
};
return forge$1.pem.encode(msg);
};
/**
* Decrypts an RSA private key.
*
* @param pem the PEM-formatted EncryptedPrivateKeyInfo to decrypt.
* @param password the password to use.
*
* @return the RSA key on success, null on failure.
*/
pki.decryptRsaPrivateKey = function(pem, password) {
var rval = null;
var msg = forge$1.pem.decode(pem)[0];
if(msg.type !== 'ENCRYPTED PRIVATE KEY' &&
msg.type !== 'PRIVATE KEY' &&
msg.type !== 'RSA PRIVATE KEY') {
var error = new Error('Could not convert private key from PEM; PEM header type ' +
'is not "ENCRYPTED PRIVATE KEY", "PRIVATE KEY", or "RSA PRIVATE KEY".');
error.headerType = error;
throw error;
}
if(msg.procType && msg.procType.type === 'ENCRYPTED') {
var dkLen;
var cipherFn;
switch(msg.dekInfo.algorithm) {
case 'DES-CBC':
dkLen = 8;
cipherFn = forge$1.des.createDecryptionCipher;
break;
case 'DES-EDE3-CBC':
dkLen = 24;
cipherFn = forge$1.des.createDecryptionCipher;
break;
case 'AES-128-CBC':
dkLen = 16;
cipherFn = forge$1.aes.createDecryptionCipher;
break;
case 'AES-192-CBC':
dkLen = 24;
cipherFn = forge$1.aes.createDecryptionCipher;
break;
case 'AES-256-CBC':
dkLen = 32;
cipherFn = forge$1.aes.createDecryptionCipher;
break;
case 'RC2-40-CBC':
dkLen = 5;
cipherFn = function(key) {
return forge$1.rc2.createDecryptionCipher(key, 40);
};
break;
case 'RC2-64-CBC':
dkLen = 8;
cipherFn = function(key) {
return forge$1.rc2.createDecryptionCipher(key, 64);
};
break;
case 'RC2-128-CBC':
dkLen = 16;
cipherFn = function(key) {
return forge$1.rc2.createDecryptionCipher(key, 128);
};
break;
default:
var error = new Error('Could not decrypt private key; unsupported ' +
'encryption algorithm "' + msg.dekInfo.algorithm + '".');
error.algorithm = msg.dekInfo.algorithm;
throw error;
}
// use OpenSSL legacy key derivation
var iv = forge$1.util.hexToBytes(msg.dekInfo.parameters);
var dk = forge$1.pbe.opensslDeriveBytes(password, iv.substr(0, 8), dkLen);
var cipher = cipherFn(dk);
cipher.start(iv);
cipher.update(forge$1.util.createBuffer(msg.body));
if(cipher.finish()) {
rval = cipher.output.getBytes();
} else {
return rval;
}
} else {
rval = msg.body;
}
if(msg.type === 'ENCRYPTED PRIVATE KEY') {
rval = pki.decryptPrivateKeyInfo(asn1.fromDer(rval), password);
} else {
// decryption already performed above
rval = asn1.fromDer(rval);
}
if(rval !== null) {
rval = pki.privateKeyFromAsn1(rval);
}
return rval;
};
/**
* Derives a PKCS#12 key.
*
* @param password the password to derive the key material from, null or
* undefined for none.
* @param salt the salt, as a ByteBuffer, to use.
* @param id the PKCS#12 ID byte (1 = key material, 2 = IV, 3 = MAC).
* @param iter the iteration count.
* @param n the number of bytes to derive from the password.
* @param md the message digest to use, defaults to SHA-1.
*
* @return a ByteBuffer with the bytes derived from the password.
*/
pki.pbe.generatePkcs12Key = function(password, salt, id, iter, n, md) {
var j, l;
if(typeof md === 'undefined' || md === null) {
if(!('sha1' in forge$1.md)) {
throw new Error('"sha1" hash algorithm unavailable.');
}
md = forge$1.md.sha1.create();
}
var u = md.digestLength;
var v = md.blockLength;
var result = new forge$1.util.ByteBuffer();
/* Convert password to Unicode byte buffer + trailing 0-byte. */
var passBuf = new forge$1.util.ByteBuffer();
if(password !== null && password !== undefined) {
for(l = 0; l < password.length; l++) {
passBuf.putInt16(password.charCodeAt(l));
}
passBuf.putInt16(0);
}
/* Length of salt and password in BYTES. */
var p = passBuf.length();
var s = salt.length();
/* 1. Construct a string, D (the "diversifier"), by concatenating
v copies of ID. */
var D = new forge$1.util.ByteBuffer();
D.fillWithByte(id, v);
/* 2. Concatenate copies of the salt together to create a string S of length
v * ceil(s / v) bytes (the final copy of the salt may be trunacted
to create S).
Note that if the salt is the empty string, then so is S. */
var Slen = v * Math.ceil(s / v);
var S = new forge$1.util.ByteBuffer();
for(l = 0; l < Slen; l++) {
S.putByte(salt.at(l % s));
}
/* 3. Concatenate copies of the password together to create a string P of
length v * ceil(p / v) bytes (the final copy of the password may be
truncated to create P).
Note that if the password is the empty string, then so is P. */
var Plen = v * Math.ceil(p / v);
var P = new forge$1.util.ByteBuffer();
for(l = 0; l < Plen; l++) {
P.putByte(passBuf.at(l % p));
}
/* 4. Set I=S||P to be the concatenation of S and P. */
var I = S;
I.putBuffer(P);
/* 5. Set c=ceil(n / u). */
var c = Math.ceil(n / u);
/* 6. For i=1, 2, ..., c, do the following: */
for(var i = 1; i <= c; i++) {
/* a) Set Ai=H^r(D||I). (l.e. the rth hash of D||I, H(H(H(...H(D||I)))) */
var buf = new forge$1.util.ByteBuffer();
buf.putBytes(D.bytes());
buf.putBytes(I.bytes());
for(var round = 0; round < iter; round++) {
md.start();
md.update(buf.getBytes());
buf = md.digest();
}
/* b) Concatenate copies of Ai to create a string B of length v bytes (the
final copy of Ai may be truncated to create B). */
var B = new forge$1.util.ByteBuffer();
for(l = 0; l < v; l++) {
B.putByte(buf.at(l % u));
}
/* c) Treating I as a concatenation I0, I1, ..., Ik-1 of v-byte blocks,
where k=ceil(s / v) + ceil(p / v), modify I by setting
Ij=(Ij+B+1) mod 2v for each j. */
var k = Math.ceil(s / v) + Math.ceil(p / v);
var Inew = new forge$1.util.ByteBuffer();
for(j = 0; j < k; j++) {
var chunk = new forge$1.util.ByteBuffer(I.getBytes(v));
var x = 0x1ff;
for(l = B.length() - 1; l >= 0; l--) {
x = x >> 8;
x += B.at(l) + chunk.at(l);
chunk.setAt(l, x & 0xff);
}
Inew.putBuffer(chunk);
}
I = Inew;
/* Add Ai to A. */
result.putBuffer(buf);
}
result.truncate(result.length() - n);
return result;
};
/**
* Get new Forge cipher object instance.
*
* @param oid the OID (in string notation).
* @param params the ASN.1 params object.
* @param password the password to decrypt with.
*
* @return new cipher object instance.
*/
pki.pbe.getCipher = function(oid, params, password) {
switch(oid) {
case pki.oids['pkcs5PBES2']:
return pki.pbe.getCipherForPBES2(oid, params, password);
case pki.oids['pbeWithSHAAnd3-KeyTripleDES-CBC']:
case pki.oids['pbewithSHAAnd40BitRC2-CBC']:
return pki.pbe.getCipherForPKCS12PBE(oid, params, password);
default:
var error = new Error('Cannot read encrypted PBE data block. Unsupported OID.');
error.oid = oid;
error.supportedOids = [
'pkcs5PBES2',
'pbeWithSHAAnd3-KeyTripleDES-CBC',
'pbewithSHAAnd40BitRC2-CBC'
];
throw error;
}
};
/**
* Get new Forge cipher object instance according to PBES2 params block.
*
* The returned cipher instance is already started using the IV
* from PBES2 parameter block.
*
* @param oid the PKCS#5 PBKDF2 OID (in string notation).
* @param params the ASN.1 PBES2-params object.
* @param password the password to decrypt with.
*
* @return new cipher object instance.
*/
pki.pbe.getCipherForPBES2 = function(oid, params, password) {
// get PBE params
var capture = {};
var errors = [];
if(!asn1.validate(params, PBES2AlgorithmsValidator, capture, errors)) {
var error = new Error('Cannot read password-based-encryption algorithm ' +
'parameters. ASN.1 object is not a supported EncryptedPrivateKeyInfo.');
error.errors = errors;
throw error;
}
// check oids
oid = asn1.derToOid(capture.kdfOid);
if(oid !== pki.oids['pkcs5PBKDF2']) {
var error = new Error('Cannot read encrypted private key. ' +
'Unsupported key derivation function OID.');
error.oid = oid;
error.supportedOids = ['pkcs5PBKDF2'];
throw error;
}
oid = asn1.derToOid(capture.encOid);
if(oid !== pki.oids['aes128-CBC'] &&
oid !== pki.oids['aes192-CBC'] &&
oid !== pki.oids['aes256-CBC'] &&
oid !== pki.oids['des-EDE3-CBC'] &&
oid !== pki.oids['desCBC']) {
var error = new Error('Cannot read encrypted private key. ' +
'Unsupported encryption scheme OID.');
error.oid = oid;
error.supportedOids = [
'aes128-CBC', 'aes192-CBC', 'aes256-CBC', 'des-EDE3-CBC', 'desCBC'];
throw error;
}
// set PBE params
var salt = capture.kdfSalt;
var count = forge$1.util.createBuffer(capture.kdfIterationCount);
count = count.getInt(count.length() << 3);
var dkLen;
var cipherFn;
switch(pki.oids[oid]) {
case 'aes128-CBC':
dkLen = 16;
cipherFn = forge$1.aes.createDecryptionCipher;
break;
case 'aes192-CBC':
dkLen = 24;
cipherFn = forge$1.aes.createDecryptionCipher;
break;
case 'aes256-CBC':
dkLen = 32;
cipherFn = forge$1.aes.createDecryptionCipher;
break;
case 'des-EDE3-CBC':
dkLen = 24;
cipherFn = forge$1.des.createDecryptionCipher;
break;
case 'desCBC':
dkLen = 8;
cipherFn = forge$1.des.createDecryptionCipher;
break;
}
// get PRF message digest
var md = prfOidToMessageDigest(capture.prfOid);
// decrypt private key using pbe with chosen PRF and AES/DES
var dk = forge$1.pkcs5.pbkdf2(password, salt, count, dkLen, md);
var iv = capture.encIv;
var cipher = cipherFn(dk);
cipher.start(iv);
return cipher;
};
/**
* Get new Forge cipher object instance for PKCS#12 PBE.
*
* The returned cipher instance is already started using the key & IV
* derived from the provided password and PKCS#12 PBE salt.
*
* @param oid The PKCS#12 PBE OID (in string notation).
* @param params The ASN.1 PKCS#12 PBE-params object.
* @param password The password to decrypt with.
*
* @return the new cipher object instance.
*/
pki.pbe.getCipherForPKCS12PBE = function(oid, params, password) {
// get PBE params
var capture = {};
var errors = [];
if(!asn1.validate(params, pkcs12PbeParamsValidator, capture, errors)) {
var error = new Error('Cannot read password-based-encryption algorithm ' +
'parameters. ASN.1 object is not a supported EncryptedPrivateKeyInfo.');
error.errors = errors;
throw error;
}
var salt = forge$1.util.createBuffer(capture.salt);
var count = forge$1.util.createBuffer(capture.iterations);
count = count.getInt(count.length() << 3);
var dkLen, dIvLen, cipherFn;
switch(oid) {
case pki.oids['pbeWithSHAAnd3-KeyTripleDES-CBC']:
dkLen = 24;
dIvLen = 8;
cipherFn = forge$1.des.startDecrypting;
break;
case pki.oids['pbewithSHAAnd40BitRC2-CBC']:
dkLen = 5;
dIvLen = 8;
cipherFn = function(key, iv) {
var cipher = forge$1.rc2.createDecryptionCipher(key, 40);
cipher.start(iv, null);
return cipher;
};
break;
default:
var error = new Error('Cannot read PKCS #12 PBE data block. Unsupported OID.');
error.oid = oid;
throw error;
}
// get PRF message digest
var md = prfOidToMessageDigest(capture.prfOid);
var key = pki.pbe.generatePkcs12Key(password, salt, 1, count, dkLen, md);
md.start();
var iv = pki.pbe.generatePkcs12Key(password, salt, 2, count, dIvLen, md);
return cipherFn(key, iv);
};
/**
* OpenSSL's legacy key derivation function.
*
* See: http://www.openssl.org/docs/crypto/EVP_BytesToKey.html
*
* @param password the password to derive the key from.
* @param salt the salt to use, null for none.
* @param dkLen the number of bytes needed for the derived key.
* @param [options] the options to use:
* [md] an optional message digest object to use.
*/
pki.pbe.opensslDeriveBytes = function(password, salt, dkLen, md) {
if(typeof md === 'undefined' || md === null) {
if(!('md5' in forge$1.md)) {
throw new Error('"md5" hash algorithm unavailable.');
}
md = forge$1.md.md5.create();
}
if(salt === null) {
salt = '';
}
var digests = [hash(md, password + salt)];
for(var length = 16, i = 1; length < dkLen; ++i, length += 16) {
digests.push(hash(md, digests[i - 1] + password + salt));
}
return digests.join('').substr(0, dkLen);
};
function hash(md, bytes) {
return md.start().update(bytes).digest().getBytes();
}
function prfOidToMessageDigest(prfOid) {
// get PRF algorithm, default to SHA-1
var prfAlgorithm;
if(!prfOid) {
prfAlgorithm = 'hmacWithSHA1';
} else {
prfAlgorithm = pki.oids[asn1.derToOid(prfOid)];
if(!prfAlgorithm) {
var error = new Error('Unsupported PRF OID.');
error.oid = prfOid;
error.supported = [
'hmacWithSHA1', 'hmacWithSHA224', 'hmacWithSHA256', 'hmacWithSHA384',
'hmacWithSHA512'];
throw error;
}
}
return prfAlgorithmToMessageDigest(prfAlgorithm);
}
function prfAlgorithmToMessageDigest(prfAlgorithm) {
var factory = forge$1.md;
switch(prfAlgorithm) {
case 'hmacWithSHA224':
factory = forge$1.md.sha512;
case 'hmacWithSHA1':
case 'hmacWithSHA256':
case 'hmacWithSHA384':
case 'hmacWithSHA512':
prfAlgorithm = prfAlgorithm.substr(8).toLowerCase();
break;
default:
var error = new Error('Unsupported PRF algorithm.');
error.algorithm = prfAlgorithm;
error.supported = [
'hmacWithSHA1', 'hmacWithSHA224', 'hmacWithSHA256', 'hmacWithSHA384',
'hmacWithSHA512'];
throw error;
}
if(!factory || !(prfAlgorithm in factory)) {
throw new Error('Unknown hash algorithm: ' + prfAlgorithm);
}
return factory[prfAlgorithm].create();
}
function createPbkdf2Params(salt, countBytes, dkLen, prfAlgorithm) {
var params = asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [
// salt
asn1.create(
asn1.Class.UNIVERSAL, asn1.Type.OCTETSTRING, false, salt),
// iteration count
asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
countBytes.getBytes())
]);
// when PRF algorithm is not SHA-1 default, add key length and PRF algorithm
if(prfAlgorithm !== 'hmacWithSHA1') {
params.value.push(
// key length
asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
forge$1.util.hexToBytes(dkLen.toString(16))),
// AlgorithmIdentifier
asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [
// algorithm
asn1.create(asn1.Class.UNIVERSAL, asn1.Type.OID, false,
asn1.oidToDer(pki.oids[prfAlgorithm]).getBytes()),
// parameters (null)
asn1.create(asn1.Class.UNIVERSAL, asn1.Type.NULL, false, '')
]));
}
return params;
}
/**
* @typedef {{ [key: string]: any }} Extensions
* @typedef {Error} Err
* @property {string} message
*/
/**
*
* @param {Error} obj
* @param {Extensions} props
* @returns {Error & Extensions}
*/
function assign(obj, props) {
for (const key in props) {
Object.defineProperty(obj, key, {
value: props[key],
enumerable: true,
configurable: true,
});
}
return obj;
}
/**
*
* @param {any} err - An Error
* @param {string|Extensions} code - A string code or props to set on the error
* @param {Extensions} [props] - Props to set on the error
* @returns {Error & Extensions}
*/
function createError(err, code, props) {
if (!err || typeof err === 'string') {
throw new TypeError('Please pass an Error to err-code');
}
if (!props) {
props = {};
}
if (typeof code === 'object') {
props = code;
code = '';
}
if (code) {
props.code = code;
}
try {
return assign(err, props);
} catch (_) {
props.message = err.message;
props.stack = err.stack;
const ErrClass = function () {};
ErrClass.prototype = Object.create(Object.getPrototypeOf(err));
// @ts-ignore
const output = assign(new ErrClass(), props);
return output;
}
}
var errCode = createError;
/* eslint-env browser */
// Check native crypto exists and is enabled (In insecure context `self.crypto`
// exists but `self.crypto.subtle` does not).
var webcrypto = {
get(win = globalThis) {
const nativeCrypto = win.crypto;
if (nativeCrypto == null || nativeCrypto.subtle == null) {
throw Object.assign(new Error('Missing Web Crypto API. ' +
'The most likely cause of this error is that this page is being accessed ' +
'from an insecure context (i.e. not HTTPS). For more information and ' +
'possible resolutions see ' +
'https://github.com/libp2p/js-libp2p-crypto/blob/master/README.md#web-crypto-api'), { code: 'ERR_MISSING_WEB_CRYPTO' });
}
return nativeCrypto;
}
};
function bigIntegerToUintBase64url(num, len) {
// Call `.abs()` to convert to unsigned
let buf = Uint8Array.from(num.abs().toByteArray()); // toByteArray converts to big endian
// toByteArray() gives us back a signed array, which will include a leading 0
// byte if the most significant bit of the number is 1:
// https://docs.microsoft.com/en-us/windows/win32/seccertenroll/about-integer
// Our number will always be positive so we should remove the leading padding.
buf = buf[0] === 0 ? buf.slice(1) : buf;
if (len != null) {
if (buf.length > len)
throw new Error('byte array longer than desired length');
buf = concat([new Uint8Array(len - buf.length), buf]);
}
return toString$3(buf, 'base64url');
}
// Convert a base64url encoded string to a BigInteger
function base64urlToBigInteger(str) {
const buf = base64urlToBuffer(str);
return new forge$m.jsbn.BigInteger(toString$3(buf, 'base16'), 16);
}
function base64urlToBuffer(str, len) {
let buf = fromString$1(str, 'base64urlpad');
if (len != null) {
if (buf.length > len)
throw new Error('byte array longer than desired length');
buf = concat([new Uint8Array(len - buf.length), buf]);
}
return buf;
}
function equals(a, b) {
if (a === b) {
return true;
}
if (a.byteLength !== b.byteLength) {
return false;
}
for (let i = 0; i < a.byteLength; i++) {
if (a[i] !== b[i]) {
return false;
}
}
return true;
}
const bits = {
'P-256': 256,
'P-384': 384,
'P-521': 521
};
const curveTypes = Object.keys(bits);
curveTypes.join(' / ');
// Based off of code from https://github.com/luke-park/SecureCompatibleEncryptionExamples
function create$2(opts) {
const algorithm = opts?.algorithm ?? 'AES-GCM';
let keyLength = opts?.keyLength ?? 16;
const nonceLength = opts?.nonceLength ?? 12;
const digest = opts?.digest ?? 'SHA-256';
const saltLength = opts?.saltLength ?? 16;
const iterations = opts?.iterations ?? 32767;
const crypto = webcrypto.get();
keyLength *= 8; // Browser crypto uses bits instead of bytes
/**
* Uses the provided password to derive a pbkdf2 key. The key
* will then be used to encrypt the data.
*/
async function encrypt(data, password) {
const salt = crypto.getRandomValues(new Uint8Array(saltLength));
const nonce = crypto.getRandomValues(new Uint8Array(nonceLength));
const aesGcm = { name: algorithm, iv: nonce };
if (typeof password === 'string') {
password = fromString$1(password);
}
// Derive a key using PBKDF2.
const deriveParams = { name: 'PBKDF2', salt, iterations, hash: { name: digest } };
const rawKey = await crypto.subtle.importKey('raw', password, { name: 'PBKDF2' }, false, ['deriveKey', 'deriveBits']);
const cryptoKey = await crypto.subtle.deriveKey(deriveParams, rawKey, { name: algorithm, length: keyLength }, true, ['encrypt']);
// Encrypt the string.
const ciphertext = await crypto.subtle.encrypt(aesGcm, cryptoKey, data);
return concat([salt, aesGcm.iv, new Uint8Array(ciphertext)]);
}
/**
* Uses the provided password to derive a pbkdf2 key. The key
* will then be used to decrypt the data. The options used to create
* this decryption cipher must be the same as those used to create
* the encryption cipher.
*/
async function decrypt(data, password) {
const salt = data.slice(0, saltLength);
const nonce = data.slice(saltLength, saltLength + nonceLength);
const ciphertext = data.slice(saltLength + nonceLength);
const aesGcm = { name: algorithm, iv: nonce };
if (typeof password === 'string') {
password = fromString$1(password);
}
// Derive the key using PBKDF2.
const deriveParams = { name: 'PBKDF2', salt, iterations, hash: { name: digest } };
const rawKey = await crypto.subtle.importKey('raw', password, { name: 'PBKDF2' }, false, ['deriveKey', 'deriveBits']);
const cryptoKey = await crypto.subtle.deriveKey(deriveParams, rawKey, { name: algorithm, length: keyLength }, true, ['decrypt']);
// Decrypt the string.
const plaintext = await crypto.subtle.decrypt(aesGcm, cryptoKey, ciphertext);
return new Uint8Array(plaintext);
}
const cipher = {
encrypt,
decrypt
};
return cipher;
}
/**
* Secure Hash Algorithm with a 1024-bit block size implementation.
*
* This includes: SHA-512, SHA-384, SHA-512/224, and SHA-512/256. For
* SHA-256 (block size 512 bits), see sha256.js.
*
* See FIPS 180-4 for details.
*
* @author Dave Longley
*
* Copyright (c) 2014-2015 Digital Bazaar, Inc.
*/
var forge = forge$m;
var sha512 = forge.sha512 = forge.sha512 || {};
// SHA-512
forge.md.sha512 = forge.md.algorithms.sha512 = sha512;
// SHA-384
var sha384 = forge.sha384 = forge.sha512.sha384 = forge.sha512.sha384 || {};
sha384.create = function() {
return sha512.create('SHA-384');
};
forge.md.sha384 = forge.md.algorithms.sha384 = sha384;
// SHA-512/256
forge.sha512.sha256 = forge.sha512.sha256 || {
create: function() {
return sha512.create('SHA-512/256');
}
};
forge.md['sha512/256'] = forge.md.algorithms['sha512/256'] =
forge.sha512.sha256;
// SHA-512/224
forge.sha512.sha224 = forge.sha512.sha224 || {
create: function() {
return sha512.create('SHA-512/224');
}
};
forge.md['sha512/224'] = forge.md.algorithms['sha512/224'] =
forge.sha512.sha224;
/**
* Creates a SHA-2 message digest object.
*
* @param algorithm the algorithm to use (SHA-512, SHA-384, SHA-512/224,
* SHA-512/256).
*
* @return a message digest object.
*/
sha512.create = function(algorithm) {
// do initialization as necessary
if(!_initialized) {
_init();
}
if(typeof algorithm === 'undefined') {
algorithm = 'SHA-512';
}
if(!(algorithm in _states)) {
throw new Error('Invalid SHA-512 algorithm: ' + algorithm);
}
// SHA-512 state contains eight 64-bit integers (each as two 32-bit ints)
var _state = _states[algorithm];
var _h = null;
// input buffer
var _input = forge.util.createBuffer();
// used for 64-bit word storage
var _w = new Array(80);
for(var wi = 0; wi < 80; ++wi) {
_w[wi] = new Array(2);
}
// determine digest length by algorithm name (default)
var digestLength = 64;
switch(algorithm) {
case 'SHA-384':
digestLength = 48;
break;
case 'SHA-512/256':
digestLength = 32;
break;
case 'SHA-512/224':
digestLength = 28;
break;
}
// message digest object
var md = {
// SHA-512 => sha512
algorithm: algorithm.replace('-', '').toLowerCase(),
blockLength: 128,
digestLength: digestLength,
// 56-bit length of message so far (does not including padding)
messageLength: 0,
// true message length
fullMessageLength: null,
// size of message length in bytes
messageLengthSize: 16
};
/**
* Starts the digest.
*
* @return this digest object.
*/
md.start = function() {
// up to 56-bit message length for convenience
md.messageLength = 0;
// full message length (set md.messageLength128 for backwards-compatibility)
md.fullMessageLength = md.messageLength128 = [];
var int32s = md.messageLengthSize / 4;
for(var i = 0; i < int32s; ++i) {
md.fullMessageLength.push(0);
}
_input = forge.util.createBuffer();
_h = new Array(_state.length);
for(var i = 0; i < _state.length; ++i) {
_h[i] = _state[i].slice(0);
}
return md;
};
// start digest automatically for first time
md.start();
/**
* Updates the digest with the given message input. The given input can
* treated as raw input (no encoding will be applied) or an encoding of
* 'utf8' maybe given to encode the input using UTF-8.
*
* @param msg the message input to update with.
* @param encoding the encoding to use (default: 'raw', other: 'utf8').
*
* @return this digest object.
*/
md.update = function(msg, encoding) {
if(encoding === 'utf8') {
msg = forge.util.encodeUtf8(msg);
}
// update message length
var len = msg.length;
md.messageLength += len;
len = [(len / 0x100000000) >>> 0, len >>> 0];
for(var i = md.fullMessageLength.length - 1; i >= 0; --i) {
md.fullMessageLength[i] += len[1];
len[1] = len[0] + ((md.fullMessageLength[i] / 0x100000000) >>> 0);
md.fullMessageLength[i] = md.fullMessageLength[i] >>> 0;
len[0] = ((len[1] / 0x100000000) >>> 0);
}
// add bytes to input buffer
_input.putBytes(msg);
// process bytes
_update(_h, _w, _input);
// compact input buffer every 2K or if empty
if(_input.read > 2048 || _input.length() === 0) {
_input.compact();
}
return md;
};
/**
* Produces the digest.
*
* @return a byte buffer containing the digest value.
*/
md.digest = function() {
/* Note: Here we copy the remaining bytes in the input buffer and
add the appropriate SHA-512 padding. Then we do the final update
on a copy of the state so that if the user wants to get
intermediate digests they can do so. */
/* Determine the number of bytes that must be added to the message
to ensure its length is congruent to 896 mod 1024. In other words,
the data to be digested must be a multiple of 1024 bits (or 128 bytes).
This data includes the message, some padding, and the length of the
message. Since the length of the message will be encoded as 16 bytes (128
bits), that means that the last segment of the data must have 112 bytes
(896 bits) of message and padding. Therefore, the length of the message
plus the padding must be congruent to 896 mod 1024 because
1024 - 128 = 896.
In order to fill up the message length it must be filled with
padding that begins with 1 bit followed by all 0 bits. Padding
must *always* be present, so if the message length is already
congruent to 896 mod 1024, then 1024 padding bits must be added. */
var finalBlock = forge.util.createBuffer();
finalBlock.putBytes(_input.bytes());
// compute remaining size to be digested (include message length size)
var remaining = (
md.fullMessageLength[md.fullMessageLength.length - 1] +
md.messageLengthSize);
// add padding for overflow blockSize - overflow
// _padding starts with 1 byte with first bit is set (byte value 128), then
// there may be up to (blockSize - 1) other pad bytes
var overflow = remaining & (md.blockLength - 1);
finalBlock.putBytes(_padding.substr(0, md.blockLength - overflow));
// serialize message length in bits in big-endian order; since length
// is stored in bytes we multiply by 8 and add carry from next int
var next, carry;
var bits = md.fullMessageLength[0] * 8;
for(var i = 0; i < md.fullMessageLength.length - 1; ++i) {
next = md.fullMessageLength[i + 1] * 8;
carry = (next / 0x100000000) >>> 0;
bits += carry;
finalBlock.putInt32(bits >>> 0);
bits = next >>> 0;
}
finalBlock.putInt32(bits);
var h = new Array(_h.length);
for(var i = 0; i < _h.length; ++i) {
h[i] = _h[i].slice(0);
}
_update(h, _w, finalBlock);
var rval = forge.util.createBuffer();
var hlen;
if(algorithm === 'SHA-512') {
hlen = h.length;
} else if(algorithm === 'SHA-384') {
hlen = h.length - 2;
} else {
hlen = h.length - 4;
}
for(var i = 0; i < hlen; ++i) {
rval.putInt32(h[i][0]);
if(i !== hlen - 1 || algorithm !== 'SHA-512/224') {
rval.putInt32(h[i][1]);
}
}
return rval;
};
return md;
};
// sha-512 padding bytes not initialized yet
var _padding = null;
var _initialized = false;
// table of constants
var _k = null;
// initial hash states
var _states = null;
/**
* Initializes the constant tables.
*/
function _init() {
// create padding
_padding = String.fromCharCode(128);
_padding += forge.util.fillString(String.fromCharCode(0x00), 128);
// create K table for SHA-512
_k = [
[0x428a2f98, 0xd728ae22], [0x71374491, 0x23ef65cd],
[0xb5c0fbcf, 0xec4d3b2f], [0xe9b5dba5, 0x8189dbbc],
[0x3956c25b, 0xf348b538], [0x59f111f1, 0xb605d019],
[0x923f82a4, 0xaf194f9b], [0xab1c5ed5, 0xda6d8118],
[0xd807aa98, 0xa3030242], [0x12835b01, 0x45706fbe],
[0x243185be, 0x4ee4b28c], [0x550c7dc3, 0xd5ffb4e2],
[0x72be5d74, 0xf27b896f], [0x80deb1fe, 0x3b1696b1],
[0x9bdc06a7, 0x25c71235], [0xc19bf174, 0xcf692694],
[0xe49b69c1, 0x9ef14ad2], [0xefbe4786, 0x384f25e3],
[0x0fc19dc6, 0x8b8cd5b5], [0x240ca1cc, 0x77ac9c65],
[0x2de92c6f, 0x592b0275], [0x4a7484aa, 0x6ea6e483],
[0x5cb0a9dc, 0xbd41fbd4], [0x76f988da, 0x831153b5],
[0x983e5152, 0xee66dfab], [0xa831c66d, 0x2db43210],
[0xb00327c8, 0x98fb213f], [0xbf597fc7, 0xbeef0ee4],
[0xc6e00bf3, 0x3da88fc2], [0xd5a79147, 0x930aa725],
[0x06ca6351, 0xe003826f], [0x14292967, 0x0a0e6e70],
[0x27b70a85, 0x46d22ffc], [0x2e1b2138, 0x5c26c926],
[0x4d2c6dfc, 0x5ac42aed], [0x53380d13, 0x9d95b3df],
[0x650a7354, 0x8baf63de], [0x766a0abb, 0x3c77b2a8],
[0x81c2c92e, 0x47edaee6], [0x92722c85, 0x1482353b],
[0xa2bfe8a1, 0x4cf10364], [0xa81a664b, 0xbc423001],
[0xc24b8b70, 0xd0f89791], [0xc76c51a3, 0x0654be30],
[0xd192e819, 0xd6ef5218], [0xd6990624, 0x5565a910],
[0xf40e3585, 0x5771202a], [0x106aa070, 0x32bbd1b8],
[0x19a4c116, 0xb8d2d0c8], [0x1e376c08, 0x5141ab53],
[0x2748774c, 0xdf8eeb99], [0x34b0bcb5, 0xe19b48a8],
[0x391c0cb3, 0xc5c95a63], [0x4ed8aa4a, 0xe3418acb],
[0x5b9cca4f, 0x7763e373], [0x682e6ff3, 0xd6b2b8a3],
[0x748f82ee, 0x5defb2fc], [0x78a5636f, 0x43172f60],
[0x84c87814, 0xa1f0ab72], [0x8cc70208, 0x1a6439ec],
[0x90befffa, 0x23631e28], [0xa4506ceb, 0xde82bde9],
[0xbef9a3f7, 0xb2c67915], [0xc67178f2, 0xe372532b],
[0xca273ece, 0xea26619c], [0xd186b8c7, 0x21c0c207],
[0xeada7dd6, 0xcde0eb1e], [0xf57d4f7f, 0xee6ed178],
[0x06f067aa, 0x72176fba], [0x0a637dc5, 0xa2c898a6],
[0x113f9804, 0xbef90dae], [0x1b710b35, 0x131c471b],
[0x28db77f5, 0x23047d84], [0x32caab7b, 0x40c72493],
[0x3c9ebe0a, 0x15c9bebc], [0x431d67c4, 0x9c100d4c],
[0x4cc5d4be, 0xcb3e42b6], [0x597f299c, 0xfc657e2a],
[0x5fcb6fab, 0x3ad6faec], [0x6c44198c, 0x4a475817]
];
// initial hash states
_states = {};
_states['SHA-512'] = [
[0x6a09e667, 0xf3bcc908],
[0xbb67ae85, 0x84caa73b],
[0x3c6ef372, 0xfe94f82b],
[0xa54ff53a, 0x5f1d36f1],
[0x510e527f, 0xade682d1],
[0x9b05688c, 0x2b3e6c1f],
[0x1f83d9ab, 0xfb41bd6b],
[0x5be0cd19, 0x137e2179]
];
_states['SHA-384'] = [
[0xcbbb9d5d, 0xc1059ed8],
[0x629a292a, 0x367cd507],
[0x9159015a, 0x3070dd17],
[0x152fecd8, 0xf70e5939],
[0x67332667, 0xffc00b31],
[0x8eb44a87, 0x68581511],
[0xdb0c2e0d, 0x64f98fa7],
[0x47b5481d, 0xbefa4fa4]
];
_states['SHA-512/256'] = [
[0x22312194, 0xFC2BF72C],
[0x9F555FA3, 0xC84C64C2],
[0x2393B86B, 0x6F53B151],
[0x96387719, 0x5940EABD],
[0x96283EE2, 0xA88EFFE3],
[0xBE5E1E25, 0x53863992],
[0x2B0199FC, 0x2C85B8AA],
[0x0EB72DDC, 0x81C52CA2]
];
_states['SHA-512/224'] = [
[0x8C3D37C8, 0x19544DA2],
[0x73E19966, 0x89DCD4D6],
[0x1DFAB7AE, 0x32FF9C82],
[0x679DD514, 0x582F9FCF],
[0x0F6D2B69, 0x7BD44DA8],
[0x77E36F73, 0x04C48942],
[0x3F9D85A8, 0x6A1D36C8],
[0x1112E6AD, 0x91D692A1]
];
// now initialized
_initialized = true;
}
/**
* Updates a SHA-512 state with the given byte buffer.
*
* @param s the SHA-512 state to update.
* @param w the array to use to store words.
* @param bytes the byte buffer to update with.
*/
function _update(s, w, bytes) {
// consume 512 bit (128 byte) chunks
var t1_hi, t1_lo;
var t2_hi, t2_lo;
var s0_hi, s0_lo;
var s1_hi, s1_lo;
var ch_hi, ch_lo;
var maj_hi, maj_lo;
var a_hi, a_lo;
var b_hi, b_lo;
var c_hi, c_lo;
var d_hi, d_lo;
var e_hi, e_lo;
var f_hi, f_lo;
var g_hi, g_lo;
var h_hi, h_lo;
var i, hi, lo, w2, w7, w15, w16;
var len = bytes.length();
while(len >= 128) {
// the w array will be populated with sixteen 64-bit big-endian words
// and then extended into 64 64-bit words according to SHA-512
for(i = 0; i < 16; ++i) {
w[i][0] = bytes.getInt32() >>> 0;
w[i][1] = bytes.getInt32() >>> 0;
}
for(; i < 80; ++i) {
// for word 2 words ago: ROTR 19(x) ^ ROTR 61(x) ^ SHR 6(x)
w2 = w[i - 2];
hi = w2[0];
lo = w2[1];
// high bits
t1_hi = (
((hi >>> 19) | (lo << 13)) ^ // ROTR 19
((lo >>> 29) | (hi << 3)) ^ // ROTR 61/(swap + ROTR 29)
(hi >>> 6)) >>> 0; // SHR 6
// low bits
t1_lo = (
((hi << 13) | (lo >>> 19)) ^ // ROTR 19
((lo << 3) | (hi >>> 29)) ^ // ROTR 61/(swap + ROTR 29)
((hi << 26) | (lo >>> 6))) >>> 0; // SHR 6
// for word 15 words ago: ROTR 1(x) ^ ROTR 8(x) ^ SHR 7(x)
w15 = w[i - 15];
hi = w15[0];
lo = w15[1];
// high bits
t2_hi = (
((hi >>> 1) | (lo << 31)) ^ // ROTR 1
((hi >>> 8) | (lo << 24)) ^ // ROTR 8
(hi >>> 7)) >>> 0; // SHR 7
// low bits
t2_lo = (
((hi << 31) | (lo >>> 1)) ^ // ROTR 1
((hi << 24) | (lo >>> 8)) ^ // ROTR 8
((hi << 25) | (lo >>> 7))) >>> 0; // SHR 7
// sum(t1, word 7 ago, t2, word 16 ago) modulo 2^64 (carry lo overflow)
w7 = w[i - 7];
w16 = w[i - 16];
lo = (t1_lo + w7[1] + t2_lo + w16[1]);
w[i][0] = (t1_hi + w7[0] + t2_hi + w16[0] +
((lo / 0x100000000) >>> 0)) >>> 0;
w[i][1] = lo >>> 0;
}
// initialize hash value for this chunk
a_hi = s[0][0];
a_lo = s[0][1];
b_hi = s[1][0];
b_lo = s[1][1];
c_hi = s[2][0];
c_lo = s[2][1];
d_hi = s[3][0];
d_lo = s[3][1];
e_hi = s[4][0];
e_lo = s[4][1];
f_hi = s[5][0];
f_lo = s[5][1];
g_hi = s[6][0];
g_lo = s[6][1];
h_hi = s[7][0];
h_lo = s[7][1];
// round function
for(i = 0; i < 80; ++i) {
// Sum1(e) = ROTR 14(e) ^ ROTR 18(e) ^ ROTR 41(e)
s1_hi = (
((e_hi >>> 14) | (e_lo << 18)) ^ // ROTR 14
((e_hi >>> 18) | (e_lo << 14)) ^ // ROTR 18
((e_lo >>> 9) | (e_hi << 23))) >>> 0; // ROTR 41/(swap + ROTR 9)
s1_lo = (
((e_hi << 18) | (e_lo >>> 14)) ^ // ROTR 14
((e_hi << 14) | (e_lo >>> 18)) ^ // ROTR 18
((e_lo << 23) | (e_hi >>> 9))) >>> 0; // ROTR 41/(swap + ROTR 9)
// Ch(e, f, g) (optimized the same way as SHA-1)
ch_hi = (g_hi ^ (e_hi & (f_hi ^ g_hi))) >>> 0;
ch_lo = (g_lo ^ (e_lo & (f_lo ^ g_lo))) >>> 0;
// Sum0(a) = ROTR 28(a) ^ ROTR 34(a) ^ ROTR 39(a)
s0_hi = (
((a_hi >>> 28) | (a_lo << 4)) ^ // ROTR 28
((a_lo >>> 2) | (a_hi << 30)) ^ // ROTR 34/(swap + ROTR 2)
((a_lo >>> 7) | (a_hi << 25))) >>> 0; // ROTR 39/(swap + ROTR 7)
s0_lo = (
((a_hi << 4) | (a_lo >>> 28)) ^ // ROTR 28
((a_lo << 30) | (a_hi >>> 2)) ^ // ROTR 34/(swap + ROTR 2)
((a_lo << 25) | (a_hi >>> 7))) >>> 0; // ROTR 39/(swap + ROTR 7)
// Maj(a, b, c) (optimized the same way as SHA-1)
maj_hi = ((a_hi & b_hi) | (c_hi & (a_hi ^ b_hi))) >>> 0;
maj_lo = ((a_lo & b_lo) | (c_lo & (a_lo ^ b_lo))) >>> 0;
// main algorithm
// t1 = (h + s1 + ch + _k[i] + _w[i]) modulo 2^64 (carry lo overflow)
lo = (h_lo + s1_lo + ch_lo + _k[i][1] + w[i][1]);
t1_hi = (h_hi + s1_hi + ch_hi + _k[i][0] + w[i][0] +
((lo / 0x100000000) >>> 0)) >>> 0;
t1_lo = lo >>> 0;
// t2 = s0 + maj modulo 2^64 (carry lo overflow)
lo = s0_lo + maj_lo;
t2_hi = (s0_hi + maj_hi + ((lo / 0x100000000) >>> 0)) >>> 0;
t2_lo = lo >>> 0;
h_hi = g_hi;
h_lo = g_lo;
g_hi = f_hi;
g_lo = f_lo;
f_hi = e_hi;
f_lo = e_lo;
// e = (d + t1) modulo 2^64 (carry lo overflow)
lo = d_lo + t1_lo;
e_hi = (d_hi + t1_hi + ((lo / 0x100000000) >>> 0)) >>> 0;
e_lo = lo >>> 0;
d_hi = c_hi;
d_lo = c_lo;
c_hi = b_hi;
c_lo = b_lo;
b_hi = a_hi;
b_lo = a_lo;
// a = (t1 + t2) modulo 2^64 (carry lo overflow)
lo = t1_lo + t2_lo;
a_hi = (t1_hi + t2_hi + ((lo / 0x100000000) >>> 0)) >>> 0;
a_lo = lo >>> 0;
}
// update hash state (additional modulo 2^64)
lo = s[0][1] + a_lo;
s[0][0] = (s[0][0] + a_hi + ((lo / 0x100000000) >>> 0)) >>> 0;
s[0][1] = lo >>> 0;
lo = s[1][1] + b_lo;
s[1][0] = (s[1][0] + b_hi + ((lo / 0x100000000) >>> 0)) >>> 0;
s[1][1] = lo >>> 0;
lo = s[2][1] + c_lo;
s[2][0] = (s[2][0] + c_hi + ((lo / 0x100000000) >>> 0)) >>> 0;
s[2][1] = lo >>> 0;
lo = s[3][1] + d_lo;
s[3][0] = (s[3][0] + d_hi + ((lo / 0x100000000) >>> 0)) >>> 0;
s[3][1] = lo >>> 0;
lo = s[4][1] + e_lo;
s[4][0] = (s[4][0] + e_hi + ((lo / 0x100000000) >>> 0)) >>> 0;
s[4][1] = lo >>> 0;
lo = s[5][1] + f_lo;
s[5][0] = (s[5][0] + f_hi + ((lo / 0x100000000) >>> 0)) >>> 0;
s[5][1] = lo >>> 0;
lo = s[6][1] + g_lo;
s[6][0] = (s[6][0] + g_hi + ((lo / 0x100000000) >>> 0)) >>> 0;
s[6][1] = lo >>> 0;
lo = s[7][1] + h_lo;
s[7][0] = (s[7][0] + h_hi + ((lo / 0x100000000) >>> 0)) >>> 0;
s[7][1] = lo >>> 0;
len -= 128;
}
}
function randomBytes(length) {
if (isNaN(length) || length <= 0) {
throw errCode(new Error('random bytes length must be a Number bigger than 0'), 'ERR_INVALID_LENGTH');
}
return utils$1.randomBytes(length);
}
// Convert a PKCS#1 in ASN1 DER format to a JWK key
function pkcs1ToJwk(bytes) {
const asn1 = forge$m.asn1.fromDer(toString$3(bytes, 'ascii'));
const privateKey = forge$m.pki.privateKeyFromAsn1(asn1);
// https://tools.ietf.org/html/rfc7518#section-6.3.1
return {
kty: 'RSA',
n: bigIntegerToUintBase64url(privateKey.n),
e: bigIntegerToUintBase64url(privateKey.e),
d: bigIntegerToUintBase64url(privateKey.d),
p: bigIntegerToUintBase64url(privateKey.p),
q: bigIntegerToUintBase64url(privateKey.q),
dp: bigIntegerToUintBase64url(privateKey.dP),
dq: bigIntegerToUintBase64url(privateKey.dQ),
qi: bigIntegerToUintBase64url(privateKey.qInv),
alg: 'RS256'
};
}
// Convert a JWK key into PKCS#1 in ASN1 DER format
function jwkToPkcs1(jwk) {
if (jwk.n == null || jwk.e == null || jwk.d == null || jwk.p == null || jwk.q == null || jwk.dp == null || jwk.dq == null || jwk.qi == null) {
throw errCode(new Error('JWK was missing components'), 'ERR_INVALID_PARAMETERS');
}
const asn1 = forge$m.pki.privateKeyToAsn1({
n: base64urlToBigInteger(jwk.n),
e: base64urlToBigInteger(jwk.e),
d: base64urlToBigInteger(jwk.d),
p: base64urlToBigInteger(jwk.p),
q: base64urlToBigInteger(jwk.q),
dP: base64urlToBigInteger(jwk.dp),
dQ: base64urlToBigInteger(jwk.dq),
qInv: base64urlToBigInteger(jwk.qi)
});
return fromString$1(forge$m.asn1.toDer(asn1).getBytes(), 'ascii');
}
// Convert a PKCIX in ASN1 DER format to a JWK key
function pkixToJwk(bytes) {
const asn1 = forge$m.asn1.fromDer(toString$3(bytes, 'ascii'));
const publicKey = forge$m.pki.publicKeyFromAsn1(asn1);
return {
kty: 'RSA',
n: bigIntegerToUintBase64url(publicKey.n),
e: bigIntegerToUintBase64url(publicKey.e)
};
}
// Convert a JWK key to PKCIX in ASN1 DER format
function jwkToPkix(jwk) {
if (jwk.n == null || jwk.e == null) {
throw errCode(new Error('JWK was missing components'), 'ERR_INVALID_PARAMETERS');
}
const asn1 = forge$m.pki.publicKeyToAsn1({
n: base64urlToBigInteger(jwk.n),
e: base64urlToBigInteger(jwk.e)
});
return fromString$1(forge$m.asn1.toDer(asn1).getBytes(), 'ascii');
}
function convert(key, types) {
return types.map(t => base64urlToBigInteger(key[t]));
}
function jwk2priv(key) {
return forge$m.pki.setRsaPrivateKey(...convert(key, ['n', 'e', 'd', 'p', 'q', 'dp', 'dq', 'qi']));
}
function jwk2pub(key) {
return forge$m.pki.setRsaPublicKey(...convert(key, ['n', 'e']));
}
async function generateKey$2(bits) {
const pair = await webcrypto.get().subtle.generateKey({
name: 'RSASSA-PKCS1-v1_5',
modulusLength: bits,
publicExponent: new Uint8Array([0x01, 0x00, 0x01]),
hash: { name: 'SHA-256' }
}, true, ['sign', 'verify']);
const keys = await exportKey(pair);
return {
privateKey: keys[0],
publicKey: keys[1]
};
}
// Takes a jwk key
async function unmarshalPrivateKey$1(key) {
const privateKey = await webcrypto.get().subtle.importKey('jwk', key, {
name: 'RSASSA-PKCS1-v1_5',
hash: { name: 'SHA-256' }
}, true, ['sign']);
const pair = [
privateKey,
await derivePublicFromPrivate(key)
];
const keys = await exportKey({
privateKey: pair[0],
publicKey: pair[1]
});
return {
privateKey: keys[0],
publicKey: keys[1]
};
}
async function hashAndSign$2(key, msg) {
const privateKey = await webcrypto.get().subtle.importKey('jwk', key, {
name: 'RSASSA-PKCS1-v1_5',
hash: { name: 'SHA-256' }
}, false, ['sign']);
const sig = await webcrypto.get().subtle.sign({ name: 'RSASSA-PKCS1-v1_5' }, privateKey, Uint8Array.from(msg));
return new Uint8Array(sig, 0, sig.byteLength);
}
async function hashAndVerify$2(key, sig, msg) {
const publicKey = await webcrypto.get().subtle.importKey('jwk', key, {
name: 'RSASSA-PKCS1-v1_5',
hash: { name: 'SHA-256' }
}, false, ['verify']);
return await webcrypto.get().subtle.verify({ name: 'RSASSA-PKCS1-v1_5' }, publicKey, sig, msg);
}
async function exportKey(pair) {
if (pair.privateKey == null || pair.publicKey == null) {
throw errCode(new Error('Private and public key are required'), 'ERR_INVALID_PARAMETERS');
}
return await Promise.all([
webcrypto.get().subtle.exportKey('jwk', pair.privateKey),
webcrypto.get().subtle.exportKey('jwk', pair.publicKey)
]);
}
async function derivePublicFromPrivate(jwKey) {
return await webcrypto.get().subtle.importKey('jwk', {
kty: jwKey.kty,
n: jwKey.n,
e: jwKey.e
}, {
name: 'RSASSA-PKCS1-v1_5',
hash: { name: 'SHA-256' }
}, true, ['verify']);
}
/*
RSA encryption/decryption for the browser with webcrypto workaround
"bloody dark magic. webcrypto's why."
Explanation:
- Convert JWK to nodeForge
- Convert msg Uint8Array to nodeForge buffer: ByteBuffer is a "binary-string backed buffer", so let's make our Uint8Array a binary string
- Convert resulting nodeForge buffer to Uint8Array: it returns a binary string, turn that into a Uint8Array
*/
function convertKey(key, pub, msg, handle) {
const fkey = pub ? jwk2pub(key) : jwk2priv(key);
const fmsg = toString$3(Uint8Array.from(msg), 'ascii');
const fomsg = handle(fmsg, fkey);
return fromString$1(fomsg, 'ascii');
}
function encrypt(key, msg) {
return convertKey(key, true, msg, (msg, key) => key.encrypt(msg));
}
function decrypt(key, msg) {
return convertKey(key, false, msg, (msg, key) => key.decrypt(msg));
}
/**
* Exports the given PrivateKey as a base64 encoded string.
* The PrivateKey is encrypted via a password derived PBKDF2 key
* leveraging the aes-gcm cipher algorithm.
*/
async function exporter(privateKey, password) {
const cipher = create$2();
const encryptedKey = await cipher.encrypt(privateKey, password);
return base64$2.encode(encryptedKey);
}
class RsaPublicKey {
constructor(key) {
this._key = key;
}
async verify(data, sig) {
return await hashAndVerify$2(this._key, sig, data);
}
marshal() {
return jwkToPkix(this._key);
}
get bytes() {
return PublicKey.encode({
Type: KeyType.RSA,
Data: this.marshal()
}).subarray();
}
encrypt(bytes) {
return encrypt(this._key, bytes);
}
equals(key) {
return equals(this.bytes, key.bytes);
}
async hash() {
const { bytes } = await sha256$1.digest(this.bytes);
return bytes;
}
}
class RsaPrivateKey {
constructor(key, publicKey) {
this._key = key;
this._publicKey = publicKey;
}
genSecret() {
return randomBytes(16);
}
async sign(message) {
return await hashAndSign$2(this._key, message);
}
get public() {
if (this._publicKey == null) {
throw errCode(new Error('public key not provided'), 'ERR_PUBKEY_NOT_PROVIDED');
}
return new RsaPublicKey(this._publicKey);
}
decrypt(bytes) {
return decrypt(this._key, bytes);
}
marshal() {
return jwkToPkcs1(this._key);
}
get bytes() {
return PrivateKey.encode({
Type: KeyType.RSA,
Data: this.marshal()
}).subarray();
}
equals(key) {
return equals(this.bytes, key.bytes);
}
async hash() {
const { bytes } = await sha256$1.digest(this.bytes);
return bytes;
}
/**
* Gets the ID of the key.
*
* The key id is the base58 encoding of the SHA-256 multihash of its public key.
* The public key is a protobuf encoding containing a type and the DER encoding
* of the PKCS SubjectPublicKeyInfo.
*/
async id() {
const hash = await this.public.hash();
return toString$3(hash, 'base58btc');
}
/**
* Exports the key into a password protected PEM format
*/
async export(password, format = 'pkcs-8') {
if (format === 'pkcs-8') {
const buffer = new forge$m.util.ByteBuffer(this.marshal());
const asn1 = forge$m.asn1.fromDer(buffer);
const privateKey = forge$m.pki.privateKeyFromAsn1(asn1);
const options = {
algorithm: 'aes256',
count: 10000,
saltSize: 128 / 8,
prfAlgorithm: 'sha512'
};
return forge$m.pki.encryptRsaPrivateKey(privateKey, password, options);
}
else if (format === 'libp2p-key') {
return await exporter(this.bytes, password);
}
else {
throw errCode(new Error(`export format '${format}' is not supported`), 'ERR_INVALID_EXPORT_FORMAT');
}
}
}
async function unmarshalRsaPrivateKey(bytes) {
const jwk = pkcs1ToJwk(bytes);
const keys = await unmarshalPrivateKey$1(jwk);
return new RsaPrivateKey(keys.privateKey, keys.publicKey);
}
function unmarshalRsaPublicKey(bytes) {
const jwk = pkixToJwk(bytes);
return new RsaPublicKey(jwk);
}
async function fromJwk(jwk) {
const keys = await unmarshalPrivateKey$1(jwk);
return new RsaPrivateKey(keys.privateKey, keys.publicKey);
}
async function generateKeyPair$2(bits) {
const keys = await generateKey$2(bits);
return new RsaPrivateKey(keys.privateKey, keys.publicKey);
}
var RSA = /*#__PURE__*/Object.freeze({
__proto__: null,
RsaPublicKey: RsaPublicKey,
RsaPrivateKey: RsaPrivateKey,
unmarshalRsaPrivateKey: unmarshalRsaPrivateKey,
unmarshalRsaPublicKey: unmarshalRsaPublicKey,
fromJwk: fromJwk,
generateKeyPair: generateKeyPair$2
});
/*! noble-ed25519 - MIT License (c) 2019 Paul Miller (paulmillr.com) */
const _0n = BigInt(0);
const _1n = BigInt(1);
const _2n = BigInt(2);
const CU_O = BigInt('7237005577332262213973186563042994240857116359379907606001950938285454250989');
const CURVE = Object.freeze({
a: BigInt(-1),
d: BigInt('37095705934669439343138083508754565189542113879843219016388785533085940283555'),
P: BigInt('57896044618658097711785492504343953926634992332820282019728792003956564819949'),
l: CU_O,
n: CU_O,
h: BigInt(8),
Gx: BigInt('15112221349535400772501151409588531511454012693041857206046113283949847762202'),
Gy: BigInt('46316835694926478169428394003475163141307993866256225615783033603165251855960'),
});
const POW_2_256 = BigInt('0x10000000000000000000000000000000000000000000000000000000000000000');
const SQRT_M1 = BigInt('19681161376707505956807079304988542015446066515923890162744021073123829784752');
BigInt('6853475219497561581579357271197624642482790079785650197046958215289687604742');
const SQRT_AD_MINUS_ONE = BigInt('25063068953384623474111414158702152701244531502492656460079210482610430750235');
const INVSQRT_A_MINUS_D = BigInt('54469307008909316920995813868745141605393597292927456921205312896311721017578');
const ONE_MINUS_D_SQ = BigInt('1159843021668779879193775521855586647937357759715417654439879720876111806838');
const D_MINUS_ONE_SQ = BigInt('40440834346308536858101042469323190826248399146238708352240133220865137265952');
class ExtendedPoint {
constructor(x, y, z, t) {
this.x = x;
this.y = y;
this.z = z;
this.t = t;
}
static fromAffine(p) {
if (!(p instanceof Point)) {
throw new TypeError('ExtendedPoint#fromAffine: expected Point');
}
if (p.equals(Point.ZERO))
return ExtendedPoint.ZERO;
return new ExtendedPoint(p.x, p.y, _1n, mod(p.x * p.y));
}
static toAffineBatch(points) {
const toInv = invertBatch(points.map((p) => p.z));
return points.map((p, i) => p.toAffine(toInv[i]));
}
static normalizeZ(points) {
return this.toAffineBatch(points).map(this.fromAffine);
}
equals(other) {
assertExtPoint(other);
const { x: X1, y: Y1, z: Z1 } = this;
const { x: X2, y: Y2, z: Z2 } = other;
const X1Z2 = mod(X1 * Z2);
const X2Z1 = mod(X2 * Z1);
const Y1Z2 = mod(Y1 * Z2);
const Y2Z1 = mod(Y2 * Z1);
return X1Z2 === X2Z1 && Y1Z2 === Y2Z1;
}
negate() {
return new ExtendedPoint(mod(-this.x), this.y, this.z, mod(-this.t));
}
double() {
const { x: X1, y: Y1, z: Z1 } = this;
const { a } = CURVE;
const A = mod(X1 * X1);
const B = mod(Y1 * Y1);
const C = mod(_2n * mod(Z1 * Z1));
const D = mod(a * A);
const x1y1 = X1 + Y1;
const E = mod(mod(x1y1 * x1y1) - A - B);
const G = D + B;
const F = G - C;
const H = D - B;
const X3 = mod(E * F);
const Y3 = mod(G * H);
const T3 = mod(E * H);
const Z3 = mod(F * G);
return new ExtendedPoint(X3, Y3, Z3, T3);
}
add(other) {
assertExtPoint(other);
const { x: X1, y: Y1, z: Z1, t: T1 } = this;
const { x: X2, y: Y2, z: Z2, t: T2 } = other;
const A = mod((Y1 - X1) * (Y2 + X2));
const B = mod((Y1 + X1) * (Y2 - X2));
const F = mod(B - A);
if (F === _0n)
return this.double();
const C = mod(Z1 * _2n * T2);
const D = mod(T1 * _2n * Z2);
const E = D + C;
const G = B + A;
const H = D - C;
const X3 = mod(E * F);
const Y3 = mod(G * H);
const T3 = mod(E * H);
const Z3 = mod(F * G);
return new ExtendedPoint(X3, Y3, Z3, T3);
}
subtract(other) {
return this.add(other.negate());
}
precomputeWindow(W) {
const windows = 1 + 256 / W;
const points = [];
let p = this;
let base = p;
for (let window = 0; window < windows; window++) {
base = p;
points.push(base);
for (let i = 1; i < 2 ** (W - 1); i++) {
base = base.add(p);
points.push(base);
}
p = base.double();
}
return points;
}
wNAF(n, affinePoint) {
if (!affinePoint && this.equals(ExtendedPoint.BASE))
affinePoint = Point.BASE;
const W = (affinePoint && affinePoint._WINDOW_SIZE) || 1;
if (256 % W) {
throw new Error('Point#wNAF: Invalid precomputation window, must be power of 2');
}
let precomputes = affinePoint && pointPrecomputes.get(affinePoint);
if (!precomputes) {
precomputes = this.precomputeWindow(W);
if (affinePoint && W !== 1) {
precomputes = ExtendedPoint.normalizeZ(precomputes);
pointPrecomputes.set(affinePoint, precomputes);
}
}
let p = ExtendedPoint.ZERO;
let f = ExtendedPoint.ZERO;
const windows = 1 + 256 / W;
const windowSize = 2 ** (W - 1);
const mask = BigInt(2 ** W - 1);
const maxNumber = 2 ** W;
const shiftBy = BigInt(W);
for (let window = 0; window < windows; window++) {
const offset = window * windowSize;
let wbits = Number(n & mask);
n >>= shiftBy;
if (wbits > windowSize) {
wbits -= maxNumber;
n += _1n;
}
if (wbits === 0) {
let pr = precomputes[offset];
if (window % 2)
pr = pr.negate();
f = f.add(pr);
}
else {
let cached = precomputes[offset + Math.abs(wbits) - 1];
if (wbits < 0)
cached = cached.negate();
p = p.add(cached);
}
}
return ExtendedPoint.normalizeZ([p, f])[0];
}
multiply(scalar, affinePoint) {
return this.wNAF(normalizeScalar(scalar, CURVE.l), affinePoint);
}
multiplyUnsafe(scalar) {
let n = normalizeScalar(scalar, CURVE.l, false);
const G = ExtendedPoint.BASE;
const P0 = ExtendedPoint.ZERO;
if (n === _0n)
return P0;
if (this.equals(P0) || n === _1n)
return this;
if (this.equals(G))
return this.wNAF(n);
let p = P0;
let d = this;
while (n > _0n) {
if (n & _1n)
p = p.add(d);
d = d.double();
n >>= _1n;
}
return p;
}
isSmallOrder() {
return this.multiplyUnsafe(CURVE.h).equals(ExtendedPoint.ZERO);
}
isTorsionFree() {
return this.multiplyUnsafe(CURVE.l).equals(ExtendedPoint.ZERO);
}
toAffine(invZ = invert(this.z)) {
const { x, y, z } = this;
const ax = mod(x * invZ);
const ay = mod(y * invZ);
const zz = mod(z * invZ);
if (zz !== _1n)
throw new Error('invZ was invalid');
return new Point(ax, ay);
}
fromRistrettoBytes() {
legacyRist();
}
toRistrettoBytes() {
legacyRist();
}
fromRistrettoHash() {
legacyRist();
}
}
ExtendedPoint.BASE = new ExtendedPoint(CURVE.Gx, CURVE.Gy, _1n, mod(CURVE.Gx * CURVE.Gy));
ExtendedPoint.ZERO = new ExtendedPoint(_0n, _1n, _1n, _0n);
function assertExtPoint(other) {
if (!(other instanceof ExtendedPoint))
throw new TypeError('ExtendedPoint expected');
}
function assertRstPoint(other) {
if (!(other instanceof RistrettoPoint))
throw new TypeError('RistrettoPoint expected');
}
function legacyRist() {
throw new Error('Legacy method: switch to RistrettoPoint');
}
class RistrettoPoint {
constructor(ep) {
this.ep = ep;
}
static calcElligatorRistrettoMap(r0) {
const { d } = CURVE;
const r = mod(SQRT_M1 * r0 * r0);
const Ns = mod((r + _1n) * ONE_MINUS_D_SQ);
let c = BigInt(-1);
const D = mod((c - d * r) * mod(r + d));
let { isValid: Ns_D_is_sq, value: s } = uvRatio(Ns, D);
let s_ = mod(s * r0);
if (!edIsNegative(s_))
s_ = mod(-s_);
if (!Ns_D_is_sq)
s = s_;
if (!Ns_D_is_sq)
c = r;
const Nt = mod(c * (r - _1n) * D_MINUS_ONE_SQ - D);
const s2 = s * s;
const W0 = mod((s + s) * D);
const W1 = mod(Nt * SQRT_AD_MINUS_ONE);
const W2 = mod(_1n - s2);
const W3 = mod(_1n + s2);
return new ExtendedPoint(mod(W0 * W3), mod(W2 * W1), mod(W1 * W3), mod(W0 * W2));
}
static hashToCurve(hex) {
hex = ensureBytes(hex, 64);
const r1 = bytes255ToNumberLE(hex.slice(0, 32));
const R1 = this.calcElligatorRistrettoMap(r1);
const r2 = bytes255ToNumberLE(hex.slice(32, 64));
const R2 = this.calcElligatorRistrettoMap(r2);
return new RistrettoPoint(R1.add(R2));
}
static fromHex(hex) {
hex = ensureBytes(hex, 32);
const { a, d } = CURVE;
const emsg = 'RistrettoPoint.fromHex: the hex is not valid encoding of RistrettoPoint';
const s = bytes255ToNumberLE(hex);
if (!equalBytes(numberTo32BytesLE(s), hex) || edIsNegative(s))
throw new Error(emsg);
const s2 = mod(s * s);
const u1 = mod(_1n + a * s2);
const u2 = mod(_1n - a * s2);
const u1_2 = mod(u1 * u1);
const u2_2 = mod(u2 * u2);
const v = mod(a * d * u1_2 - u2_2);
const { isValid, value: I } = invertSqrt(mod(v * u2_2));
const Dx = mod(I * u2);
const Dy = mod(I * Dx * v);
let x = mod((s + s) * Dx);
if (edIsNegative(x))
x = mod(-x);
const y = mod(u1 * Dy);
const t = mod(x * y);
if (!isValid || edIsNegative(t) || y === _0n)
throw new Error(emsg);
return new RistrettoPoint(new ExtendedPoint(x, y, _1n, t));
}
toRawBytes() {
let { x, y, z, t } = this.ep;
const u1 = mod(mod(z + y) * mod(z - y));
const u2 = mod(x * y);
const u2sq = mod(u2 * u2);
const { value: invsqrt } = invertSqrt(mod(u1 * u2sq));
const D1 = mod(invsqrt * u1);
const D2 = mod(invsqrt * u2);
const zInv = mod(D1 * D2 * t);
let D;
if (edIsNegative(t * zInv)) {
let _x = mod(y * SQRT_M1);
let _y = mod(x * SQRT_M1);
x = _x;
y = _y;
D = mod(D1 * INVSQRT_A_MINUS_D);
}
else {
D = D2;
}
if (edIsNegative(x * zInv))
y = mod(-y);
let s = mod((z - y) * D);
if (edIsNegative(s))
s = mod(-s);
return numberTo32BytesLE(s);
}
toHex() {
return bytesToHex(this.toRawBytes());
}
toString() {
return this.toHex();
}
equals(other) {
assertRstPoint(other);
const a = this.ep;
const b = other.ep;
const one = mod(a.x * b.y) === mod(a.y * b.x);
const two = mod(a.y * b.y) === mod(a.x * b.x);
return one || two;
}
add(other) {
assertRstPoint(other);
return new RistrettoPoint(this.ep.add(other.ep));
}
subtract(other) {
assertRstPoint(other);
return new RistrettoPoint(this.ep.subtract(other.ep));
}
multiply(scalar) {
return new RistrettoPoint(this.ep.multiply(scalar));
}
multiplyUnsafe(scalar) {
return new RistrettoPoint(this.ep.multiplyUnsafe(scalar));
}
}
RistrettoPoint.BASE = new RistrettoPoint(ExtendedPoint.BASE);
RistrettoPoint.ZERO = new RistrettoPoint(ExtendedPoint.ZERO);
const pointPrecomputes = new WeakMap();
class Point {
constructor(x, y) {
this.x = x;
this.y = y;
}
_setWindowSize(windowSize) {
this._WINDOW_SIZE = windowSize;
pointPrecomputes.delete(this);
}
static fromHex(hex, strict = true) {
const { d, P } = CURVE;
hex = ensureBytes(hex, 32);
const normed = hex.slice();
normed[31] = hex[31] & ~0x80;
const y = bytesToNumberLE(normed);
if (strict && y >= P)
throw new Error('Expected 0 < hex < P');
if (!strict && y >= POW_2_256)
throw new Error('Expected 0 < hex < 2**256');
const y2 = mod(y * y);
const u = mod(y2 - _1n);
const v = mod(d * y2 + _1n);
let { isValid, value: x } = uvRatio(u, v);
if (!isValid)
throw new Error('Point.fromHex: invalid y coordinate');
const isXOdd = (x & _1n) === _1n;
const isLastByteOdd = (hex[31] & 0x80) !== 0;
if (isLastByteOdd !== isXOdd) {
x = mod(-x);
}
return new Point(x, y);
}
static async fromPrivateKey(privateKey) {
return (await getExtendedPublicKey(privateKey)).point;
}
toRawBytes() {
const bytes = numberTo32BytesLE(this.y);
bytes[31] |= this.x & _1n ? 0x80 : 0;
return bytes;
}
toHex() {
return bytesToHex(this.toRawBytes());
}
toX25519() {
const { y } = this;
const u = mod((_1n + y) * invert(_1n - y));
return numberTo32BytesLE(u);
}
isTorsionFree() {
return ExtendedPoint.fromAffine(this).isTorsionFree();
}
equals(other) {
return this.x === other.x && this.y === other.y;
}
negate() {
return new Point(mod(-this.x), this.y);
}
add(other) {
return ExtendedPoint.fromAffine(this).add(ExtendedPoint.fromAffine(other)).toAffine();
}
subtract(other) {
return this.add(other.negate());
}
multiply(scalar) {
return ExtendedPoint.fromAffine(this).multiply(scalar, this).toAffine();
}
}
Point.BASE = new Point(CURVE.Gx, CURVE.Gy);
Point.ZERO = new Point(_0n, _1n);
class Signature {
constructor(r, s) {
this.r = r;
this.s = s;
this.assertValidity();
}
static fromHex(hex) {
const bytes = ensureBytes(hex, 64);
const r = Point.fromHex(bytes.slice(0, 32), false);
const s = bytesToNumberLE(bytes.slice(32, 64));
return new Signature(r, s);
}
assertValidity() {
const { r, s } = this;
if (!(r instanceof Point))
throw new Error('Expected Point instance');
normalizeScalar(s, CURVE.l, false);
return this;
}
toRawBytes() {
const u8 = new Uint8Array(64);
u8.set(this.r.toRawBytes());
u8.set(numberTo32BytesLE(this.s), 32);
return u8;
}
toHex() {
return bytesToHex(this.toRawBytes());
}
}
function concatBytes(...arrays) {
if (!arrays.every((a) => a instanceof Uint8Array))
throw new Error('Expected Uint8Array list');
if (arrays.length === 1)
return arrays[0];
const length = arrays.reduce((a, arr) => a + arr.length, 0);
const result = new Uint8Array(length);
for (let i = 0, pad = 0; i < arrays.length; i++) {
const arr = arrays[i];
result.set(arr, pad);
pad += arr.length;
}
return result;
}
const hexes = Array.from({ length: 256 }, (v, i) => i.toString(16).padStart(2, '0'));
function bytesToHex(uint8a) {
if (!(uint8a instanceof Uint8Array))
throw new Error('Uint8Array expected');
let hex = '';
for (let i = 0; i < uint8a.length; i++) {
hex += hexes[uint8a[i]];
}
return hex;
}
function hexToBytes(hex) {
if (typeof hex !== 'string') {
throw new TypeError('hexToBytes: expected string, got ' + typeof hex);
}
if (hex.length % 2)
throw new Error('hexToBytes: received invalid unpadded hex');
const array = new Uint8Array(hex.length / 2);
for (let i = 0; i < array.length; i++) {
const j = i * 2;
const hexByte = hex.slice(j, j + 2);
const byte = Number.parseInt(hexByte, 16);
if (Number.isNaN(byte) || byte < 0)
throw new Error('Invalid byte sequence');
array[i] = byte;
}
return array;
}
function numberTo32BytesBE(num) {
const length = 32;
const hex = num.toString(16).padStart(length * 2, '0');
return hexToBytes(hex);
}
function numberTo32BytesLE(num) {
return numberTo32BytesBE(num).reverse();
}
function edIsNegative(num) {
return (mod(num) & _1n) === _1n;
}
function bytesToNumberLE(uint8a) {
if (!(uint8a instanceof Uint8Array))
throw new Error('Expected Uint8Array');
return BigInt('0x' + bytesToHex(Uint8Array.from(uint8a).reverse()));
}
const MAX_255B = BigInt('0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff');
function bytes255ToNumberLE(bytes) {
return mod(bytesToNumberLE(bytes) & MAX_255B);
}
function mod(a, b = CURVE.P) {
const res = a % b;
return res >= _0n ? res : b + res;
}
function invert(number, modulo = CURVE.P) {
if (number === _0n || modulo <= _0n) {
throw new Error(`invert: expected positive integers, got n=${number} mod=${modulo}`);
}
let a = mod(number, modulo);
let b = modulo;
let x = _0n, u = _1n;
while (a !== _0n) {
const q = b / a;
const r = b % a;
const m = x - u * q;
b = a, a = r, x = u, u = m;
}
const gcd = b;
if (gcd !== _1n)
throw new Error('invert: does not exist');
return mod(x, modulo);
}
function invertBatch(nums, p = CURVE.P) {
const tmp = new Array(nums.length);
const lastMultiplied = nums.reduce((acc, num, i) => {
if (num === _0n)
return acc;
tmp[i] = acc;
return mod(acc * num, p);
}, _1n);
const inverted = invert(lastMultiplied, p);
nums.reduceRight((acc, num, i) => {
if (num === _0n)
return acc;
tmp[i] = mod(acc * tmp[i], p);
return mod(acc * num, p);
}, inverted);
return tmp;
}
function pow2(x, power) {
const { P } = CURVE;
let res = x;
while (power-- > _0n) {
res *= res;
res %= P;
}
return res;
}
function pow_2_252_3(x) {
const { P } = CURVE;
const _5n = BigInt(5);
const _10n = BigInt(10);
const _20n = BigInt(20);
const _40n = BigInt(40);
const _80n = BigInt(80);
const x2 = (x * x) % P;
const b2 = (x2 * x) % P;
const b4 = (pow2(b2, _2n) * b2) % P;
const b5 = (pow2(b4, _1n) * x) % P;
const b10 = (pow2(b5, _5n) * b5) % P;
const b20 = (pow2(b10, _10n) * b10) % P;
const b40 = (pow2(b20, _20n) * b20) % P;
const b80 = (pow2(b40, _40n) * b40) % P;
const b160 = (pow2(b80, _80n) * b80) % P;
const b240 = (pow2(b160, _80n) * b80) % P;
const b250 = (pow2(b240, _10n) * b10) % P;
const pow_p_5_8 = (pow2(b250, _2n) * x) % P;
return { pow_p_5_8, b2 };
}
function uvRatio(u, v) {
const v3 = mod(v * v * v);
const v7 = mod(v3 * v3 * v);
const pow = pow_2_252_3(u * v7).pow_p_5_8;
let x = mod(u * v3 * pow);
const vx2 = mod(v * x * x);
const root1 = x;
const root2 = mod(x * SQRT_M1);
const useRoot1 = vx2 === u;
const useRoot2 = vx2 === mod(-u);
const noRoot = vx2 === mod(-u * SQRT_M1);
if (useRoot1)
x = root1;
if (useRoot2 || noRoot)
x = root2;
if (edIsNegative(x))
x = mod(-x);
return { isValid: useRoot1 || useRoot2, value: x };
}
function invertSqrt(number) {
return uvRatio(_1n, number);
}
function modlLE(hash) {
return mod(bytesToNumberLE(hash), CURVE.l);
}
function equalBytes(b1, b2) {
if (b1.length !== b2.length) {
return false;
}
for (let i = 0; i < b1.length; i++) {
if (b1[i] !== b2[i]) {
return false;
}
}
return true;
}
function ensureBytes(hex, expectedLength) {
const bytes = hex instanceof Uint8Array ? Uint8Array.from(hex) : hexToBytes(hex);
if (typeof expectedLength === 'number' && bytes.length !== expectedLength)
throw new Error(`Expected ${expectedLength} bytes`);
return bytes;
}
function normalizeScalar(num, max, strict = true) {
if (!max)
throw new TypeError('Specify max value');
if (typeof num === 'number' && Number.isSafeInteger(num))
num = BigInt(num);
if (typeof num === 'bigint' && num < max) {
if (strict) {
if (_0n < num)
return num;
}
else {
if (_0n <= num)
return num;
}
}
throw new TypeError('Expected valid scalar: 0 < scalar < max');
}
function adjustBytes25519(bytes) {
bytes[0] &= 248;
bytes[31] &= 127;
bytes[31] |= 64;
return bytes;
}
function checkPrivateKey(key) {
key =
typeof key === 'bigint' || typeof key === 'number'
? numberTo32BytesBE(normalizeScalar(key, POW_2_256))
: ensureBytes(key);
if (key.length !== 32)
throw new Error(`Expected 32 bytes`);
return key;
}
function getKeyFromHash(hashed) {
const head = adjustBytes25519(hashed.slice(0, 32));
const prefix = hashed.slice(32, 64);
const scalar = modlLE(head);
const point = Point.BASE.multiply(scalar);
const pointBytes = point.toRawBytes();
return { head, prefix, scalar, point, pointBytes };
}
let _sha512Sync;
async function getExtendedPublicKey(key) {
return getKeyFromHash(await utils.sha512(checkPrivateKey(key)));
}
async function getPublicKey(privateKey) {
return (await getExtendedPublicKey(privateKey)).pointBytes;
}
async function sign$1(message, privateKey) {
message = ensureBytes(message);
const { prefix, scalar, pointBytes } = await getExtendedPublicKey(privateKey);
const r = modlLE(await utils.sha512(prefix, message));
const R = Point.BASE.multiply(r);
const k = modlLE(await utils.sha512(R.toRawBytes(), pointBytes, message));
const s = mod(r + k * scalar, CURVE.l);
return new Signature(R, s).toRawBytes();
}
function prepareVerification(sig, message, publicKey) {
message = ensureBytes(message);
if (!(publicKey instanceof Point))
publicKey = Point.fromHex(publicKey, false);
const { r, s } = sig instanceof Signature ? sig.assertValidity() : Signature.fromHex(sig);
const SB = ExtendedPoint.BASE.multiplyUnsafe(s);
return { r, s, SB, pub: publicKey, msg: message };
}
function finishVerification(publicKey, r, SB, hashed) {
const k = modlLE(hashed);
const kA = ExtendedPoint.fromAffine(publicKey).multiplyUnsafe(k);
const RkA = ExtendedPoint.fromAffine(r).add(kA);
return RkA.subtract(SB).multiplyUnsafe(CURVE.h).equals(ExtendedPoint.ZERO);
}
async function verify(sig, message, publicKey) {
const { r, SB, msg, pub } = prepareVerification(sig, message, publicKey);
const hashed = await utils.sha512(r.toRawBytes(), pub.toRawBytes(), msg);
return finishVerification(pub, r, SB, hashed);
}
Point.BASE._setWindowSize(8);
const crypto$1 = {
node: nodeCrypto$1,
web: typeof self === 'object' && 'crypto' in self ? self.crypto : undefined,
};
const utils = {
bytesToHex,
hexToBytes,
concatBytes,
getExtendedPublicKey,
mod,
invert,
TORSION_SUBGROUP: [
'0100000000000000000000000000000000000000000000000000000000000000',
'c7176a703d4dd84fba3c0b760d10670f2a2053fa2c39ccc64ec7fd7792ac037a',
'0000000000000000000000000000000000000000000000000000000000000080',
'26e8958fc2b227b045c3f489f2ef98f0d5dfac05d3c63339b13802886d53fc05',
'ecffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff7f',
'26e8958fc2b227b045c3f489f2ef98f0d5dfac05d3c63339b13802886d53fc85',
'0000000000000000000000000000000000000000000000000000000000000000',
'c7176a703d4dd84fba3c0b760d10670f2a2053fa2c39ccc64ec7fd7792ac03fa',
],
hashToPrivateScalar: (hash) => {
hash = ensureBytes(hash);
if (hash.length < 40 || hash.length > 1024)
throw new Error('Expected 40-1024 bytes of private key as per FIPS 186');
return mod(bytesToNumberLE(hash), CURVE.l - _1n) + _1n;
},
randomBytes: (bytesLength = 32) => {
if (crypto$1.web) {
return crypto$1.web.getRandomValues(new Uint8Array(bytesLength));
}
else if (crypto$1.node) {
const { randomBytes } = crypto$1.node;
return new Uint8Array(randomBytes(bytesLength).buffer);
}
else {
throw new Error("The environment doesn't have randomBytes function");
}
},
randomPrivateKey: () => {
return utils.randomBytes(32);
},
sha512: async (...messages) => {
const message = concatBytes(...messages);
if (crypto$1.web) {
const buffer = await crypto$1.web.subtle.digest('SHA-512', message.buffer);
return new Uint8Array(buffer);
}
else if (crypto$1.node) {
return Uint8Array.from(crypto$1.node.createHash('sha512').update(message).digest());
}
else {
throw new Error("The environment doesn't have sha512 function");
}
},
precompute(windowSize = 8, point = Point.BASE) {
const cached = point.equals(Point.BASE) ? point : new Point(point.x, point.y);
cached._setWindowSize(windowSize);
cached.multiply(_2n);
return cached;
},
sha512Sync: undefined,
};
Object.defineProperties(utils, {
sha512Sync: {
configurable: false,
get() {
return _sha512Sync;
},
set(val) {
if (!_sha512Sync)
_sha512Sync = val;
},
},
});
const PUBLIC_KEY_BYTE_LENGTH = 32;
const PRIVATE_KEY_BYTE_LENGTH = 64; // private key is actually 32 bytes but for historical reasons we concat private and public keys
const KEYS_BYTE_LENGTH = 32;
async function generateKey$1() {
// the actual private key (32 bytes)
const privateKeyRaw = utils.randomPrivateKey();
const publicKey = await getPublicKey(privateKeyRaw);
// concatenated the public key to the private key
const privateKey = concatKeys(privateKeyRaw, publicKey);
return {
privateKey,
publicKey
};
}
/**
* Generate keypair from a 32 byte uint8array
*/
async function generateKeyFromSeed(seed) {
if (seed.length !== KEYS_BYTE_LENGTH) {
throw new TypeError('"seed" must be 32 bytes in length.');
}
else if (!(seed instanceof Uint8Array)) {
throw new TypeError('"seed" must be a node.js Buffer, or Uint8Array.');
}
// based on node forges algorithm, the seed is used directly as private key
const privateKeyRaw = seed;
const publicKey = await getPublicKey(privateKeyRaw);
const privateKey = concatKeys(privateKeyRaw, publicKey);
return {
privateKey,
publicKey
};
}
async function hashAndSign$1(privateKey, msg) {
const privateKeyRaw = privateKey.slice(0, KEYS_BYTE_LENGTH);
return await sign$1(msg, privateKeyRaw);
}
async function hashAndVerify$1(publicKey, sig, msg) {
return await verify(sig, msg, publicKey);
}
function concatKeys(privateKeyRaw, publicKey) {
const privateKey = new Uint8Array(PRIVATE_KEY_BYTE_LENGTH);
for (let i = 0; i < KEYS_BYTE_LENGTH; i++) {
privateKey[i] = privateKeyRaw[i];
privateKey[KEYS_BYTE_LENGTH + i] = publicKey[i];
}
return privateKey;
}
class Ed25519PublicKey {
constructor(key) {
this._key = ensureKey(key, PUBLIC_KEY_BYTE_LENGTH);
}
async verify(data, sig) {
return await hashAndVerify$1(this._key, sig, data);
}
marshal() {
return this._key;
}
get bytes() {
return PublicKey.encode({
Type: KeyType.Ed25519,
Data: this.marshal()
}).subarray();
}
equals(key) {
return equals(this.bytes, key.bytes);
}
async hash() {
const { bytes } = await sha256$1.digest(this.bytes);
return bytes;
}
}
class Ed25519PrivateKey {
// key - 64 byte Uint8Array containing private key
// publicKey - 32 byte Uint8Array containing public key
constructor(key, publicKey) {
this._key = ensureKey(key, PRIVATE_KEY_BYTE_LENGTH);
this._publicKey = ensureKey(publicKey, PUBLIC_KEY_BYTE_LENGTH);
}
async sign(message) {
return await hashAndSign$1(this._key, message);
}
get public() {
return new Ed25519PublicKey(this._publicKey);
}
marshal() {
return this._key;
}
get bytes() {
return PrivateKey.encode({
Type: KeyType.Ed25519,
Data: this.marshal()
}).subarray();
}
equals(key) {
return equals(this.bytes, key.bytes);
}
async hash() {
const { bytes } = await sha256$1.digest(this.bytes);
return bytes;
}
/**
* Gets the ID of the key.
*
* The key id is the base58 encoding of the identity multihash containing its public key.
* The public key is a protobuf encoding containing a type and the DER encoding
* of the PKCS SubjectPublicKeyInfo.
*
* @returns {Promise<string>}
*/
async id() {
const encoding = await identity.digest(this.public.bytes);
return base58btc.encode(encoding.bytes).substring(1);
}
/**
* Exports the key into a password protected `format`
*/
async export(password, format = 'libp2p-key') {
if (format === 'libp2p-key') {
return await exporter(this.bytes, password);
}
else {
throw errCode(new Error(`export format '${format}' is not supported`), 'ERR_INVALID_EXPORT_FORMAT');
}
}
}
function unmarshalEd25519PrivateKey(bytes) {
// Try the old, redundant public key version
if (bytes.length > PRIVATE_KEY_BYTE_LENGTH) {
bytes = ensureKey(bytes, PRIVATE_KEY_BYTE_LENGTH + PUBLIC_KEY_BYTE_LENGTH);
const privateKeyBytes = bytes.slice(0, PRIVATE_KEY_BYTE_LENGTH);
const publicKeyBytes = bytes.slice(PRIVATE_KEY_BYTE_LENGTH, bytes.length);
return new Ed25519PrivateKey(privateKeyBytes, publicKeyBytes);
}
bytes = ensureKey(bytes, PRIVATE_KEY_BYTE_LENGTH);
const privateKeyBytes = bytes.slice(0, PRIVATE_KEY_BYTE_LENGTH);
const publicKeyBytes = bytes.slice(PUBLIC_KEY_BYTE_LENGTH);
return new Ed25519PrivateKey(privateKeyBytes, publicKeyBytes);
}
function unmarshalEd25519PublicKey(bytes) {
bytes = ensureKey(bytes, PUBLIC_KEY_BYTE_LENGTH);
return new Ed25519PublicKey(bytes);
}
async function generateKeyPair$1() {
const { privateKey, publicKey } = await generateKey$1();
return new Ed25519PrivateKey(privateKey, publicKey);
}
async function generateKeyPairFromSeed(seed) {
const { privateKey, publicKey } = await generateKeyFromSeed(seed);
return new Ed25519PrivateKey(privateKey, publicKey);
}
function ensureKey(key, length) {
key = Uint8Array.from(key ?? []);
if (key.length !== length) {
throw errCode(new Error(`Key must be a Uint8Array of length ${length}, got ${key.length}`), 'ERR_INVALID_KEY_TYPE');
}
return key;
}
var Ed25519 = /*#__PURE__*/Object.freeze({
__proto__: null,
Ed25519PublicKey: Ed25519PublicKey,
Ed25519PrivateKey: Ed25519PrivateKey,
unmarshalEd25519PrivateKey: unmarshalEd25519PrivateKey,
unmarshalEd25519PublicKey: unmarshalEd25519PublicKey,
generateKeyPair: generateKeyPair$1,
generateKeyPairFromSeed: generateKeyPairFromSeed
});
function generateKey() {
return utils$1.randomPrivateKey();
}
/**
* Hash and sign message with private key
*/
async function hashAndSign(key, msg) {
const { digest } = await sha256$1.digest(msg);
try {
return await sign$2(digest, key);
}
catch (err) {
throw errCode(err, 'ERR_INVALID_INPUT');
}
}
/**
* Hash message and verify signature with public key
*/
async function hashAndVerify(key, sig, msg) {
try {
const { digest } = await sha256$1.digest(msg);
return verify$1(sig, digest, key);
}
catch (err) {
throw errCode(err, 'ERR_INVALID_INPUT');
}
}
function compressPublicKey(key) {
const point = Point$1.fromHex(key).toRawBytes(true);
return point;
}
function validatePrivateKey(key) {
try {
getPublicKey$1(key, true);
}
catch (err) {
throw errCode(err, 'ERR_INVALID_PRIVATE_KEY');
}
}
function validatePublicKey(key) {
try {
Point$1.fromHex(key);
}
catch (err) {
throw errCode(err, 'ERR_INVALID_PUBLIC_KEY');
}
}
function computePublicKey(privateKey) {
try {
return getPublicKey$1(privateKey, true);
}
catch (err) {
throw errCode(err, 'ERR_INVALID_PRIVATE_KEY');
}
}
class Secp256k1PublicKey {
constructor(key) {
validatePublicKey(key);
this._key = key;
}
async verify(data, sig) {
return await hashAndVerify(this._key, sig, data);
}
marshal() {
return compressPublicKey(this._key);
}
get bytes() {
return PublicKey.encode({
Type: KeyType.Secp256k1,
Data: this.marshal()
}).subarray();
}
equals(key) {
return equals(this.bytes, key.bytes);
}
async hash() {
const { bytes } = await sha256$1.digest(this.bytes);
return bytes;
}
}
class Secp256k1PrivateKey {
constructor(key, publicKey) {
this._key = key;
this._publicKey = publicKey ?? computePublicKey(key);
validatePrivateKey(this._key);
validatePublicKey(this._publicKey);
}
async sign(message) {
return await hashAndSign(this._key, message);
}
get public() {
return new Secp256k1PublicKey(this._publicKey);
}
marshal() {
return this._key;
}
get bytes() {
return PrivateKey.encode({
Type: KeyType.Secp256k1,
Data: this.marshal()
}).subarray();
}
equals(key) {
return equals(this.bytes, key.bytes);
}
async hash() {
const { bytes } = await sha256$1.digest(this.bytes);
return bytes;
}
/**
* Gets the ID of the key.
*
* The key id is the base58 encoding of the SHA-256 multihash of its public key.
* The public key is a protobuf encoding containing a type and the DER encoding
* of the PKCS SubjectPublicKeyInfo.
*/
async id() {
const hash = await this.public.hash();
return toString$3(hash, 'base58btc');
}
/**
* Exports the key into a password protected `format`
*/
async export(password, format = 'libp2p-key') {
if (format === 'libp2p-key') {
return await exporter(this.bytes, password);
}
else {
throw errCode(new Error(`export format '${format}' is not supported`), 'ERR_INVALID_EXPORT_FORMAT');
}
}
}
function unmarshalSecp256k1PrivateKey(bytes) {
return new Secp256k1PrivateKey(bytes);
}
function unmarshalSecp256k1PublicKey(bytes) {
return new Secp256k1PublicKey(bytes);
}
async function generateKeyPair() {
const privateKeyBytes = await generateKey();
return new Secp256k1PrivateKey(privateKeyBytes);
}
var Secp256k1 = /*#__PURE__*/Object.freeze({
__proto__: null,
Secp256k1PublicKey: Secp256k1PublicKey,
Secp256k1PrivateKey: Secp256k1PrivateKey,
unmarshalSecp256k1PrivateKey: unmarshalSecp256k1PrivateKey,
unmarshalSecp256k1PublicKey: unmarshalSecp256k1PublicKey,
generateKeyPair: generateKeyPair
});
const supportedKeys = {
rsa: RSA,
ed25519: Ed25519,
secp256k1: Secp256k1
};
function unsupportedKey(type) {
const supported = Object.keys(supportedKeys).join(' / ');
return errCode(new Error(`invalid or unsupported key type ${type}. Must be ${supported}`), 'ERR_UNSUPPORTED_KEY_TYPE');
}
function typeToKey(type) {
type = type.toLowerCase();
if (type === 'rsa' || type === 'ed25519' || type === 'secp256k1') {
return supportedKeys[type];
}
throw unsupportedKey(type);
}
// Converts a protobuf serialized public key into its
// representative object
function unmarshalPublicKey(buf) {
const decoded = PublicKey.decode(buf);
const data = decoded.Data;
switch (decoded.Type) {
case KeyType.RSA:
return supportedKeys.rsa.unmarshalRsaPublicKey(data);
case KeyType.Ed25519:
return supportedKeys.ed25519.unmarshalEd25519PublicKey(data);
case KeyType.Secp256k1:
return supportedKeys.secp256k1.unmarshalSecp256k1PublicKey(data);
default:
throw unsupportedKey(decoded.Type);
}
}
// Converts a public key object into a protobuf serialized public key
function marshalPublicKey(key, type) {
type = (type ?? 'rsa').toLowerCase();
typeToKey(type); // check type
return key.bytes;
}
// Converts a protobuf serialized private key into its
// representative object
async function unmarshalPrivateKey(buf) {
const decoded = PrivateKey.decode(buf);
const data = decoded.Data;
switch (decoded.Type) {
case KeyType.RSA:
return await supportedKeys.rsa.unmarshalRsaPrivateKey(data);
case KeyType.Ed25519:
return supportedKeys.ed25519.unmarshalEd25519PrivateKey(data);
case KeyType.Secp256k1:
return supportedKeys.secp256k1.unmarshalSecp256k1PrivateKey(data);
default:
throw unsupportedKey(decoded.Type);
}
}
const symbol$2 = Symbol.for('@libp2p/peer-id');
const baseDecoder = Object
.values(bases)
.map(codec => codec.decoder)
// @ts-expect-error https://github.com/multiformats/js-multiformats/issues/141
.reduce((acc, curr) => acc.or(curr), bases.identity.decoder);
// these values are from https://github.com/multiformats/multicodec/blob/master/table.csv
const LIBP2P_KEY_CODE = 0x72;
const MARSHALLED_ED225519_PUBLIC_KEY_LENGTH = 36;
const MARSHALLED_SECP256K1_PUBLIC_KEY_LENGTH = 37;
class PeerIdImpl {
constructor(init) {
this.type = init.type;
this.multihash = init.multihash;
this.privateKey = init.privateKey;
// mark string cache as non-enumerable
Object.defineProperty(this, 'string', {
enumerable: false,
writable: true
});
}
get [Symbol.toStringTag]() {
return `PeerId(${this.toString()})`;
}
get [symbol$2]() {
return true;
}
toString() {
if (this.string == null) {
this.string = base58btc.encode(this.multihash.bytes).slice(1);
}
return this.string;
}
// return self-describing String representation
// in default format from RFC 0001: https://github.com/libp2p/specs/pull/209
toCID() {
return CID.createV1(LIBP2P_KEY_CODE, this.multihash);
}
toBytes() {
return this.multihash.bytes;
}
/**
* Returns Multiaddr as a JSON encoded object
*/
toJSON() {
return this.toString();
}
/**
* Checks the equality of `this` peer against a given PeerId
*/
equals(id) {
if (id instanceof Uint8Array) {
return equals(this.multihash.bytes, id);
}
else if (typeof id === 'string') {
return peerIdFromString(id).equals(this);
}
else if (id?.multihash?.bytes != null) {
return equals(this.multihash.bytes, id.multihash.bytes);
}
else {
throw new Error('not valid Id');
}
}
}
class RSAPeerIdImpl extends PeerIdImpl {
constructor(init) {
super({ ...init, type: 'RSA' });
this.type = 'RSA';
this.publicKey = init.publicKey;
}
}
class Ed25519PeerIdImpl extends PeerIdImpl {
constructor(init) {
super({ ...init, type: 'Ed25519' });
this.type = 'Ed25519';
this.publicKey = init.multihash.digest;
}
}
class Secp256k1PeerIdImpl extends PeerIdImpl {
constructor(init) {
super({ ...init, type: 'secp256k1' });
this.type = 'secp256k1';
this.publicKey = init.multihash.digest;
}
}
function peerIdFromString(str, decoder) {
if (str.charAt(0) === '1' || str.charAt(0) === 'Q') {
// identity hash ed25519/secp256k1 key or sha2-256 hash of
// rsa public key - base58btc encoded either way
const multihash = decode$3(base58btc.decode(`z${str}`));
if (str.startsWith('12D')) {
return new Ed25519PeerIdImpl({ multihash });
}
else if (str.startsWith('16U')) {
return new Secp256k1PeerIdImpl({ multihash });
}
else {
return new RSAPeerIdImpl({ multihash });
}
}
return peerIdFromBytes(baseDecoder.decode(str));
}
function peerIdFromBytes(buf) {
try {
const multihash = decode$3(buf);
if (multihash.code === identity.code) {
if (multihash.digest.length === MARSHALLED_ED225519_PUBLIC_KEY_LENGTH) {
return new Ed25519PeerIdImpl({ multihash });
}
else if (multihash.digest.length === MARSHALLED_SECP256K1_PUBLIC_KEY_LENGTH) {
return new Secp256k1PeerIdImpl({ multihash });
}
}
if (multihash.code === sha256$1.code) {
return new RSAPeerIdImpl({ multihash });
}
}
catch {
return peerIdFromCID(CID.decode(buf));
}
throw new Error('Supplied PeerID CID is invalid');
}
function peerIdFromCID(cid) {
if (cid == null || cid.multihash == null || cid.version == null || (cid.version === 1 && cid.code !== LIBP2P_KEY_CODE)) {
throw new Error('Supplied PeerID CID is invalid');
}
const multihash = cid.multihash;
if (multihash.code === sha256$1.code) {
return new RSAPeerIdImpl({ multihash: cid.multihash });
}
else if (multihash.code === identity.code) {
if (multihash.digest.length === MARSHALLED_ED225519_PUBLIC_KEY_LENGTH) {
return new Ed25519PeerIdImpl({ multihash: cid.multihash });
}
else if (multihash.digest.length === MARSHALLED_SECP256K1_PUBLIC_KEY_LENGTH) {
return new Secp256k1PeerIdImpl({ multihash: cid.multihash });
}
}
throw new Error('Supplied PeerID CID is invalid');
}
/**
* @param publicKey - A marshalled public key
* @param privateKey - A marshalled private key
*/
async function peerIdFromKeys(publicKey, privateKey) {
if (publicKey.length === MARSHALLED_ED225519_PUBLIC_KEY_LENGTH) {
return new Ed25519PeerIdImpl({ multihash: create$5(identity.code, publicKey), privateKey });
}
if (publicKey.length === MARSHALLED_SECP256K1_PUBLIC_KEY_LENGTH) {
return new Secp256k1PeerIdImpl({ multihash: create$5(identity.code, publicKey), privateKey });
}
return new RSAPeerIdImpl({ multihash: await sha256$1.digest(publicKey), publicKey, privateKey });
}
var KeypairType;
(function (KeypairType) {
KeypairType[KeypairType["rsa"] = 0] = "rsa";
KeypairType[KeypairType["ed25519"] = 1] = "ed25519";
KeypairType[KeypairType["secp256k1"] = 2] = "secp256k1";
})(KeypairType || (KeypairType = {}));
class Secp256k1Keypair {
constructor(privateKey, publicKey) {
let pub = publicKey;
if (pub) {
pub = compressPublicKey$1(pub);
}
if ((this._privateKey = privateKey) && !this.privateKeyVerify()) {
throw new Error("Invalid private key");
}
if ((this._publicKey = pub) && !this.publicKeyVerify()) {
throw new Error("Invalid public key");
}
this.type = KeypairType.secp256k1;
}
static async generate() {
const privateKey = randomBytes$1(32);
const publicKey = getPublicKey$1(privateKey);
return new Secp256k1Keypair(privateKey, publicKey);
}
privateKeyVerify(key = this._privateKey) {
if (key) {
return utils$1.isValidPrivateKey(key);
}
return true;
}
publicKeyVerify(key = this._publicKey) {
if (key) {
try {
Point$1.fromHex(key);
return true;
}
catch {
return false;
}
}
return true;
}
get privateKey() {
if (!this._privateKey) {
throw new Error();
}
return this._privateKey;
}
get publicKey() {
if (!this._publicKey) {
throw new Error();
}
return this._publicKey;
}
hasPrivateKey() {
return !!this._privateKey;
}
}
const ERR_TYPE_NOT_IMPLEMENTED = "Keypair type not implemented";
function createKeypair(type, privateKey, publicKey) {
switch (type) {
case KeypairType.secp256k1:
return new Secp256k1Keypair(privateKey, publicKey);
default:
throw new Error(ERR_TYPE_NOT_IMPLEMENTED);
}
}
async function createPeerIdFromKeypair(keypair) {
switch (keypair.type) {
case KeypairType.secp256k1: {
const publicKey = new supportedKeys.secp256k1.Secp256k1PublicKey(keypair.publicKey);
const privateKey = keypair.hasPrivateKey()
? new supportedKeys.secp256k1.Secp256k1PrivateKey(keypair.privateKey)
: undefined;
return peerIdFromKeys(publicKey.bytes, privateKey?.bytes);
}
default:
throw new Error(ERR_TYPE_NOT_IMPLEMENTED);
}
}
async function createKeypairFromPeerId(peerId) {
let keypairType;
switch (peerId.type) {
case "RSA":
keypairType = KeypairType.rsa;
break;
case "Ed25519":
keypairType = KeypairType.ed25519;
break;
case "secp256k1":
keypairType = KeypairType.secp256k1;
break;
default:
throw new Error("Unsupported peer id type");
}
const publicKey = peerId.publicKey
? unmarshalPublicKey(peerId.publicKey)
: undefined;
const privateKey = peerId.privateKey
? await unmarshalPrivateKey(peerId.privateKey)
: undefined;
return createKeypair(keypairType, privateKey?.marshal(), publicKey?.marshal());
}
/**
* string -> [[str name, str addr]... ]
*/
function stringToStringTuples(str) {
const tuples = [];
const parts = str.split('/').slice(1); // skip first empty elem
if (parts.length === 1 && parts[0] === '') {
return [];
}
for (let p = 0; p < parts.length; p++) {
const part = parts[p];
const proto = getProtocol$1(part);
if (proto.size === 0) {
tuples.push([part]);
continue;
}
p++; // advance addr part
if (p >= parts.length) {
throw ParseError('invalid address: ' + str);
}
// if it's a path proto, take the rest
if (proto.path === true) {
tuples.push([
part,
// TODO: should we need to check each path part to see if it's a proto?
// This would allow for other protocols to be added after a unix path,
// however it would have issues if the path had a protocol name in the path
cleanPath(parts.slice(p).join('/'))
]);
break;
}
tuples.push([part, parts[p]]);
}
return tuples;
}
/**
* [[str name, str addr]... ] -> string
*/
function stringTuplesToString(tuples) {
const parts = [];
tuples.map((tup) => {
const proto = protoFromTuple(tup);
parts.push(proto.name);
if (tup.length > 1 && tup[1] != null) {
parts.push(tup[1]);
}
return null;
});
return cleanPath(parts.join('/'));
}
/**
* [[str name, str addr]... ] -> [[int code, Uint8Array]... ]
*/
function stringTuplesToTuples(tuples) {
return tuples.map((tup) => {
if (!Array.isArray(tup)) {
tup = [tup];
}
const proto = protoFromTuple(tup);
if (tup.length > 1) {
return [proto.code, convertToBytes(proto.code, tup[1])];
}
return [proto.code];
});
}
/**
* Convert tuples to string tuples
*
* [[int code, Uint8Array]... ] -> [[int code, str addr]... ]
*/
function tuplesToStringTuples(tuples) {
return tuples.map(tup => {
const proto = protoFromTuple(tup);
if (tup[1] != null) {
return [proto.code, convertToString(proto.code, tup[1])];
}
return [proto.code];
});
}
/**
* [[int code, Uint8Array ]... ] -> Uint8Array
*/
function tuplesToBytes(tuples) {
return fromBytes(concat(tuples.map((tup) => {
const proto = protoFromTuple(tup);
let buf = Uint8Array.from(varint.encode(proto.code));
if (tup.length > 1 && tup[1] != null) {
buf = concat([buf, tup[1]]); // add address buffer
}
return buf;
})));
}
function sizeForAddr(p, addr) {
if (p.size > 0) {
return p.size / 8;
}
else if (p.size === 0) {
return 0;
}
else {
const size = varint.decode(addr);
return size + varint.decode.bytes;
}
}
function bytesToTuples(buf) {
const tuples = [];
let i = 0;
while (i < buf.length) {
const code = varint.decode(buf, i);
const n = varint.decode.bytes;
const p = getProtocol$1(code);
const size = sizeForAddr(p, buf.slice(i + n));
if (size === 0) {
tuples.push([code]);
i += n;
continue;
}
const addr = buf.slice(i + n, i + n + size);
i += (size + n);
if (i > buf.length) { // did not end _exactly_ at buffer.length
throw ParseError('Invalid address Uint8Array: ' + toString$3(buf, 'base16'));
}
// ok, tuple seems good.
tuples.push([code, addr]);
}
return tuples;
}
/**
* Uint8Array -> String
*/
function bytesToString(buf) {
const a = bytesToTuples(buf);
const b = tuplesToStringTuples(a);
return stringTuplesToString(b);
}
/**
* String -> Uint8Array
*/
function stringToBytes$1(str) {
str = cleanPath(str);
const a = stringToStringTuples(str);
const b = stringTuplesToTuples(a);
return tuplesToBytes(b);
}
/**
* String -> Uint8Array
*/
function fromString(str) {
return stringToBytes$1(str);
}
/**
* Uint8Array -> Uint8Array
*/
function fromBytes(buf) {
const err = validateBytes(buf);
if (err != null) {
throw err;
}
return Uint8Array.from(buf); // copy
}
function validateBytes(buf) {
try {
bytesToTuples(buf); // try to parse. will throw if breaks
}
catch (err) {
return err;
}
}
function cleanPath(str) {
return '/' + str.trim().split('/').filter((a) => a).join('/');
}
function ParseError(str) {
return new Error('Error parsing address: ' + str);
}
function protoFromTuple(tup) {
const proto = getProtocol$1(tup[0]);
return proto;
}
const inspect = Symbol.for('nodejs.util.inspect.custom');
const DNS_CODES = [
getProtocol$1('dns').code,
getProtocol$1('dns4').code,
getProtocol$1('dns6').code,
getProtocol$1('dnsaddr').code
];
const P2P_CODES = [
getProtocol$1('p2p').code,
getProtocol$1('ipfs').code
];
const resolvers = new Map();
const symbol$1 = Symbol.for('@multiformats/js-multiaddr/multiaddr');
/**
* Creates a [multiaddr](https://github.com/multiformats/multiaddr) from
* a Uint8Array, String or another Multiaddr instance
* public key.
*
*/
class Multiaddr {
/**
* @example
* ```js
* new Multiaddr('/ip4/127.0.0.1/tcp/4001')
* // <Multiaddr 047f000001060fa1 - /ip4/127.0.0.1/tcp/4001>
* ```
*
* @param {MultiaddrInput} [addr] - If String or Uint8Array, needs to adhere to the address format of a [multiaddr](https://github.com/multiformats/multiaddr#string-format)
*/
constructor(addr) {
// default
if (addr == null) {
addr = '';
}
// Define symbol
Object.defineProperty(this, symbol$1, { value: true });
if (addr instanceof Uint8Array) {
this.bytes = fromBytes(addr);
}
else if (typeof addr === 'string') {
if (addr.length > 0 && addr.charAt(0) !== '/') {
throw new Error(`multiaddr "${addr}" must start with a "/"`);
}
this.bytes = fromString(addr);
}
else if (Multiaddr.isMultiaddr(addr)) { // Multiaddr
this.bytes = fromBytes(addr.bytes); // validate + copy buffer
}
else {
throw new Error('addr must be a string, Buffer, or another Multiaddr');
}
}
/**
* Returns Multiaddr as a String
*
* @example
* ```js
* new Multiaddr('/ip4/127.0.0.1/tcp/4001').toString()
* // '/ip4/127.0.0.1/tcp/4001'
* ```
*/
toString() {
return bytesToString(this.bytes);
}
/**
* Returns Multiaddr as a JSON encoded object
*
* @example
* ```js
* JSON.stringify(new Multiaddr('/ip4/127.0.0.1/tcp/4001'))
* // '/ip4/127.0.0.1/tcp/4001'
* ```
*/
toJSON() {
return this.toString();
}
/**
* Returns Multiaddr as a convinient options object to be used with net.createConnection
*
* @example
* ```js
* new Multiaddr('/ip4/127.0.0.1/tcp/4001').toOptions()
* // { family: 4, host: '127.0.0.1', transport: 'tcp', port: 4001 }
* ```
*/
toOptions() {
const codes = this.protoCodes();
const parts = this.toString().split('/').slice(1);
let transport;
let port;
if (parts.length > 2) {
// default to https when protocol & port are omitted from DNS addrs
if (DNS_CODES.includes(codes[0]) && P2P_CODES.includes(codes[1])) {
transport = getProtocol$1('tcp').name;
port = 443;
}
else {
transport = getProtocol$1(parts[2]).name;
port = parseInt(parts[3]);
}
}
else if (DNS_CODES.includes(codes[0])) {
transport = getProtocol$1('tcp').name;
port = 443;
}
else {
throw new Error('multiaddr must have a valid format: "/{ip4, ip6, dns4, dns6, dnsaddr}/{address}/{tcp, udp}/{port}".');
}
const opts = {
family: (codes[0] === 41 || codes[0] === 55) ? 6 : 4,
host: parts[1],
transport,
port
};
return opts;
}
/**
* Returns the protocols the Multiaddr is defined with, as an array of objects, in
* left-to-right order. Each object contains the protocol code, protocol name,
* and the size of its address space in bits.
* [See list of protocols](https://github.com/multiformats/multiaddr/blob/master/protocols.csv)
*
* @example
* ```js
* new Multiaddr('/ip4/127.0.0.1/tcp/4001').protos()
* // [ { code: 4, size: 32, name: 'ip4' },
* // { code: 6, size: 16, name: 'tcp' } ]
* ```
*/
protos() {
return this.protoCodes().map(code => Object.assign({}, getProtocol$1(code)));
}
/**
* Returns the codes of the protocols in left-to-right order.
* [See list of protocols](https://github.com/multiformats/multiaddr/blob/master/protocols.csv)
*
* @example
* ```js
* Multiaddr('/ip4/127.0.0.1/tcp/4001').protoCodes()
* // [ 4, 6 ]
* ```
*/
protoCodes() {
const codes = [];
const buf = this.bytes;
let i = 0;
while (i < buf.length) {
const code = varint.decode(buf, i);
const n = varint.decode.bytes;
const p = getProtocol$1(code);
const size = sizeForAddr(p, buf.slice(i + n));
i += (size + n);
codes.push(code);
}
return codes;
}
/**
* Returns the names of the protocols in left-to-right order.
* [See list of protocols](https://github.com/multiformats/multiaddr/blob/master/protocols.csv)
*
* @example
* ```js
* new Multiaddr('/ip4/127.0.0.1/tcp/4001').protoNames()
* // [ 'ip4', 'tcp' ]
* ```
*/
protoNames() {
return this.protos().map(proto => proto.name);
}
/**
* Returns a tuple of parts
*
* @example
* ```js
* new Multiaddr("/ip4/127.0.0.1/tcp/4001").tuples()
* // [ [ 4, <Buffer 7f 00 00 01> ], [ 6, <Buffer 0f a1> ] ]
* ```
*/
tuples() {
return bytesToTuples(this.bytes);
}
/**
* Returns a tuple of string/number parts
* - tuples[][0] = code of protocol
* - tuples[][1] = contents of address
*
* @example
* ```js
* new Multiaddr("/ip4/127.0.0.1/tcp/4001").stringTuples()
* // [ [ 4, '127.0.0.1' ], [ 6, '4001' ] ]
* ```
*/
stringTuples() {
const t = bytesToTuples(this.bytes);
return tuplesToStringTuples(t);
}
/**
* Encapsulates a Multiaddr in another Multiaddr
*
* @example
* ```js
* const mh1 = new Multiaddr('/ip4/8.8.8.8/tcp/1080')
* // <Multiaddr 0408080808060438 - /ip4/8.8.8.8/tcp/1080>
*
* const mh2 = new Multiaddr('/ip4/127.0.0.1/tcp/4001')
* // <Multiaddr 047f000001060fa1 - /ip4/127.0.0.1/tcp/4001>
*
* const mh3 = mh1.encapsulate(mh2)
* // <Multiaddr 0408080808060438047f000001060fa1 - /ip4/8.8.8.8/tcp/1080/ip4/127.0.0.1/tcp/4001>
*
* mh3.toString()
* // '/ip4/8.8.8.8/tcp/1080/ip4/127.0.0.1/tcp/4001'
* ```
*
* @param {MultiaddrInput} addr - Multiaddr to add into this Multiaddr
*/
encapsulate(addr) {
addr = new Multiaddr(addr);
return new Multiaddr(this.toString() + addr.toString());
}
/**
* Decapsulates a Multiaddr from another Multiaddr
*
* @example
* ```js
* const mh1 = new Multiaddr('/ip4/8.8.8.8/tcp/1080')
* // <Multiaddr 0408080808060438 - /ip4/8.8.8.8/tcp/1080>
*
* const mh2 = new Multiaddr('/ip4/127.0.0.1/tcp/4001')
* // <Multiaddr 047f000001060fa1 - /ip4/127.0.0.1/tcp/4001>
*
* const mh3 = mh1.encapsulate(mh2)
* // <Multiaddr 0408080808060438047f000001060fa1 - /ip4/8.8.8.8/tcp/1080/ip4/127.0.0.1/tcp/4001>
*
* mh3.decapsulate(mh2).toString()
* // '/ip4/8.8.8.8/tcp/1080'
* ```
*
* @param {Multiaddr | string} addr - Multiaddr to remove from this Multiaddr
*/
decapsulate(addr) {
const addrString = addr.toString();
const s = this.toString();
const i = s.lastIndexOf(addrString);
if (i < 0) {
throw new Error(`Address ${this.toString()} does not contain subaddress: ${addr.toString()}`);
}
return new Multiaddr(s.slice(0, i));
}
/**
* A more reliable version of `decapsulate` if you are targeting a
* specific code, such as 421 (the `p2p` protocol code). The last index of the code
* will be removed from the `Multiaddr`, and a new instance will be returned.
* If the code is not present, the original `Multiaddr` is returned.
*
* @example
* ```js
* const addr = new Multiaddr('/ip4/0.0.0.0/tcp/8080/p2p/QmcgpsyWgH8Y8ajJz1Cu72KnS5uo2Aa2LpzU7kinSupNKC')
* // <Multiaddr 0400... - /ip4/0.0.0.0/tcp/8080/p2p/QmcgpsyWgH8Y8ajJz1Cu72KnS5uo2Aa2LpzU7kinSupNKC>
*
* addr.decapsulateCode(421).toString()
* // '/ip4/0.0.0.0/tcp/8080'
*
* new Multiaddr('/ip4/127.0.0.1/tcp/8080').decapsulateCode(421).toString()
* // '/ip4/127.0.0.1/tcp/8080'
* ```
*/
decapsulateCode(code) {
const tuples = this.tuples();
for (let i = tuples.length - 1; i >= 0; i--) {
if (tuples[i][0] === code) {
return new Multiaddr(tuplesToBytes(tuples.slice(0, i)));
}
}
return this;
}
/**
* Extract the peerId if the multiaddr contains one
*
* @example
* ```js
* const mh1 = new Multiaddr('/ip4/8.8.8.8/tcp/1080/ipfs/QmValidBase58string')
* // <Multiaddr 0408080808060438 - /ip4/8.8.8.8/tcp/1080/ipfs/QmValidBase58string>
*
* // should return QmValidBase58string or null if the id is missing or invalid
* const peerId = mh1.getPeerId()
* ```
*/
getPeerId() {
try {
const tuples = this.stringTuples().filter((tuple) => {
if (tuple[0] === names$1.ipfs.code) {
return true;
}
return false;
});
// Get the last ipfs tuple ['ipfs', 'peerid string']
const tuple = tuples.pop();
if (tuple?.[1] != null) {
const peerIdStr = tuple[1];
// peer id is base58btc encoded string but not multibase encoded so add the `z`
// prefix so we can validate that it is correctly encoded
if (peerIdStr[0] === 'Q' || peerIdStr[0] === '1') {
return toString$3(base58btc.decode(`z${peerIdStr}`), 'base58btc');
}
// try to parse peer id as CID
return toString$3(CID.parse(peerIdStr).multihash.bytes, 'base58btc');
}
return null;
}
catch (e) {
return null;
}
}
/**
* Extract the path if the multiaddr contains one
*
* @example
* ```js
* const mh1 = new Multiaddr('/ip4/8.8.8.8/tcp/1080/unix/tmp/p2p.sock')
* // <Multiaddr 0408080808060438 - /ip4/8.8.8.8/tcp/1080/unix/tmp/p2p.sock>
*
* // should return utf8 string or null if the id is missing or invalid
* const path = mh1.getPath()
* ```
*/
getPath() {
let path = null;
try {
path = this.stringTuples().filter((tuple) => {
const proto = getProtocol$1(tuple[0]);
if (proto.path === true) {
return true;
}
return false;
})[0][1];
if (path == null) {
path = null;
}
}
catch {
path = null;
}
return path;
}
/**
* Checks if two Multiaddrs are the same
*
* @example
* ```js
* const mh1 = new Multiaddr('/ip4/8.8.8.8/tcp/1080')
* // <Multiaddr 0408080808060438 - /ip4/8.8.8.8/tcp/1080>
*
* const mh2 = new Multiaddr('/ip4/127.0.0.1/tcp/4001')
* // <Multiaddr 047f000001060fa1 - /ip4/127.0.0.1/tcp/4001>
*
* mh1.equals(mh1)
* // true
*
* mh1.equals(mh2)
* // false
* ```
*/
equals(addr) {
return equals(this.bytes, addr.bytes);
}
/**
* Resolve multiaddr if containing resolvable hostname.
*
* @example
* ```js
* Multiaddr.resolvers.set('dnsaddr', resolverFunction)
* const mh1 = new Multiaddr('/dnsaddr/bootstrap.libp2p.io/p2p/QmbLHAnMoJPWSCR5Zhtx6BHJX9KiKNN6tpvbUcqanj75Nb')
* const resolvedMultiaddrs = await mh1.resolve()
* // [
* // <Multiaddr 04934b5353060fa1a503221220c10f9319dac35c270a6b74cd644cb3acfc1f6efc8c821f8eb282599fd1814f64 - /ip4/147.75.83.83/tcp/4001/p2p/QmbLHAnMoJPWSCR5Zhtx6BHJX9KiKNN6tpvbUcqanj75Nb>,
* // <Multiaddr 04934b53530601bbde03a503221220c10f9319dac35c270a6b74cd644cb3acfc1f6efc8c821f8eb282599fd1814f64 - /ip4/147.75.83.83/tcp/443/wss/p2p/QmbLHAnMoJPWSCR5Zhtx6BHJX9KiKNN6tpvbUcqanj75Nb>,
* // <Multiaddr 04934b535391020fa1cc03a503221220c10f9319dac35c270a6b74cd644cb3acfc1f6efc8c821f8eb282599fd1814f64 - /ip4/147.75.83.83/udp/4001/quic/p2p/QmbLHAnMoJPWSCR5Zhtx6BHJX9KiKNN6tpvbUcqanj75Nb>
* // ]
* ```
*/
async resolve(options) {
const resolvableProto = this.protos().find((p) => p.resolvable);
// Multiaddr is not resolvable?
if (resolvableProto == null) {
return [this];
}
const resolver = resolvers.get(resolvableProto.name);
if (resolver == null) {
throw errCode(new Error(`no available resolver for ${resolvableProto.name}`), 'ERR_NO_AVAILABLE_RESOLVER');
}
const addresses = await resolver(this, options);
return addresses.map((a) => new Multiaddr(a));
}
/**
* Gets a Multiaddrs node-friendly address object. Note that protocol information
* is left out: in Node (and most network systems) the protocol is unknowable
* given only the address.
*
* Has to be a ThinWaist Address, otherwise throws error
*
* @example
* ```js
* new Multiaddr('/ip4/127.0.0.1/tcp/4001').nodeAddress()
* // {family: 4, address: '127.0.0.1', port: 4001}
* ```
*/
nodeAddress() {
const options = this.toOptions();
if (options.transport !== 'tcp' && options.transport !== 'udp') {
throw new Error(`multiaddr must have a valid format - no protocol with name: "${options.transport}". Must have a valid transport protocol: "{tcp, udp}"`);
}
return {
family: options.family,
address: options.host,
port: options.port
};
}
/**
* Returns if a Multiaddr is a Thin Waist address or not.
*
* Thin Waist is if a Multiaddr adheres to the standard combination of:
*
* `{IPv4, IPv6}/{TCP, UDP}`
*
* @example
* ```js
* const mh1 = new Multiaddr('/ip4/127.0.0.1/tcp/4001')
* // <Multiaddr 047f000001060fa1 - /ip4/127.0.0.1/tcp/4001>
* const mh2 = new Multiaddr('/ip4/192.168.2.1/tcp/5001')
* // <Multiaddr 04c0a80201061389 - /ip4/192.168.2.1/tcp/5001>
* const mh3 = mh1.encapsulate(mh2)
* // <Multiaddr 047f000001060fa104c0a80201061389 - /ip4/127.0.0.1/tcp/4001/ip4/192.168.2.1/tcp/5001>
* const mh4 = new Multiaddr('/ip4/127.0.0.1/tcp/2000/wss/p2p-webrtc-star/p2p/QmcgpsyWgH8Y8ajJz1Cu72KnS5uo2Aa2LpzU7kinSooo2a')
* // <Multiaddr 047f0000010607d0de039302a503221220d52ebb89d85b02a284948203a62ff28389c57c9f42beec4ec20db76a64835843 - /ip4/127.0.0.1/tcp/2000/wss/p2p-webrtc-star/p2p/QmcgpsyWgH8Y8ajJz1Cu72KnS5uo2Aa2LpzU7kinSooo2a>
* mh1.isThinWaistAddress()
* // true
* mh2.isThinWaistAddress()
* // true
* mh3.isThinWaistAddress()
* // false
* mh4.isThinWaistAddress()
* // false
* ```
*/
isThinWaistAddress(addr) {
const protos = (addr ?? this).protos();
if (protos.length !== 2) {
return false;
}
if (protos[0].code !== 4 && protos[0].code !== 41) {
return false;
}
if (protos[1].code !== 6 && protos[1].code !== 273) {
return false;
}
return true;
}
/**
* Creates a Multiaddr from a node-friendly address object
*
* @example
* ```js
* Multiaddr.fromNodeAddress({address: '127.0.0.1', port: '4001'}, 'tcp')
* // <Multiaddr 047f000001060fa1 - /ip4/127.0.0.1/tcp/4001>
* ```
*/
static fromNodeAddress(addr, transport) {
if (addr == null) {
throw new Error('requires node address object');
}
if (transport == null) {
throw new Error('requires transport protocol');
}
let ip;
switch (addr.family) {
case 4:
ip = 'ip4';
break;
case 6:
ip = 'ip6';
break;
default:
throw Error('Invalid addr family, should be 4 or 6.');
}
return new Multiaddr('/' + [ip, addr.address, transport, addr.port].join('/'));
}
/**
* Returns if something is a Multiaddr that is a name
*/
static isName(addr) {
if (!Multiaddr.isMultiaddr(addr)) {
return false;
}
// if a part of the multiaddr is resolvable, then return true
return addr.protos().some((proto) => proto.resolvable);
}
/**
* Check if object is a CID instance
*/
static isMultiaddr(value) {
return Boolean(value?.[symbol$1]);
}
/**
* Returns Multiaddr as a human-readable string.
* For post Node.js v10.0.0.
* https://nodejs.org/api/deprecations.html#deprecations_dep0079_custom_inspection_function_on_objects_via_inspect
*
* @example
* ```js
* console.log(new Multiaddr('/ip4/127.0.0.1/tcp/4001'))
* // '<Multiaddr 047f000001060fa1 - /ip4/127.0.0.1/tcp/4001>'
* ```
*/
[inspect]() {
return '<Multiaddr ' +
toString$3(this.bytes, 'base16') + ' - ' +
bytesToString(this.bytes) + '>';
}
/**
* Returns Multiaddr as a human-readable string.
* Fallback for pre Node.js v10.0.0.
* https://nodejs.org/api/deprecations.html#deprecations_dep0079_custom_inspection_function_on_objects_via_inspect
*
* @example
* ```js
* new Multiaddr('/ip4/127.0.0.1/tcp/4001').inspect()
* // '<Multiaddr 047f000001060fa1 - /ip4/127.0.0.1/tcp/4001>'
* ```
*/
inspect() {
return '<Multiaddr ' +
toString$3(this.bytes, 'base16') + ' - ' +
bytesToString(this.bytes) + '>';
}
}
Multiaddr.resolvers = resolvers;
function multiaddrFromFields(ipFamily, protocol, ipBytes, protocolBytes) {
let ma = new Multiaddr("/" + ipFamily + "/" + convertToString(ipFamily, ipBytes));
ma = ma.encapsulate(new Multiaddr("/" + protocol + "/" + convertToString(protocol, protocolBytes)));
return ma;
}
function decodeMultiaddrs(bytes) {
const multiaddrs = [];
let index = 0;
while (index < bytes.length) {
const sizeDataView = new DataView(bytes.buffer, index, MULTIADDR_LENGTH_SIZE);
const size = sizeDataView.getUint16(0);
index += MULTIADDR_LENGTH_SIZE;
const multiaddrBytes = bytes.slice(index, index + size);
index += size;
const multiaddr = new Multiaddr(multiaddrBytes);
multiaddrs.push(multiaddr);
}
return multiaddrs;
}
function encodeMultiaddrs(multiaddrs) {
const totalLength = multiaddrs.reduce((acc, ma) => acc + MULTIADDR_LENGTH_SIZE + ma.bytes.length, 0);
const bytes = new Uint8Array(totalLength);
const dataView = new DataView(bytes.buffer);
let index = 0;
multiaddrs.forEach((multiaddr) => {
if (multiaddr.getPeerId())
throw new Error("`multiaddr` field MUST not contain peer id");
// Prepend the size of the next entry
dataView.setUint16(index, multiaddr.bytes.length);
index += MULTIADDR_LENGTH_SIZE;
bytes.set(multiaddr.bytes, index);
index += multiaddr.bytes.length;
});
return bytes;
}
async function sign(privKey, msg) {
return sign$2(keccak256(msg), privKey, {
der: false,
});
}
function nodeId(pubKey) {
const publicKey = Point$1.fromHex(pubKey);
const uncompressedPubkey = publicKey.toRawBytes(false);
return bytesToHex$1(keccak256(uncompressedPubkey.slice(1)));
}
function encodeWaku2(protocols) {
let byte = 0;
if (protocols.lightPush)
byte += 1;
byte = byte << 1;
if (protocols.filter)
byte += 1;
byte = byte << 1;
if (protocols.store)
byte += 1;
byte = byte << 1;
if (protocols.relay)
byte += 1;
return byte;
}
function decodeWaku2(byte) {
const waku2 = {
relay: false,
store: false,
filter: false,
lightPush: false,
};
if (byte % 2)
waku2.relay = true;
byte = byte >> 1;
if (byte % 2)
waku2.store = true;
byte = byte >> 1;
if (byte % 2)
waku2.filter = true;
byte = byte >> 1;
if (byte % 2)
waku2.lightPush = true;
return waku2;
}
const log$5 = debug("waku:enr");
class ENR extends Map {
constructor(kvs = {}, seq = BigInt(1), signature = null) {
super(Object.entries(kvs));
this.seq = seq;
this.signature = signature;
}
static async create(kvs = {}, seq = BigInt(1), signature = null) {
const enr = new ENR(kvs, seq, signature);
try {
const publicKey = enr.publicKey;
if (publicKey) {
const keypair = createKeypair(enr.keypairType, undefined, publicKey);
enr.peerId = await createPeerIdFromKeypair(keypair);
}
}
catch (e) {
log$5("Could not calculate peer id for ENR", e);
}
return enr;
}
static createV4(publicKey, kvs = {}) {
// EIP-778 specifies that the key must be in compressed format, 33 bytes
if (publicKey.length !== 33) {
publicKey = compressPublicKey$1(publicKey);
}
return ENR.create({
...kvs,
id: utf8ToBytes("v4"),
secp256k1: publicKey,
});
}
static async createFromPeerId(peerId, kvs = {}) {
const keypair = await createKeypairFromPeerId(peerId);
switch (keypair.type) {
case KeypairType.secp256k1:
return ENR.createV4(keypair.publicKey, kvs);
default:
throw new Error();
}
}
static async decodeFromValues(decoded) {
if (!Array.isArray(decoded)) {
throw new Error("Decoded ENR must be an array");
}
if (decoded.length % 2 !== 0) {
throw new Error("Decoded ENR must have an even number of elements");
}
const [signature, seq, ...kvs] = decoded;
if (!signature || Array.isArray(signature)) {
throw new Error("Decoded ENR invalid signature: must be a byte array");
}
if (!seq || Array.isArray(seq)) {
throw new Error("Decoded ENR invalid sequence number: must be a byte array");
}
const obj = {};
for (let i = 0; i < kvs.length; i += 2) {
try {
obj[bytesToUtf8(kvs[i])] = kvs[i + 1];
}
catch (e) {
log$5("Failed to decode ENR key to UTF-8, skipping it", kvs[i], e);
}
}
// If seq is an empty array, translate as value 0
const hexSeq = "0x" + (seq.length ? bytesToHex$1(seq) : "00");
const enr = await ENR.create(obj, BigInt(hexSeq), signature);
const rlpEncodedBytes = hexToBytes$1(encode$2([seq, ...kvs]));
if (!enr.verify(rlpEncodedBytes, signature)) {
throw new Error("Unable to verify ENR signature");
}
return enr;
}
static decode(encoded) {
const decoded = decode$2(encoded).map(hexToBytes$1);
return ENR.decodeFromValues(decoded);
}
static decodeTxt(encoded) {
if (!encoded.startsWith(this.RECORD_PREFIX)) {
throw new Error(`"string encoded ENR must start with '${this.RECORD_PREFIX}'`);
}
return ENR.decode(fromString$1(encoded.slice(4), "base64url"));
}
set(k, v) {
this.signature = null;
this.seq++;
return super.set(k, v);
}
get id() {
const id = this.get("id");
if (!id)
throw new Error("id not found.");
return bytesToUtf8(id);
}
get keypairType() {
switch (this.id) {
case "v4":
return KeypairType.secp256k1;
default:
throw new Error(ERR_INVALID_ID);
}
}
get publicKey() {
switch (this.id) {
case "v4":
return this.get("secp256k1");
default:
throw new Error(ERR_INVALID_ID);
}
}
get keypair() {
if (this.publicKey) {
const publicKey = this.publicKey;
return createKeypair(this.keypairType, undefined, publicKey);
}
return;
}
get nodeId() {
switch (this.id) {
case "v4":
return this.publicKey ? nodeId(this.publicKey) : undefined;
default:
throw new Error(ERR_INVALID_ID);
}
}
get ip() {
const raw = this.get("ip");
if (raw) {
return convertToString("ip4", raw);
}
else {
return undefined;
}
}
set ip(ip) {
if (ip) {
this.set("ip", convertToBytes("ip4", ip));
}
else {
this.delete("ip");
}
}
get tcp() {
const raw = this.get("tcp");
if (raw) {
return Number(convertToString("tcp", raw));
}
else {
return undefined;
}
}
set tcp(port) {
if (port === undefined) {
this.delete("tcp");
}
else {
this.set("tcp", convertToBytes("tcp", port.toString(10)));
}
}
get udp() {
const raw = this.get("udp");
if (raw) {
return Number(convertToString("udp", raw));
}
else {
return undefined;
}
}
set udp(port) {
if (port === undefined) {
this.delete("udp");
}
else {
this.set("udp", convertToBytes("udp", port.toString(10)));
}
}
get ip6() {
const raw = this.get("ip6");
if (raw) {
return convertToString("ip6", raw);
}
else {
return undefined;
}
}
set ip6(ip) {
if (ip) {
this.set("ip6", convertToBytes("ip6", ip));
}
else {
this.delete("ip6");
}
}
get tcp6() {
const raw = this.get("tcp6");
if (raw) {
return Number(convertToString("tcp", raw));
}
else {
return undefined;
}
}
set tcp6(port) {
if (port === undefined) {
this.delete("tcp6");
}
else {
this.set("tcp6", convertToBytes("tcp", port.toString(10)));
}
}
get udp6() {
const raw = this.get("udp6");
if (raw) {
return Number(convertToString("udp", raw));
}
else {
return undefined;
}
}
set udp6(port) {
if (port === undefined) {
this.delete("udp6");
}
else {
this.set("udp6", convertToBytes("udp", port.toString(10)));
}
}
/**
* Get the `multiaddrs` field from ENR.
*
* This field is used to store multiaddresses that cannot be stored with the current ENR pre-defined keys.
* These can be a multiaddresses that include encapsulation (e.g. wss) or do not use `ip4` nor `ip6` for the host
* address (e.g. `dns4`, `dnsaddr`, etc)..
*
* If the peer information only contains information that can be represented with the ENR pre-defined keys
* (ip, tcp, etc) then the usage of { @link getLocationMultiaddr } should be preferred.
*
* The multiaddresses stored in this field are expected to be location multiaddresses, ie, peer id less.
*/
get multiaddrs() {
const raw = this.get("multiaddrs");
if (raw)
return decodeMultiaddrs(raw);
return;
}
/**
* Set the `multiaddrs` field on the ENR.
*
* This field is used to store multiaddresses that cannot be stored with the current ENR pre-defined keys.
* These can be a multiaddresses that include encapsulation (e.g. wss) or do not use `ip4` nor `ip6` for the host
* address (e.g. `dns4`, `dnsaddr`, etc)..
*
* If the peer information only contains information that can be represented with the ENR pre-defined keys
* (ip, tcp, etc) then the usage of { @link setLocationMultiaddr } should be preferred.
* The multiaddresses stored in this field must be location multiaddresses,
* ie, without a peer id.
*/
set multiaddrs(multiaddrs) {
if (multiaddrs === undefined) {
this.delete("multiaddrs");
}
else {
const multiaddrsBuf = encodeMultiaddrs(multiaddrs);
this.set("multiaddrs", multiaddrsBuf);
}
}
getLocationMultiaddr(protocol) {
if (protocol === "udp") {
return (this.getLocationMultiaddr("udp4") || this.getLocationMultiaddr("udp6"));
}
if (protocol === "tcp") {
return (this.getLocationMultiaddr("tcp4") || this.getLocationMultiaddr("tcp6"));
}
const isIpv6 = protocol.endsWith("6");
const ipVal = this.get(isIpv6 ? "ip6" : "ip");
if (!ipVal) {
return;
}
const isUdp = protocol.startsWith("udp");
const isTcp = protocol.startsWith("tcp");
let protoName, protoVal;
if (isUdp) {
protoName = "udp";
protoVal = isIpv6 ? this.get("udp6") : this.get("udp");
}
else if (isTcp) {
protoName = "tcp";
protoVal = isIpv6 ? this.get("tcp6") : this.get("tcp");
}
else {
return;
}
if (!protoVal) {
return;
}
return multiaddrFromFields(isIpv6 ? "ip6" : "ip4", protoName, ipVal, protoVal);
}
setLocationMultiaddr(multiaddr) {
const protoNames = multiaddr.protoNames();
if (protoNames.length !== 2 &&
protoNames[1] !== "udp" &&
protoNames[1] !== "tcp") {
throw new Error("Invalid multiaddr");
}
const tuples = multiaddr.tuples();
if (!tuples[0][1] || !tuples[1][1]) {
throw new Error("Invalid multiaddr");
}
// IPv4
if (tuples[0][0] === 4) {
this.set("ip", tuples[0][1]);
this.set(protoNames[1], tuples[1][1]);
}
else {
this.set("ip6", tuples[0][1]);
this.set(protoNames[1] + "6", tuples[1][1]);
}
}
/**
* Returns the full multiaddr from the ENR fields matching the provided
* `protocol` parameter.
* To return full multiaddrs from the `multiaddrs` ENR field,
* use { @link ENR.getFullMultiaddrs }.
*
* @param protocol
*/
getFullMultiaddr(protocol) {
if (this.peerId) {
const locationMultiaddr = this.getLocationMultiaddr(protocol);
if (locationMultiaddr) {
return locationMultiaddr.encapsulate(`/p2p/${this.peerId.toString()}`);
}
}
return;
}
/**
* Returns the full multiaddrs from the `multiaddrs` ENR field.
*/
getFullMultiaddrs() {
if (this.peerId && this.multiaddrs) {
const peerId = this.peerId;
return this.multiaddrs.map((ma) => {
return ma.encapsulate(`/p2p/${peerId.toString()}`);
});
}
return [];
}
/**
* Get the `waku2` field from ENR.
*/
get waku2() {
const raw = this.get("waku2");
if (raw)
return decodeWaku2(raw[0]);
return;
}
/**
* Set the `waku2` field on the ENR.
*/
set waku2(waku2) {
if (waku2 === undefined) {
this.delete("waku2");
}
else {
const byte = encodeWaku2(waku2);
this.set("waku2", new Uint8Array([byte]));
}
}
verify(data, signature) {
if (!this.get("id") || this.id !== "v4") {
throw new Error(ERR_INVALID_ID);
}
if (!this.publicKey) {
throw new Error("Failed to verify ENR: No public key");
}
return verifySignature(signature, keccak256(data), this.publicKey);
}
async sign(data, privateKey) {
switch (this.id) {
case "v4":
this.signature = await sign(privateKey, data);
break;
default:
throw new Error(ERR_INVALID_ID);
}
return this.signature;
}
async encodeToValues(privateKey) {
// sort keys and flatten into [k, v, k, v, ...]
const content = Array.from(this.keys())
.sort((a, b) => a.localeCompare(b))
.map((k) => [k, this.get(k)])
.map(([k, v]) => [utf8ToBytes(k), v])
.flat();
content.unshift(new Uint8Array([Number(this.seq)]));
if (privateKey) {
content.unshift(await this.sign(hexToBytes$1(encode$2(content)), privateKey));
}
else {
if (!this.signature) {
throw new Error(ERR_NO_SIGNATURE);
}
content.unshift(this.signature);
}
return content;
}
async encode(privateKey) {
const encoded = hexToBytes$1(encode$2(await this.encodeToValues(privateKey)));
if (encoded.length >= MAX_RECORD_SIZE) {
throw new Error("ENR must be less than 300 bytes");
}
return encoded;
}
async encodeTxt(privateKey) {
return (ENR.RECORD_PREFIX + toString$3(await this.encode(privateKey), "base64url"));
}
}
ENR.RECORD_PREFIX = "enr:";
/* eslint-disable import/export */
var RateLimitProof$4;
(function (RateLimitProof) {
let _codec;
RateLimitProof.codec = () => {
if (_codec == null) {
_codec = message((obj, writer, opts = {}) => {
if (opts.lengthDelimited !== false) {
writer.fork();
}
if (obj.proof != null) {
writer.uint32(10);
writer.bytes(obj.proof);
}
else {
throw new Error('Protocol error: required field "proof" was not found in object');
}
if (obj.merkleRoot != null) {
writer.uint32(18);
writer.bytes(obj.merkleRoot);
}
else {
throw new Error('Protocol error: required field "merkleRoot" was not found in object');
}
if (obj.epoch != null) {
writer.uint32(26);
writer.bytes(obj.epoch);
}
else {
throw new Error('Protocol error: required field "epoch" was not found in object');
}
if (obj.shareX != null) {
writer.uint32(34);
writer.bytes(obj.shareX);
}
else {
throw new Error('Protocol error: required field "shareX" was not found in object');
}
if (obj.shareY != null) {
writer.uint32(42);
writer.bytes(obj.shareY);
}
else {
throw new Error('Protocol error: required field "shareY" was not found in object');
}
if (obj.nullifier != null) {
writer.uint32(50);
writer.bytes(obj.nullifier);
}
else {
throw new Error('Protocol error: required field "nullifier" was not found in object');
}
if (obj.rlnIdentifier != null) {
writer.uint32(58);
writer.bytes(obj.rlnIdentifier);
}
else {
throw new Error('Protocol error: required field "rlnIdentifier" was not found in object');
}
if (opts.lengthDelimited !== false) {
writer.ldelim();
}
}, (reader, length) => {
const obj = {
proof: new Uint8Array(0),
merkleRoot: new Uint8Array(0),
epoch: new Uint8Array(0),
shareX: new Uint8Array(0),
shareY: new Uint8Array(0),
nullifier: new Uint8Array(0),
rlnIdentifier: new Uint8Array(0),
};
const end = length == null ? reader.len : reader.pos + length;
while (reader.pos < end) {
const tag = reader.uint32();
switch (tag >>> 3) {
case 1:
obj.proof = reader.bytes();
break;
case 2:
obj.merkleRoot = reader.bytes();
break;
case 3:
obj.epoch = reader.bytes();
break;
case 4:
obj.shareX = reader.bytes();
break;
case 5:
obj.shareY = reader.bytes();
break;
case 6:
obj.nullifier = reader.bytes();
break;
case 7:
obj.rlnIdentifier = reader.bytes();
break;
default:
reader.skipType(tag & 7);
break;
}
}
if (obj.proof == null) {
throw new Error('Protocol error: value for required field "proof" was not found in protobuf');
}
if (obj.merkleRoot == null) {
throw new Error('Protocol error: value for required field "merkleRoot" was not found in protobuf');
}
if (obj.epoch == null) {
throw new Error('Protocol error: value for required field "epoch" was not found in protobuf');
}
if (obj.shareX == null) {
throw new Error('Protocol error: value for required field "shareX" was not found in protobuf');
}
if (obj.shareY == null) {
throw new Error('Protocol error: value for required field "shareY" was not found in protobuf');
}
if (obj.nullifier == null) {
throw new Error('Protocol error: value for required field "nullifier" was not found in protobuf');
}
if (obj.rlnIdentifier == null) {
throw new Error('Protocol error: value for required field "rlnIdentifier" was not found in protobuf');
}
return obj;
});
}
return _codec;
};
RateLimitProof.encode = (obj) => {
return encodeMessage(obj, RateLimitProof.codec());
};
RateLimitProof.decode = (buf) => {
return decodeMessage(buf, RateLimitProof.codec());
};
})(RateLimitProof$4 || (RateLimitProof$4 = {}));
var WakuMessage$4;
(function (WakuMessage) {
let _codec;
WakuMessage.codec = () => {
if (_codec == null) {
_codec = message((obj, writer, opts = {}) => {
if (opts.lengthDelimited !== false) {
writer.fork();
}
if (obj.payload != null) {
writer.uint32(10);
writer.bytes(obj.payload);
}
if (obj.contentTopic != null) {
writer.uint32(18);
writer.string(obj.contentTopic);
}
if (obj.version != null) {
writer.uint32(24);
writer.uint32(obj.version);
}
if (obj.timestampDeprecated != null) {
writer.uint32(33);
writer.double(obj.timestampDeprecated);
}
if (obj.timestamp != null) {
writer.uint32(80);
writer.sint64(obj.timestamp);
}
if (obj.rateLimitProof != null) {
writer.uint32(170);
RateLimitProof$4.codec().encode(obj.rateLimitProof, writer);
}
if (opts.lengthDelimited !== false) {
writer.ldelim();
}
}, (reader, length) => {
const obj = {};
const end = length == null ? reader.len : reader.pos + length;
while (reader.pos < end) {
const tag = reader.uint32();
switch (tag >>> 3) {
case 1:
obj.payload = reader.bytes();
break;
case 2:
obj.contentTopic = reader.string();
break;
case 3:
obj.version = reader.uint32();
break;
case 4:
obj.timestampDeprecated = reader.double();
break;
case 10:
obj.timestamp = reader.sint64();
break;
case 21:
obj.rateLimitProof = RateLimitProof$4.codec().decode(reader, reader.uint32());
break;
default:
reader.skipType(tag & 7);
break;
}
}
return obj;
});
}
return _codec;
};
WakuMessage.encode = (obj) => {
return encodeMessage(obj, WakuMessage.codec());
};
WakuMessage.decode = (buf) => {
return decodeMessage(buf, WakuMessage.codec());
};
})(WakuMessage$4 || (WakuMessage$4 = {}));
/* eslint-disable import/export */
var TopicOnlyMessage$1;
(function (TopicOnlyMessage) {
let _codec;
TopicOnlyMessage.codec = () => {
if (_codec == null) {
_codec = message((obj, writer, opts = {}) => {
if (opts.lengthDelimited !== false) {
writer.fork();
}
if (obj.contentTopic != null) {
writer.uint32(18);
writer.string(obj.contentTopic);
}
if (opts.lengthDelimited !== false) {
writer.ldelim();
}
}, (reader, length) => {
const obj = {};
const end = length == null ? reader.len : reader.pos + length;
while (reader.pos < end) {
const tag = reader.uint32();
switch (tag >>> 3) {
case 2:
obj.contentTopic = reader.string();
break;
default:
reader.skipType(tag & 7);
break;
}
}
return obj;
});
}
return _codec;
};
TopicOnlyMessage.encode = (obj) => {
return encodeMessage(obj, TopicOnlyMessage.codec());
};
TopicOnlyMessage.decode = (buf) => {
return decodeMessage(buf, TopicOnlyMessage.codec());
};
})(TopicOnlyMessage$1 || (TopicOnlyMessage$1 = {}));
const symbol = Symbol.for('@achingbrain/uint8arraylist');
function findBufAndOffset(bufs, index) {
if (index == null || index < 0) {
throw new RangeError('index is out of bounds');
}
let offset = 0;
for (const buf of bufs) {
const bufEnd = offset + buf.byteLength;
if (index < bufEnd) {
return {
buf,
index: index - offset
};
}
offset = bufEnd;
}
throw new RangeError('index is out of bounds');
}
/**
* Check if object is a CID instance
*/
function isUint8ArrayList(value) {
return Boolean(value?.[symbol]);
}
class Uint8ArrayList {
constructor(...data) {
// Define symbol
Object.defineProperty(this, symbol, { value: true });
this.bufs = [];
this.length = 0;
if (data.length > 0) {
this.appendAll(data);
}
}
*[Symbol.iterator]() {
yield* this.bufs;
}
get byteLength() {
return this.length;
}
/**
* Add one or more `bufs` to the end of this Uint8ArrayList
*/
append(...bufs) {
this.appendAll(bufs);
}
/**
* Add all `bufs` to the end of this Uint8ArrayList
*/
appendAll(bufs) {
let length = 0;
for (const buf of bufs) {
if (buf instanceof Uint8Array) {
length += buf.byteLength;
this.bufs.push(buf);
}
else if (isUint8ArrayList(buf)) {
length += buf.byteLength;
this.bufs.push(...buf.bufs);
}
else {
throw new Error('Could not append value, must be an Uint8Array or a Uint8ArrayList');
}
}
this.length += length;
}
/**
* Add one or more `bufs` to the start of this Uint8ArrayList
*/
prepend(...bufs) {
this.prependAll(bufs);
}
/**
* Add all `bufs` to the start of this Uint8ArrayList
*/
prependAll(bufs) {
let length = 0;
for (const buf of bufs.reverse()) {
if (buf instanceof Uint8Array) {
length += buf.byteLength;
this.bufs.unshift(buf);
}
else if (isUint8ArrayList(buf)) {
length += buf.byteLength;
this.bufs.unshift(...buf.bufs);
}
else {
throw new Error('Could not prepend value, must be an Uint8Array or a Uint8ArrayList');
}
}
this.length += length;
}
/**
* Read the value at `index`
*/
get(index) {
const res = findBufAndOffset(this.bufs, index);
return res.buf[res.index];
}
/**
* Set the value at `index` to `value`
*/
set(index, value) {
const res = findBufAndOffset(this.bufs, index);
res.buf[res.index] = value;
}
/**
* Copy bytes from `buf` to the index specified by `offset`
*/
write(buf, offset = 0) {
if (buf instanceof Uint8Array) {
for (let i = 0; i < buf.length; i++) {
this.set(offset + i, buf[i]);
}
}
else if (isUint8ArrayList(buf)) {
for (let i = 0; i < buf.length; i++) {
this.set(offset + i, buf.get(i));
}
}
else {
throw new Error('Could not write value, must be an Uint8Array or a Uint8ArrayList');
}
}
/**
* Remove bytes from the front of the pool
*/
consume(bytes) {
// first, normalize the argument, in accordance with how Buffer does it
bytes = Math.trunc(bytes);
// do nothing if not a positive number
if (Number.isNaN(bytes) || bytes <= 0) {
return;
}
while (this.bufs.length > 0) {
if (bytes >= this.bufs[0].byteLength) {
bytes -= this.bufs[0].byteLength;
this.length -= this.bufs[0].byteLength;
this.bufs.shift();
}
else {
this.bufs[0] = this.bufs[0].subarray(bytes);
this.length -= bytes;
break;
}
}
}
/**
* Extracts a section of an array and returns a new array.
*
* This is a copy operation as it is with Uint8Arrays and Arrays
* - note this is different to the behaviour of Node Buffers.
*/
slice(beginInclusive, endExclusive) {
const { bufs, length } = this._subList(beginInclusive, endExclusive);
return concat(bufs, length);
}
/**
* Returns a alloc from the given start and end element index.
*
* In the best case where the data extracted comes from a single Uint8Array
* internally this is a no-copy operation otherwise it is a copy operation.
*/
subarray(beginInclusive, endExclusive) {
const { bufs, length } = this._subList(beginInclusive, endExclusive);
if (bufs.length === 1) {
return bufs[0];
}
return concat(bufs, length);
}
/**
* Returns a allocList from the given start and end element index.
*
* This is a no-copy operation.
*/
sublist(beginInclusive, endExclusive) {
const { bufs, length } = this._subList(beginInclusive, endExclusive);
const list = new Uint8ArrayList();
list.length = length;
// don't loop, just set the bufs
list.bufs = bufs;
return list;
}
_subList(beginInclusive, endExclusive) {
beginInclusive = beginInclusive ?? 0;
endExclusive = endExclusive ?? this.length;
if (beginInclusive < 0) {
beginInclusive = this.length + beginInclusive;
}
if (endExclusive < 0) {
endExclusive = this.length + endExclusive;
}
if (beginInclusive < 0 || endExclusive > this.length) {
throw new RangeError('index is out of bounds');
}
if (beginInclusive === endExclusive) {
return { bufs: [], length: 0 };
}
if (beginInclusive === 0 && endExclusive === this.length) {
return { bufs: [...this.bufs], length: this.length };
}
const bufs = [];
let offset = 0;
for (let i = 0; i < this.bufs.length; i++) {
const buf = this.bufs[i];
const bufStart = offset;
const bufEnd = bufStart + buf.byteLength;
// for next loop
offset = bufEnd;
if (beginInclusive >= bufEnd) {
// start after this buf
continue;
}
const sliceStartInBuf = beginInclusive >= bufStart && beginInclusive < bufEnd;
const sliceEndsInBuf = endExclusive > bufStart && endExclusive <= bufEnd;
if (sliceStartInBuf && sliceEndsInBuf) {
// slice is wholly contained within this buffer
if (beginInclusive === bufStart && endExclusive === bufEnd) {
// requested whole buffer
bufs.push(buf);
break;
}
// requested part of buffer
const start = beginInclusive - bufStart;
bufs.push(buf.subarray(start, start + (endExclusive - beginInclusive)));
break;
}
if (sliceStartInBuf) {
// slice starts in this buffer
if (beginInclusive === 0) {
// requested whole buffer
bufs.push(buf);
continue;
}
// requested part of buffer
bufs.push(buf.subarray(beginInclusive - bufStart));
continue;
}
if (sliceEndsInBuf) {
if (endExclusive === bufEnd) {
// requested whole buffer
bufs.push(buf);
break;
}
// requested part of buffer
bufs.push(buf.subarray(0, endExclusive - bufStart));
break;
}
// slice started before this buffer and ends after it
bufs.push(buf);
}
return { bufs, length: endExclusive - beginInclusive };
}
getInt8(byteOffset) {
const buf = this.subarray(byteOffset, byteOffset + 1);
const view = new DataView(buf.buffer, buf.byteOffset, buf.byteLength);
return view.getInt8(0);
}
setInt8(byteOffset, value) {
const buf = allocUnsafe$1(1);
const view = new DataView(buf.buffer, buf.byteOffset, buf.byteLength);
view.setInt8(0, value);
this.write(buf, byteOffset);
}
getInt16(byteOffset, littleEndian) {
const buf = this.subarray(byteOffset, byteOffset + 2);
const view = new DataView(buf.buffer, buf.byteOffset, buf.byteLength);
return view.getInt16(0, littleEndian);
}
setInt16(byteOffset, value, littleEndian) {
const buf = alloc(2);
const view = new DataView(buf.buffer, buf.byteOffset, buf.byteLength);
view.setInt16(0, value, littleEndian);
this.write(buf, byteOffset);
}
getInt32(byteOffset, littleEndian) {
const buf = this.subarray(byteOffset, byteOffset + 4);
const view = new DataView(buf.buffer, buf.byteOffset, buf.byteLength);
return view.getInt32(0, littleEndian);
}
setInt32(byteOffset, value, littleEndian) {
const buf = alloc(4);
const view = new DataView(buf.buffer, buf.byteOffset, buf.byteLength);
view.setInt32(0, value, littleEndian);
this.write(buf, byteOffset);
}
getBigInt64(byteOffset, littleEndian) {
const buf = this.subarray(byteOffset, byteOffset + 8);
const view = new DataView(buf.buffer, buf.byteOffset, buf.byteLength);
return view.getBigInt64(0, littleEndian);
}
setBigInt64(byteOffset, value, littleEndian) {
const buf = alloc(8);
const view = new DataView(buf.buffer, buf.byteOffset, buf.byteLength);
view.setBigInt64(0, value, littleEndian);
this.write(buf, byteOffset);
}
getUint8(byteOffset) {
const buf = this.subarray(byteOffset, byteOffset + 1);
const view = new DataView(buf.buffer, buf.byteOffset, buf.byteLength);
return view.getUint8(0);
}
setUint8(byteOffset, value) {
const buf = allocUnsafe$1(1);
const view = new DataView(buf.buffer, buf.byteOffset, buf.byteLength);
view.setUint8(0, value);
this.write(buf, byteOffset);
}
getUint16(byteOffset, littleEndian) {
const buf = this.subarray(byteOffset, byteOffset + 2);
const view = new DataView(buf.buffer, buf.byteOffset, buf.byteLength);
return view.getUint16(0, littleEndian);
}
setUint16(byteOffset, value, littleEndian) {
const buf = alloc(2);
const view = new DataView(buf.buffer, buf.byteOffset, buf.byteLength);
view.setUint16(0, value, littleEndian);
this.write(buf, byteOffset);
}
getUint32(byteOffset, littleEndian) {
const buf = this.subarray(byteOffset, byteOffset + 4);
const view = new DataView(buf.buffer, buf.byteOffset, buf.byteLength);
return view.getUint32(0, littleEndian);
}
setUint32(byteOffset, value, littleEndian) {
const buf = alloc(4);
const view = new DataView(buf.buffer, buf.byteOffset, buf.byteLength);
view.setUint32(0, value, littleEndian);
this.write(buf, byteOffset);
}
getBigUint64(byteOffset, littleEndian) {
const buf = this.subarray(byteOffset, byteOffset + 8);
const view = new DataView(buf.buffer, buf.byteOffset, buf.byteLength);
return view.getBigUint64(0, littleEndian);
}
setBigUint64(byteOffset, value, littleEndian) {
const buf = alloc(8);
const view = new DataView(buf.buffer, buf.byteOffset, buf.byteLength);
view.setBigUint64(0, value, littleEndian);
this.write(buf, byteOffset);
}
getFloat32(byteOffset, littleEndian) {
const buf = this.subarray(byteOffset, byteOffset + 4);
const view = new DataView(buf.buffer, buf.byteOffset, buf.byteLength);
return view.getFloat32(0, littleEndian);
}
setFloat32(byteOffset, value, littleEndian) {
const buf = alloc(4);
const view = new DataView(buf.buffer, buf.byteOffset, buf.byteLength);
view.setFloat32(0, value, littleEndian);
this.write(buf, byteOffset);
}
getFloat64(byteOffset, littleEndian) {
const buf = this.subarray(byteOffset, byteOffset + 8);
const view = new DataView(buf.buffer, buf.byteOffset, buf.byteLength);
return view.getFloat64(0, littleEndian);
}
setFloat64(byteOffset, value, littleEndian) {
const buf = alloc(8);
const view = new DataView(buf.buffer, buf.byteOffset, buf.byteLength);
view.setFloat64(0, value, littleEndian);
this.write(buf, byteOffset);
}
equals(other) {
if (other == null) {
return false;
}
if (!(other instanceof Uint8ArrayList)) {
return false;
}
if (other.bufs.length !== this.bufs.length) {
return false;
}
for (let i = 0; i < this.bufs.length; i++) {
if (!equals(this.bufs[i], other.bufs[i])) {
return false;
}
}
return true;
}
/**
* Create a Uint8ArrayList from a pre-existing list of Uint8Arrays. Use this
* method if you know the total size of all the Uint8Arrays ahead of time.
*/
static fromUint8Arrays(bufs, length) {
const list = new Uint8ArrayList();
list.bufs = bufs;
if (length == null) {
length = bufs.reduce((acc, curr) => acc + curr.byteLength, 0);
}
list.length = length;
return list;
}
}
function accessor(buf) {
if (buf instanceof Uint8Array) {
return {
get(index) {
return buf[index];
},
set(index, value) {
buf[index] = value;
}
};
}
return {
get(index) {
return buf.get(index);
},
set(index, value) {
buf.set(index, value);
}
};
}
const TWO_32 = 4294967296;
class LongBits {
constructor(hi = 0, lo = 0) {
this.hi = hi;
this.lo = lo;
}
/**
* Returns these hi/lo bits as a BigInt
*/
toBigInt(unsigned) {
if (unsigned === true) {
return BigInt(this.lo >>> 0) + (BigInt(this.hi >>> 0) << 32n);
}
if ((this.hi >>> 31) !== 0) {
const lo = ~this.lo + 1 >>> 0;
let hi = ~this.hi >>> 0;
if (lo === 0) {
hi = hi + 1 >>> 0;
}
return -(BigInt(lo) + (BigInt(hi) << 32n));
}
return BigInt(this.lo >>> 0) + (BigInt(this.hi >>> 0) << 32n);
}
/**
* Returns these hi/lo bits as a Number - this may overflow, toBigInt
* should be preferred
*/
toNumber(unsigned) {
return Number(this.toBigInt(unsigned));
}
/**
* ZigZag decode a LongBits object
*/
zzDecode() {
const mask = -(this.lo & 1);
const lo = ((this.lo >>> 1 | this.hi << 31) ^ mask) >>> 0;
const hi = (this.hi >>> 1 ^ mask) >>> 0;
return new LongBits(hi, lo);
}
/**
* ZigZag encode a LongBits object
*/
zzEncode() {
const mask = this.hi >> 31;
const hi = ((this.hi << 1 | this.lo >>> 31) ^ mask) >>> 0;
const lo = (this.lo << 1 ^ mask) >>> 0;
return new LongBits(hi, lo);
}
/**
* Encode a LongBits object as a varint byte array
*/
toBytes(buf, offset = 0) {
const access = accessor(buf);
while (this.hi > 0) {
access.set(offset++, this.lo & 127 | 128);
this.lo = (this.lo >>> 7 | this.hi << 25) >>> 0;
this.hi >>>= 7;
}
while (this.lo > 127) {
access.set(offset++, this.lo & 127 | 128);
this.lo = this.lo >>> 7;
}
access.set(offset++, this.lo);
}
/**
* Parse a LongBits object from a BigInt
*/
static fromBigInt(value) {
if (value === 0n) {
return new LongBits();
}
const negative = value < 0;
if (negative) {
value = -value;
}
let hi = Number(value >> 32n) | 0;
let lo = Number(value - (BigInt(hi) << 32n)) | 0;
if (negative) {
hi = ~hi >>> 0;
lo = ~lo >>> 0;
if (++lo > TWO_32) {
lo = 0;
if (++hi > TWO_32) {
hi = 0;
}
}
}
return new LongBits(hi, lo);
}
/**
* Parse a LongBits object from a Number
*/
static fromNumber(value) {
if (value === 0) {
return new LongBits();
}
const sign = value < 0;
if (sign) {
value = -value;
}
let lo = value >>> 0;
let hi = (value - lo) / 4294967296 >>> 0;
if (sign) {
hi = ~hi >>> 0;
lo = ~lo >>> 0;
if (++lo > 4294967295) {
lo = 0;
if (++hi > 4294967295) {
hi = 0;
}
}
}
return new LongBits(hi, lo);
}
/**
* Parse a LongBits object from a varint byte array
*/
static fromBytes(buf, offset = 0) {
const access = accessor(buf);
// tends to deopt with local vars for octet etc.
const bits = new LongBits();
let i = 0;
if (buf.length - offset > 4) { // fast route (lo)
for (; i < 4; ++i) {
// 1st..4th
bits.lo = (bits.lo | (access.get(offset) & 127) << i * 7) >>> 0;
if (access.get(offset++) < 128) {
return bits;
}
}
// 5th
bits.lo = (bits.lo | (access.get(offset) & 127) << 28) >>> 0;
bits.hi = (bits.hi | (access.get(offset) & 127) >> 4) >>> 0;
if (access.get(offset++) < 128) {
return bits;
}
i = 0;
}
else {
for (; i < 4; ++i) {
/* istanbul ignore if */
if (offset >= buf.length) {
throw RangeError(`index out of range: ${offset} > ${buf.length}`);
}
// 1st..4th
bits.lo = (bits.lo | (access.get(offset) & 127) << i * 7) >>> 0;
if (access.get(offset++) < 128) {
return bits;
}
}
}
if (buf.length - offset > 4) { // fast route (hi)
for (; i < 5; ++i) {
// 6th..10th
bits.hi = (bits.hi | (access.get(offset) & 127) << i * 7 + 3) >>> 0;
if (access.get(offset++) < 128) {
return bits;
}
}
}
else if (offset < buf.byteLength) {
for (; i < 5; ++i) {
/* istanbul ignore if */
if (offset >= buf.length) {
throw RangeError(`index out of range: ${offset} > ${buf.length}`);
}
// 6th..10th
bits.hi = (bits.hi | (access.get(offset) & 127) << i * 7 + 3) >>> 0;
if (access.get(offset++) < 128) {
return bits;
}
}
}
/* istanbul ignore next */
throw RangeError('invalid varint encoding');
}
}
const N1 = Math.pow(2, 7);
const N2 = Math.pow(2, 14);
const N3 = Math.pow(2, 21);
const N4 = Math.pow(2, 28);
const N5 = Math.pow(2, 35);
const N6 = Math.pow(2, 42);
const N7 = Math.pow(2, 49);
const N8 = Math.pow(2, 56);
const N9 = Math.pow(2, 63);
const unsigned = {
encodingLength(value) {
if (value < N1) {
return 1;
}
if (value < N2) {
return 2;
}
if (value < N3) {
return 3;
}
if (value < N4) {
return 4;
}
if (value < N5) {
return 5;
}
if (value < N6) {
return 6;
}
if (value < N7) {
return 7;
}
if (value < N8) {
return 8;
}
if (value < N9) {
return 9;
}
return 10;
},
encode(value, buf, offset = 0) {
if (Number.MAX_SAFE_INTEGER != null && value > Number.MAX_SAFE_INTEGER) {
throw new RangeError('Could not encode varint');
}
if (buf == null) {
buf = allocUnsafe$1(unsigned.encodingLength(value));
}
LongBits.fromNumber(value).toBytes(buf, offset);
return buf;
},
decode(buf, offset = 0) {
return LongBits.fromBytes(buf, offset).toNumber(true);
}
};
function allocUnsafe(len) {
if (globalThis?.Buffer?.allocUnsafe != null) {
return globalThis.Buffer.allocUnsafe(len);
}
return new Uint8Array(len);
}
const defaultEncoder = (length) => {
const lengthLength = unsigned.encodingLength(length);
const lengthBuf = allocUnsafe(lengthLength);
unsigned.encode(length, lengthBuf);
defaultEncoder.bytes = lengthLength;
return lengthBuf;
};
defaultEncoder.bytes = 0;
function encode(options) {
options = options ?? {};
const encodeLength = options.lengthEncoder ?? defaultEncoder;
const encoder = async function* (source) {
for await (const chunk of source) {
// length + data
const length = encodeLength(chunk.byteLength);
// yield only Uint8Arrays
if (length instanceof Uint8Array) {
yield length;
}
else {
yield* length;
}
// yield only Uint8Arrays
if (chunk instanceof Uint8Array) {
yield chunk;
}
else {
yield* chunk;
}
}
};
return encoder;
}
encode.single = (chunk, options) => {
options = options ?? {};
const encodeLength = options.lengthEncoder ?? defaultEncoder;
return new Uint8ArrayList(encodeLength(chunk.byteLength), chunk);
};
/* eslint max-depth: ["error", 6] */
// Maximum length of the length section of the message
const MAX_LENGTH_LENGTH = 8; // Varint.encode(Number.MAX_SAFE_INTEGER).length
// Maximum length of the data section of the message
const MAX_DATA_LENGTH = 1024 * 1024 * 4;
var ReadMode;
(function (ReadMode) {
ReadMode[ReadMode["LENGTH"] = 0] = "LENGTH";
ReadMode[ReadMode["DATA"] = 1] = "DATA";
})(ReadMode || (ReadMode = {}));
const defaultDecoder = (buf) => {
const length = unsigned.decode(buf);
defaultDecoder.bytes = unsigned.encodingLength(length);
return length;
};
defaultDecoder.bytes = 0;
function decode(options) {
const decoder = async function* (source) {
const buffer = new Uint8ArrayList();
let mode = ReadMode.LENGTH;
let dataLength = -1;
const lengthDecoder = options?.lengthDecoder ?? defaultDecoder;
const maxLengthLength = options?.maxLengthLength ?? MAX_LENGTH_LENGTH;
const maxDataLength = options?.maxDataLength ?? MAX_DATA_LENGTH;
for await (const buf of source) {
buffer.append(buf);
while (buffer.byteLength > 0) {
if (mode === ReadMode.LENGTH) {
// read length, ignore errors for short reads
try {
dataLength = lengthDecoder(buffer);
if (dataLength < 0) {
throw errCode(new Error('invalid message length'), 'ERR_INVALID_MSG_LENGTH');
}
if (dataLength > maxDataLength) {
throw errCode(new Error('message length too long'), 'ERR_MSG_DATA_TOO_LONG');
}
const dataLengthLength = lengthDecoder.bytes;
buffer.consume(dataLengthLength);
if (options?.onLength != null) {
options.onLength(dataLength);
}
mode = ReadMode.DATA;
}
catch (err) {
if (err instanceof RangeError) {
if (buffer.byteLength > maxLengthLength) {
throw errCode(new Error('message length length too long'), 'ERR_MSG_LENGTH_TOO_LONG');
}
break;
}
throw err;
}
}
if (mode === ReadMode.DATA) {
if (buffer.byteLength < dataLength) {
// not enough data, wait for more
break;
}
const data = buffer.sublist(0, dataLength);
buffer.consume(dataLength);
if (options?.onData != null) {
options.onData(data);
}
yield data;
mode = ReadMode.LENGTH;
}
}
}
if (buffer.byteLength > 0) {
throw errCode(new Error('unexpected end of input'), 'ERR_UNEXPECTED_EOF');
}
};
return decoder;
}
/**
* @param {*} reader
* @param {import('./types').DecoderOptions} [options]
* @returns
*/
decode.fromReader = (reader, options) => {
let byteLength = 1; // Read single byte chunks until the length is known
const varByteSource = (async function* () {
while (true) {
try {
const { done, value } = await reader.next(byteLength);
if (done === true) {
return;
}
if (value != null) {
yield value;
}
}
catch (err) {
if (err.code === 'ERR_UNDER_READ') {
return { done: true, value: null };
}
throw err;
}
finally {
// Reset the byteLength so we continue to check for varints
byteLength = 1;
}
}
}());
/**
* Once the length has been parsed, read chunk for that length
*/
const onLength = (l) => { byteLength = l; };
return decode({
...(options ?? {}),
onLength
})(varByteSource);
};
// ported from https://www.npmjs.com/package/fast-fifo
class FixedFIFO$1 {
constructor(hwm) {
if (!(hwm > 0) || ((hwm - 1) & hwm) !== 0) {
throw new Error('Max size for a FixedFIFO should be a power of two');
}
this.buffer = new Array(hwm);
this.mask = hwm - 1;
this.top = 0;
this.btm = 0;
this.next = null;
}
push(data) {
if (this.buffer[this.top] !== undefined) {
return false;
}
this.buffer[this.top] = data;
this.top = (this.top + 1) & this.mask;
return true;
}
shift() {
const last = this.buffer[this.btm];
if (last === undefined) {
return undefined;
}
this.buffer[this.btm] = undefined;
this.btm = (this.btm + 1) & this.mask;
return last;
}
isEmpty() {
return this.buffer[this.btm] === undefined;
}
}
class FIFO$1 {
constructor(options = {}) {
this.hwm = options.splitLimit ?? 16;
this.head = new FixedFIFO$1(this.hwm);
this.tail = this.head;
this.size = 0;
}
calculateSize(obj) {
if (obj?.byteLength != null) {
return obj.byteLength;
}
return 1;
}
push(val) {
if (val?.value != null) {
this.size += this.calculateSize(val.value);
}
if (!this.head.push(val)) {
const prev = this.head;
this.head = prev.next = new FixedFIFO$1(2 * this.head.buffer.length);
this.head.push(val);
}
}
shift() {
let val = this.tail.shift();
if (val === undefined && (this.tail.next != null)) {
const next = this.tail.next;
this.tail.next = null;
this.tail = next;
val = this.tail.shift();
}
if (val?.value != null) {
this.size -= this.calculateSize(val.value);
}
return val;
}
isEmpty() {
return this.head.isEmpty();
}
}
function pushable$1(options = {}) {
const getNext = (buffer) => {
const next = buffer.shift();
if (next == null) {
return { done: true };
}
if (next.error != null) {
throw next.error;
}
return {
done: next.done === true,
// @ts-expect-error
value: next.value
};
};
return _pushable(getNext, options);
}
function _pushable(getNext, options) {
options = options ?? {};
let onEnd = options.onEnd;
let buffer = new FIFO$1();
let pushable;
let onNext;
let ended;
const waitNext = async () => {
if (!buffer.isEmpty()) {
return getNext(buffer);
}
if (ended) {
return { done: true };
}
return await new Promise((resolve, reject) => {
onNext = (next) => {
onNext = null;
buffer.push(next);
try {
resolve(getNext(buffer));
}
catch (err) {
reject(err);
}
return pushable;
};
});
};
const bufferNext = (next) => {
if (onNext != null) {
return onNext(next);
}
buffer.push(next);
return pushable;
};
const bufferError = (err) => {
buffer = new FIFO$1();
if (onNext != null) {
return onNext({ error: err });
}
buffer.push({ error: err });
return pushable;
};
const push = (value) => {
if (ended) {
return pushable;
}
// @ts-expect-error `byteLength` is not declared on PushType
if (options?.objectMode !== true && value?.byteLength == null) {
throw new Error('objectMode was not true but tried to push non-Uint8Array value');
}
return bufferNext({ done: false, value });
};
const end = (err) => {
if (ended)
return pushable;
ended = true;
return (err != null) ? bufferError(err) : bufferNext({ done: true });
};
const _return = () => {
buffer = new FIFO$1();
end();
return { done: true };
};
const _throw = (err) => {
end(err);
return { done: true };
};
pushable = {
[Symbol.asyncIterator]() { return this; },
next: waitNext,
return: _return,
throw: _throw,
push,
end,
get readableLength() {
return buffer.size;
}
};
if (onEnd == null) {
return pushable;
}
const _pushable = pushable;
pushable = {
[Symbol.asyncIterator]() { return this; },
next() {
return _pushable.next();
},
throw(err) {
_pushable.throw(err);
if (onEnd != null) {
onEnd(err);
onEnd = undefined;
}
return { done: true };
},
return() {
_pushable.return();
if (onEnd != null) {
onEnd();
onEnd = undefined;
}
return { done: true };
},
push,
end(err) {
_pushable.end(err);
if (onEnd != null) {
onEnd(err);
onEnd = undefined;
}
return pushable;
},
get readableLength() {
return _pushable.readableLength;
}
};
return pushable;
}
var fixedSize = class FixedFIFO {
constructor (hwm) {
if (!(hwm > 0) || ((hwm - 1) & hwm) !== 0) throw new Error('Max size for a FixedFIFO should be a power of two')
this.buffer = new Array(hwm);
this.mask = hwm - 1;
this.top = 0;
this.btm = 0;
this.next = null;
}
push (data) {
if (this.buffer[this.top] !== undefined) return false
this.buffer[this.top] = data;
this.top = (this.top + 1) & this.mask;
return true
}
shift () {
const last = this.buffer[this.btm];
if (last === undefined) return undefined
this.buffer[this.btm] = undefined;
this.btm = (this.btm + 1) & this.mask;
return last
}
peek () {
return this.buffer[this.btm]
}
isEmpty () {
return this.buffer[this.btm] === undefined
}
};
const FixedFIFO = fixedSize;
var fastFifo = class FastFIFO {
constructor (hwm) {
this.hwm = hwm || 16;
this.head = new FixedFIFO(this.hwm);
this.tail = this.head;
}
push (val) {
if (!this.head.push(val)) {
const prev = this.head;
this.head = prev.next = new FixedFIFO(2 * this.head.buffer.length);
this.head.push(val);
}
}
shift () {
const val = this.tail.shift();
if (val === undefined && this.tail.next) {
const next = this.tail.next;
this.tail.next = null;
this.tail = next;
return this.tail.shift()
}
return val
}
peek () {
return this.tail.peek()
}
isEmpty () {
return this.head.isEmpty()
}
};
const FIFO = fastFifo;
var itPushable = (options) => {
options = options || {};
let onEnd;
if (typeof options === 'function') {
onEnd = options;
options = {};
} else {
onEnd = options.onEnd;
}
let buffer = new FIFO();
let pushable, onNext, ended;
const waitNext = () => {
if (!buffer.isEmpty()) {
if (options.writev) {
let next;
const values = [];
while (!buffer.isEmpty()) {
next = buffer.shift();
if (next.error) throw next.error
values.push(next.value);
}
return { done: next.done, value: values }
}
const next = buffer.shift();
if (next.error) throw next.error
return next
}
if (ended) return { done: true }
return new Promise((resolve, reject) => {
onNext = next => {
onNext = null;
if (next.error) {
reject(next.error);
} else {
if (options.writev && !next.done) {
resolve({ done: next.done, value: [next.value] });
} else {
resolve(next);
}
}
return pushable
};
})
};
const bufferNext = next => {
if (onNext) return onNext(next)
buffer.push(next);
return pushable
};
const bufferError = err => {
buffer = new FIFO();
if (onNext) return onNext({ error: err })
buffer.push({ error: err });
return pushable
};
const push = value => {
if (ended) return pushable
return bufferNext({ done: false, value })
};
const end = err => {
if (ended) return pushable
ended = true;
return err ? bufferError(err) : bufferNext({ done: true })
};
const _return = () => {
buffer = new FIFO();
end();
return { done: true }
};
const _throw = err => {
end(err);
return { done: true }
};
pushable = {
[Symbol.asyncIterator] () { return this },
next: waitNext,
return: _return,
throw: _throw,
push,
end
};
if (!onEnd) return pushable
const _pushable = pushable;
pushable = {
[Symbol.asyncIterator] () { return this },
next () {
return _pushable.next()
},
throw (err) {
_pushable.throw(err);
if (onEnd) {
onEnd(err);
onEnd = null;
}
return { done: true }
},
return () {
_pushable.return();
if (onEnd) {
onEnd();
onEnd = null;
}
return { done: true }
},
push,
end (err) {
_pushable.end(err);
if (onEnd) {
onEnd(err);
onEnd = null;
}
return pushable
}
};
return pushable
};
const pushable = itPushable;
/**
* Treat one or more iterables as a single iterable.
*
* Nb. sources are iterated over in parallel so the
* order of emitted items is not guaranteed.
*
* @template T
* @param {...AsyncIterable<T>|Iterable<T>} sources
* @returns {AsyncIterable<T>}
*/
const merge = async function * (...sources) {
const output = pushable();
setTimeout(async () => {
try {
await Promise.all(
sources.map(async (source) => {
for await (const item of source) {
output.push(item);
}
})
);
output.end();
} catch (/** @type {any} */ err) {
output.end(err);
}
}, 0);
yield * output;
};
var itMerge = merge;
const rawPipe = (...fns) => {
let res;
while (fns.length > 0) {
res = fns.shift()(res);
}
return res;
};
const isIterable = (obj) => {
return obj != null && (typeof obj[Symbol.asyncIterator] === 'function' ||
typeof obj[Symbol.iterator] === 'function' ||
typeof obj.next === 'function' // Probably, right?
);
};
const isDuplex = (obj) => {
return obj != null && typeof obj.sink === 'function' && isIterable(obj.source);
};
const duplexPipelineFn = (duplex) => {
return (source) => {
const p = duplex.sink(source);
if (p.then != null) {
const stream = pushable$1({
objectMode: true
});
p.then(() => {
stream.end();
}, (err) => {
stream.end(err);
});
const sourceWrap = async function* () {
yield* duplex.source;
stream.end();
};
return itMerge(stream, sourceWrap());
}
return duplex.source;
};
};
function pipe(first, ...rest) {
// Duplex at start: wrap in function and return duplex source
if (isDuplex(first)) {
const duplex = first;
first = () => duplex.source;
// Iterable at start: wrap in function
}
else if (isIterable(first)) {
const source = first;
first = () => source;
}
const fns = [first, ...rest];
if (fns.length > 1) {
// Duplex at end: use duplex sink
if (isDuplex(fns[fns.length - 1])) {
fns[fns.length - 1] = fns[fns.length - 1].sink;
}
}
if (fns.length > 2) {
// Duplex in the middle, consume source with duplex sink and return duplex source
for (let i = 1; i < fns.length - 1; i++) {
if (isDuplex(fns[i])) {
fns[i] = duplexPipelineFn(fns[i]);
}
}
}
return rawPipe(...fns);
}
debug("waku:select-peer");
var REGEX = /^(?:[0-9a-f]{8}-[0-9a-f]{4}-[1-5][0-9a-f]{3}-[89ab][0-9a-f]{3}-[0-9a-f]{12}|00000000-0000-0000-0000-000000000000)$/i;
function validate(uuid) {
return typeof uuid === 'string' && REGEX.test(uuid);
}
/**
* Convert array of 16 byte values to UUID string format of the form:
* XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX
*/
var byteToHex = [];
for (var i = 0; i < 256; ++i) {
byteToHex.push((i + 0x100).toString(16).substr(1));
}
function stringify(arr) {
var offset = arguments.length > 1 && arguments[1] !== undefined ? arguments[1] : 0;
// Note: Be careful editing this code! It's been tuned for performance
// and works in ways you may not expect. See https://github.com/uuidjs/uuid/pull/434
var uuid = (byteToHex[arr[offset + 0]] + byteToHex[arr[offset + 1]] + byteToHex[arr[offset + 2]] + byteToHex[arr[offset + 3]] + '-' + byteToHex[arr[offset + 4]] + byteToHex[arr[offset + 5]] + '-' + byteToHex[arr[offset + 6]] + byteToHex[arr[offset + 7]] + '-' + byteToHex[arr[offset + 8]] + byteToHex[arr[offset + 9]] + '-' + byteToHex[arr[offset + 10]] + byteToHex[arr[offset + 11]] + byteToHex[arr[offset + 12]] + byteToHex[arr[offset + 13]] + byteToHex[arr[offset + 14]] + byteToHex[arr[offset + 15]]).toLowerCase(); // Consistency check for valid UUID. If this throws, it's likely due to one
// of the following:
// - One or more input array values don't map to a hex octet (leading to
// "undefined" in the uuid)
// - Invalid input values for the RFC `version` or `variant` fields
if (!validate(uuid)) {
throw TypeError('Stringified UUID is invalid');
}
return uuid;
}
function parse(uuid) {
if (!validate(uuid)) {
throw TypeError('Invalid UUID');
}
var v;
var arr = new Uint8Array(16); // Parse ########-....-....-....-............
arr[0] = (v = parseInt(uuid.slice(0, 8), 16)) >>> 24;
arr[1] = v >>> 16 & 0xff;
arr[2] = v >>> 8 & 0xff;
arr[3] = v & 0xff; // Parse ........-####-....-....-............
arr[4] = (v = parseInt(uuid.slice(9, 13), 16)) >>> 8;
arr[5] = v & 0xff; // Parse ........-....-####-....-............
arr[6] = (v = parseInt(uuid.slice(14, 18), 16)) >>> 8;
arr[7] = v & 0xff; // Parse ........-....-....-####-............
arr[8] = (v = parseInt(uuid.slice(19, 23), 16)) >>> 8;
arr[9] = v & 0xff; // Parse ........-....-....-....-############
// (Use "/" to avoid 32-bit truncation when bit-shifting high-order bytes)
arr[10] = (v = parseInt(uuid.slice(24, 36), 16)) / 0x10000000000 & 0xff;
arr[11] = v / 0x100000000 & 0xff;
arr[12] = v >>> 24 & 0xff;
arr[13] = v >>> 16 & 0xff;
arr[14] = v >>> 8 & 0xff;
arr[15] = v & 0xff;
return arr;
}
function stringToBytes(str) {
str = unescape(encodeURIComponent(str)); // UTF8 escape
var bytes = [];
for (var i = 0; i < str.length; ++i) {
bytes.push(str.charCodeAt(i));
}
return bytes;
}
var DNS = '6ba7b810-9dad-11d1-80b4-00c04fd430c8';
var URL$1 = '6ba7b811-9dad-11d1-80b4-00c04fd430c8';
function v35 (name, version, hashfunc) {
function generateUUID(value, namespace, buf, offset) {
if (typeof value === 'string') {
value = stringToBytes(value);
}
if (typeof namespace === 'string') {
namespace = parse(namespace);
}
if (namespace.length !== 16) {
throw TypeError('Namespace must be array-like (16 iterable integer values, 0-255)');
} // Compute hash of namespace and value, Per 4.3
// Future: Use spread syntax when supported on all platforms, e.g. `bytes =
// hashfunc([...namespace, ... value])`
var bytes = new Uint8Array(16 + value.length);
bytes.set(namespace);
bytes.set(value, namespace.length);
bytes = hashfunc(bytes);
bytes[6] = bytes[6] & 0x0f | version;
bytes[8] = bytes[8] & 0x3f | 0x80;
if (buf) {
offset = offset || 0;
for (var i = 0; i < 16; ++i) {
buf[offset + i] = bytes[i];
}
return buf;
}
return stringify(bytes);
} // Function#name is not settable on some platforms (#270)
try {
generateUUID.name = name; // eslint-disable-next-line no-empty
} catch (err) {} // For CommonJS default export support
generateUUID.DNS = DNS;
generateUUID.URL = URL$1;
return generateUUID;
}
/*
* Browser-compatible JavaScript MD5
*
* Modification of JavaScript MD5
* https://github.com/blueimp/JavaScript-MD5
*
* Copyright 2011, Sebastian Tschan
* https://blueimp.net
*
* Licensed under the MIT license:
* https://opensource.org/licenses/MIT
*
* Based on
* A JavaScript implementation of the RSA Data Security, Inc. MD5 Message
* Digest Algorithm, as defined in RFC 1321.
* Version 2.2 Copyright (C) Paul Johnston 1999 - 2009
* Other contributors: Greg Holt, Andrew Kepert, Ydnar, Lostinet
* Distributed under the BSD License
* See http://pajhome.org.uk/crypt/md5 for more info.
*/
function md5(bytes) {
if (typeof bytes === 'string') {
var msg = unescape(encodeURIComponent(bytes)); // UTF8 escape
bytes = new Uint8Array(msg.length);
for (var i = 0; i < msg.length; ++i) {
bytes[i] = msg.charCodeAt(i);
}
}
return md5ToHexEncodedArray(wordsToMd5(bytesToWords(bytes), bytes.length * 8));
}
/*
* Convert an array of little-endian words to an array of bytes
*/
function md5ToHexEncodedArray(input) {
var output = [];
var length32 = input.length * 32;
var hexTab = '0123456789abcdef';
for (var i = 0; i < length32; i += 8) {
var x = input[i >> 5] >>> i % 32 & 0xff;
var hex = parseInt(hexTab.charAt(x >>> 4 & 0x0f) + hexTab.charAt(x & 0x0f), 16);
output.push(hex);
}
return output;
}
/**
* Calculate output length with padding and bit length
*/
function getOutputLength(inputLength8) {
return (inputLength8 + 64 >>> 9 << 4) + 14 + 1;
}
/*
* Calculate the MD5 of an array of little-endian words, and a bit length.
*/
function wordsToMd5(x, len) {
/* append padding */
x[len >> 5] |= 0x80 << len % 32;
x[getOutputLength(len) - 1] = len;
var a = 1732584193;
var b = -271733879;
var c = -1732584194;
var d = 271733878;
for (var i = 0; i < x.length; i += 16) {
var olda = a;
var oldb = b;
var oldc = c;
var oldd = d;
a = md5ff(a, b, c, d, x[i], 7, -680876936);
d = md5ff(d, a, b, c, x[i + 1], 12, -389564586);
c = md5ff(c, d, a, b, x[i + 2], 17, 606105819);
b = md5ff(b, c, d, a, x[i + 3], 22, -1044525330);
a = md5ff(a, b, c, d, x[i + 4], 7, -176418897);
d = md5ff(d, a, b, c, x[i + 5], 12, 1200080426);
c = md5ff(c, d, a, b, x[i + 6], 17, -1473231341);
b = md5ff(b, c, d, a, x[i + 7], 22, -45705983);
a = md5ff(a, b, c, d, x[i + 8], 7, 1770035416);
d = md5ff(d, a, b, c, x[i + 9], 12, -1958414417);
c = md5ff(c, d, a, b, x[i + 10], 17, -42063);
b = md5ff(b, c, d, a, x[i + 11], 22, -1990404162);
a = md5ff(a, b, c, d, x[i + 12], 7, 1804603682);
d = md5ff(d, a, b, c, x[i + 13], 12, -40341101);
c = md5ff(c, d, a, b, x[i + 14], 17, -1502002290);
b = md5ff(b, c, d, a, x[i + 15], 22, 1236535329);
a = md5gg(a, b, c, d, x[i + 1], 5, -165796510);
d = md5gg(d, a, b, c, x[i + 6], 9, -1069501632);
c = md5gg(c, d, a, b, x[i + 11], 14, 643717713);
b = md5gg(b, c, d, a, x[i], 20, -373897302);
a = md5gg(a, b, c, d, x[i + 5], 5, -701558691);
d = md5gg(d, a, b, c, x[i + 10], 9, 38016083);
c = md5gg(c, d, a, b, x[i + 15], 14, -660478335);
b = md5gg(b, c, d, a, x[i + 4], 20, -405537848);
a = md5gg(a, b, c, d, x[i + 9], 5, 568446438);
d = md5gg(d, a, b, c, x[i + 14], 9, -1019803690);
c = md5gg(c, d, a, b, x[i + 3], 14, -187363961);
b = md5gg(b, c, d, a, x[i + 8], 20, 1163531501);
a = md5gg(a, b, c, d, x[i + 13], 5, -1444681467);
d = md5gg(d, a, b, c, x[i + 2], 9, -51403784);
c = md5gg(c, d, a, b, x[i + 7], 14, 1735328473);
b = md5gg(b, c, d, a, x[i + 12], 20, -1926607734);
a = md5hh(a, b, c, d, x[i + 5], 4, -378558);
d = md5hh(d, a, b, c, x[i + 8], 11, -2022574463);
c = md5hh(c, d, a, b, x[i + 11], 16, 1839030562);
b = md5hh(b, c, d, a, x[i + 14], 23, -35309556);
a = md5hh(a, b, c, d, x[i + 1], 4, -1530992060);
d = md5hh(d, a, b, c, x[i + 4], 11, 1272893353);
c = md5hh(c, d, a, b, x[i + 7], 16, -155497632);
b = md5hh(b, c, d, a, x[i + 10], 23, -1094730640);
a = md5hh(a, b, c, d, x[i + 13], 4, 681279174);
d = md5hh(d, a, b, c, x[i], 11, -358537222);
c = md5hh(c, d, a, b, x[i + 3], 16, -722521979);
b = md5hh(b, c, d, a, x[i + 6], 23, 76029189);
a = md5hh(a, b, c, d, x[i + 9], 4, -640364487);
d = md5hh(d, a, b, c, x[i + 12], 11, -421815835);
c = md5hh(c, d, a, b, x[i + 15], 16, 530742520);
b = md5hh(b, c, d, a, x[i + 2], 23, -995338651);
a = md5ii(a, b, c, d, x[i], 6, -198630844);
d = md5ii(d, a, b, c, x[i + 7], 10, 1126891415);
c = md5ii(c, d, a, b, x[i + 14], 15, -1416354905);
b = md5ii(b, c, d, a, x[i + 5], 21, -57434055);
a = md5ii(a, b, c, d, x[i + 12], 6, 1700485571);
d = md5ii(d, a, b, c, x[i + 3], 10, -1894986606);
c = md5ii(c, d, a, b, x[i + 10], 15, -1051523);
b = md5ii(b, c, d, a, x[i + 1], 21, -2054922799);
a = md5ii(a, b, c, d, x[i + 8], 6, 1873313359);
d = md5ii(d, a, b, c, x[i + 15], 10, -30611744);
c = md5ii(c, d, a, b, x[i + 6], 15, -1560198380);
b = md5ii(b, c, d, a, x[i + 13], 21, 1309151649);
a = md5ii(a, b, c, d, x[i + 4], 6, -145523070);
d = md5ii(d, a, b, c, x[i + 11], 10, -1120210379);
c = md5ii(c, d, a, b, x[i + 2], 15, 718787259);
b = md5ii(b, c, d, a, x[i + 9], 21, -343485551);
a = safeAdd(a, olda);
b = safeAdd(b, oldb);
c = safeAdd(c, oldc);
d = safeAdd(d, oldd);
}
return [a, b, c, d];
}
/*
* Convert an array bytes to an array of little-endian words
* Characters >255 have their high-byte silently ignored.
*/
function bytesToWords(input) {
if (input.length === 0) {
return [];
}
var length8 = input.length * 8;
var output = new Uint32Array(getOutputLength(length8));
for (var i = 0; i < length8; i += 8) {
output[i >> 5] |= (input[i / 8] & 0xff) << i % 32;
}
return output;
}
/*
* Add integers, wrapping at 2^32. This uses 16-bit operations internally
* to work around bugs in some JS interpreters.
*/
function safeAdd(x, y) {
var lsw = (x & 0xffff) + (y & 0xffff);
var msw = (x >> 16) + (y >> 16) + (lsw >> 16);
return msw << 16 | lsw & 0xffff;
}
/*
* Bitwise rotate a 32-bit number to the left.
*/
function bitRotateLeft(num, cnt) {
return num << cnt | num >>> 32 - cnt;
}
/*
* These functions implement the four basic operations the algorithm uses.
*/
function md5cmn(q, a, b, x, s, t) {
return safeAdd(bitRotateLeft(safeAdd(safeAdd(a, q), safeAdd(x, t)), s), b);
}
function md5ff(a, b, c, d, x, s, t) {
return md5cmn(b & c | ~b & d, a, b, x, s, t);
}
function md5gg(a, b, c, d, x, s, t) {
return md5cmn(b & d | c & ~d, a, b, x, s, t);
}
function md5hh(a, b, c, d, x, s, t) {
return md5cmn(b ^ c ^ d, a, b, x, s, t);
}
function md5ii(a, b, c, d, x, s, t) {
return md5cmn(c ^ (b | ~d), a, b, x, s, t);
}
v35('v3', 0x30, md5);
// Adapted from Chris Veness' SHA1 code at
// http://www.movable-type.co.uk/scripts/sha1.html
function f(s, x, y, z) {
switch (s) {
case 0:
return x & y ^ ~x & z;
case 1:
return x ^ y ^ z;
case 2:
return x & y ^ x & z ^ y & z;
case 3:
return x ^ y ^ z;
}
}
function ROTL(x, n) {
return x << n | x >>> 32 - n;
}
function sha1(bytes) {
var K = [0x5a827999, 0x6ed9eba1, 0x8f1bbcdc, 0xca62c1d6];
var H = [0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476, 0xc3d2e1f0];
if (typeof bytes === 'string') {
var msg = unescape(encodeURIComponent(bytes)); // UTF8 escape
bytes = [];
for (var i = 0; i < msg.length; ++i) {
bytes.push(msg.charCodeAt(i));
}
} else if (!Array.isArray(bytes)) {
// Convert Array-like to Array
bytes = Array.prototype.slice.call(bytes);
}
bytes.push(0x80);
var l = bytes.length / 4 + 2;
var N = Math.ceil(l / 16);
var M = new Array(N);
for (var _i = 0; _i < N; ++_i) {
var arr = new Uint32Array(16);
for (var j = 0; j < 16; ++j) {
arr[j] = bytes[_i * 64 + j * 4] << 24 | bytes[_i * 64 + j * 4 + 1] << 16 | bytes[_i * 64 + j * 4 + 2] << 8 | bytes[_i * 64 + j * 4 + 3];
}
M[_i] = arr;
}
M[N - 1][14] = (bytes.length - 1) * 8 / Math.pow(2, 32);
M[N - 1][14] = Math.floor(M[N - 1][14]);
M[N - 1][15] = (bytes.length - 1) * 8 & 0xffffffff;
for (var _i2 = 0; _i2 < N; ++_i2) {
var W = new Uint32Array(80);
for (var t = 0; t < 16; ++t) {
W[t] = M[_i2][t];
}
for (var _t = 16; _t < 80; ++_t) {
W[_t] = ROTL(W[_t - 3] ^ W[_t - 8] ^ W[_t - 14] ^ W[_t - 16], 1);
}
var a = H[0];
var b = H[1];
var c = H[2];
var d = H[3];
var e = H[4];
for (var _t2 = 0; _t2 < 80; ++_t2) {
var s = Math.floor(_t2 / 20);
var T = ROTL(a, 5) + f(s, b, c, d) + e + K[s] + W[_t2] >>> 0;
e = d;
d = c;
c = ROTL(b, 30) >>> 0;
b = a;
a = T;
}
H[0] = H[0] + a >>> 0;
H[1] = H[1] + b >>> 0;
H[2] = H[2] + c >>> 0;
H[3] = H[3] + d >>> 0;
H[4] = H[4] + e >>> 0;
}
return [H[0] >> 24 & 0xff, H[0] >> 16 & 0xff, H[0] >> 8 & 0xff, H[0] & 0xff, H[1] >> 24 & 0xff, H[1] >> 16 & 0xff, H[1] >> 8 & 0xff, H[1] & 0xff, H[2] >> 24 & 0xff, H[2] >> 16 & 0xff, H[2] >> 8 & 0xff, H[2] & 0xff, H[3] >> 24 & 0xff, H[3] >> 16 & 0xff, H[3] >> 8 & 0xff, H[3] & 0xff, H[4] >> 24 & 0xff, H[4] >> 16 & 0xff, H[4] >> 8 & 0xff, H[4] & 0xff];
}
v35('v5', 0x50, sha1);
/* eslint-disable import/export */
var FilterRequest;
(function (FilterRequest) {
(function (ContentFilter) {
let _codec;
ContentFilter.codec = () => {
if (_codec == null) {
_codec = message((obj, writer, opts = {}) => {
if (opts.lengthDelimited !== false) {
writer.fork();
}
if (obj.contentTopic != null) {
writer.uint32(10);
writer.string(obj.contentTopic);
}
if (opts.lengthDelimited !== false) {
writer.ldelim();
}
}, (reader, length) => {
const obj = {};
const end = length == null ? reader.len : reader.pos + length;
while (reader.pos < end) {
const tag = reader.uint32();
switch (tag >>> 3) {
case 1:
obj.contentTopic = reader.string();
break;
default:
reader.skipType(tag & 7);
break;
}
}
return obj;
});
}
return _codec;
};
ContentFilter.encode = (obj) => {
return encodeMessage(obj, ContentFilter.codec());
};
ContentFilter.decode = (buf) => {
return decodeMessage(buf, ContentFilter.codec());
};
})(FilterRequest.ContentFilter || (FilterRequest.ContentFilter = {}));
let _codec;
FilterRequest.codec = () => {
if (_codec == null) {
_codec = message((obj, writer, opts = {}) => {
if (opts.lengthDelimited !== false) {
writer.fork();
}
if (obj.subscribe != null) {
writer.uint32(8);
writer.bool(obj.subscribe);
}
if (obj.topic != null) {
writer.uint32(18);
writer.string(obj.topic);
}
if (obj.contentFilters != null) {
for (const value of obj.contentFilters) {
writer.uint32(26);
FilterRequest.ContentFilter.codec().encode(value, writer);
}
}
else {
throw new Error('Protocol error: required field "contentFilters" was not found in object');
}
if (opts.lengthDelimited !== false) {
writer.ldelim();
}
}, (reader, length) => {
const obj = {
contentFilters: [],
};
const end = length == null ? reader.len : reader.pos + length;
while (reader.pos < end) {
const tag = reader.uint32();
switch (tag >>> 3) {
case 1:
obj.subscribe = reader.bool();
break;
case 2:
obj.topic = reader.string();
break;
case 3:
obj.contentFilters.push(FilterRequest.ContentFilter.codec().decode(reader, reader.uint32()));
break;
default:
reader.skipType(tag & 7);
break;
}
}
return obj;
});
}
return _codec;
};
FilterRequest.encode = (obj) => {
return encodeMessage(obj, FilterRequest.codec());
};
FilterRequest.decode = (buf) => {
return decodeMessage(buf, FilterRequest.codec());
};
})(FilterRequest || (FilterRequest = {}));
var MessagePush;
(function (MessagePush) {
let _codec;
MessagePush.codec = () => {
if (_codec == null) {
_codec = message((obj, writer, opts = {}) => {
if (opts.lengthDelimited !== false) {
writer.fork();
}
if (obj.messages != null) {
for (const value of obj.messages) {
writer.uint32(10);
WakuMessage$3.codec().encode(value, writer);
}
}
else {
throw new Error('Protocol error: required field "messages" was not found in object');
}
if (opts.lengthDelimited !== false) {
writer.ldelim();
}
}, (reader, length) => {
const obj = {
messages: [],
};
const end = length == null ? reader.len : reader.pos + length;
while (reader.pos < end) {
const tag = reader.uint32();
switch (tag >>> 3) {
case 1:
obj.messages.push(WakuMessage$3.codec().decode(reader, reader.uint32()));
break;
default:
reader.skipType(tag & 7);
break;
}
}
return obj;
});
}
return _codec;
};
MessagePush.encode = (obj) => {
return encodeMessage(obj, MessagePush.codec());
};
MessagePush.decode = (buf) => {
return decodeMessage(buf, MessagePush.codec());
};
})(MessagePush || (MessagePush = {}));
var FilterRPC;
(function (FilterRPC) {
let _codec;
FilterRPC.codec = () => {
if (_codec == null) {
_codec = message((obj, writer, opts = {}) => {
if (opts.lengthDelimited !== false) {
writer.fork();
}
if (obj.requestId != null) {
writer.uint32(10);
writer.string(obj.requestId);
}
if (obj.request != null) {
writer.uint32(18);
FilterRequest.codec().encode(obj.request, writer);
}
if (obj.push != null) {
writer.uint32(26);
MessagePush.codec().encode(obj.push, writer);
}
if (opts.lengthDelimited !== false) {
writer.ldelim();
}
}, (reader, length) => {
const obj = {};
const end = length == null ? reader.len : reader.pos + length;
while (reader.pos < end) {
const tag = reader.uint32();
switch (tag >>> 3) {
case 1:
obj.requestId = reader.string();
break;
case 2:
obj.request = FilterRequest.codec().decode(reader, reader.uint32());
break;
case 3:
obj.push = MessagePush.codec().decode(reader, reader.uint32());
break;
default:
reader.skipType(tag & 7);
break;
}
}
return obj;
});
}
return _codec;
};
FilterRPC.encode = (obj) => {
return encodeMessage(obj, FilterRPC.codec());
};
FilterRPC.decode = (buf) => {
return decodeMessage(buf, FilterRPC.codec());
};
})(FilterRPC || (FilterRPC = {}));
var RateLimitProof$3;
(function (RateLimitProof) {
let _codec;
RateLimitProof.codec = () => {
if (_codec == null) {
_codec = message((obj, writer, opts = {}) => {
if (opts.lengthDelimited !== false) {
writer.fork();
}
if (obj.proof != null) {
writer.uint32(10);
writer.bytes(obj.proof);
}
else {
throw new Error('Protocol error: required field "proof" was not found in object');
}
if (obj.merkleRoot != null) {
writer.uint32(18);
writer.bytes(obj.merkleRoot);
}
else {
throw new Error('Protocol error: required field "merkleRoot" was not found in object');
}
if (obj.epoch != null) {
writer.uint32(26);
writer.bytes(obj.epoch);
}
else {
throw new Error('Protocol error: required field "epoch" was not found in object');
}
if (obj.shareX != null) {
writer.uint32(34);
writer.bytes(obj.shareX);
}
else {
throw new Error('Protocol error: required field "shareX" was not found in object');
}
if (obj.shareY != null) {
writer.uint32(42);
writer.bytes(obj.shareY);
}
else {
throw new Error('Protocol error: required field "shareY" was not found in object');
}
if (obj.nullifier != null) {
writer.uint32(50);
writer.bytes(obj.nullifier);
}
else {
throw new Error('Protocol error: required field "nullifier" was not found in object');
}
if (obj.rlnIdentifier != null) {
writer.uint32(58);
writer.bytes(obj.rlnIdentifier);
}
else {
throw new Error('Protocol error: required field "rlnIdentifier" was not found in object');
}
if (opts.lengthDelimited !== false) {
writer.ldelim();
}
}, (reader, length) => {
const obj = {
proof: new Uint8Array(0),
merkleRoot: new Uint8Array(0),
epoch: new Uint8Array(0),
shareX: new Uint8Array(0),
shareY: new Uint8Array(0),
nullifier: new Uint8Array(0),
rlnIdentifier: new Uint8Array(0),
};
const end = length == null ? reader.len : reader.pos + length;
while (reader.pos < end) {
const tag = reader.uint32();
switch (tag >>> 3) {
case 1:
obj.proof = reader.bytes();
break;
case 2:
obj.merkleRoot = reader.bytes();
break;
case 3:
obj.epoch = reader.bytes();
break;
case 4:
obj.shareX = reader.bytes();
break;
case 5:
obj.shareY = reader.bytes();
break;
case 6:
obj.nullifier = reader.bytes();
break;
case 7:
obj.rlnIdentifier = reader.bytes();
break;
default:
reader.skipType(tag & 7);
break;
}
}
if (obj.proof == null) {
throw new Error('Protocol error: value for required field "proof" was not found in protobuf');
}
if (obj.merkleRoot == null) {
throw new Error('Protocol error: value for required field "merkleRoot" was not found in protobuf');
}
if (obj.epoch == null) {
throw new Error('Protocol error: value for required field "epoch" was not found in protobuf');
}
if (obj.shareX == null) {
throw new Error('Protocol error: value for required field "shareX" was not found in protobuf');
}
if (obj.shareY == null) {
throw new Error('Protocol error: value for required field "shareY" was not found in protobuf');
}
if (obj.nullifier == null) {
throw new Error('Protocol error: value for required field "nullifier" was not found in protobuf');
}
if (obj.rlnIdentifier == null) {
throw new Error('Protocol error: value for required field "rlnIdentifier" was not found in protobuf');
}
return obj;
});
}
return _codec;
};
RateLimitProof.encode = (obj) => {
return encodeMessage(obj, RateLimitProof.codec());
};
RateLimitProof.decode = (buf) => {
return decodeMessage(buf, RateLimitProof.codec());
};
})(RateLimitProof$3 || (RateLimitProof$3 = {}));
var WakuMessage$3;
(function (WakuMessage) {
let _codec;
WakuMessage.codec = () => {
if (_codec == null) {
_codec = message((obj, writer, opts = {}) => {
if (opts.lengthDelimited !== false) {
writer.fork();
}
if (obj.payload != null) {
writer.uint32(10);
writer.bytes(obj.payload);
}
if (obj.contentTopic != null) {
writer.uint32(18);
writer.string(obj.contentTopic);
}
if (obj.version != null) {
writer.uint32(24);
writer.uint32(obj.version);
}
if (obj.timestampDeprecated != null) {
writer.uint32(33);
writer.double(obj.timestampDeprecated);
}
if (obj.timestamp != null) {
writer.uint32(80);
writer.sint64(obj.timestamp);
}
if (obj.rateLimitProof != null) {
writer.uint32(170);
RateLimitProof$3.codec().encode(obj.rateLimitProof, writer);
}
if (opts.lengthDelimited !== false) {
writer.ldelim();
}
}, (reader, length) => {
const obj = {};
const end = length == null ? reader.len : reader.pos + length;
while (reader.pos < end) {
const tag = reader.uint32();
switch (tag >>> 3) {
case 1:
obj.payload = reader.bytes();
break;
case 2:
obj.contentTopic = reader.string();
break;
case 3:
obj.version = reader.uint32();
break;
case 4:
obj.timestampDeprecated = reader.double();
break;
case 10:
obj.timestamp = reader.sint64();
break;
case 21:
obj.rateLimitProof = RateLimitProof$3.codec().decode(reader, reader.uint32());
break;
default:
reader.skipType(tag & 7);
break;
}
}
return obj;
});
}
return _codec;
};
WakuMessage.encode = (obj) => {
return encodeMessage(obj, WakuMessage.codec());
};
WakuMessage.decode = (buf) => {
return decodeMessage(buf, WakuMessage.codec());
};
})(WakuMessage$3 || (WakuMessage$3 = {}));
debug("waku:filter");
/* eslint-disable import/export */
var PushRequest;
(function (PushRequest) {
let _codec;
PushRequest.codec = () => {
if (_codec == null) {
_codec = message((obj, writer, opts = {}) => {
if (opts.lengthDelimited !== false) {
writer.fork();
}
if (obj.pubSubTopic != null) {
writer.uint32(10);
writer.string(obj.pubSubTopic);
}
if (obj.message != null) {
writer.uint32(18);
WakuMessage$2.codec().encode(obj.message, writer);
}
if (opts.lengthDelimited !== false) {
writer.ldelim();
}
}, (reader, length) => {
const obj = {};
const end = length == null ? reader.len : reader.pos + length;
while (reader.pos < end) {
const tag = reader.uint32();
switch (tag >>> 3) {
case 1:
obj.pubSubTopic = reader.string();
break;
case 2:
obj.message = WakuMessage$2.codec().decode(reader, reader.uint32());
break;
default:
reader.skipType(tag & 7);
break;
}
}
return obj;
});
}
return _codec;
};
PushRequest.encode = (obj) => {
return encodeMessage(obj, PushRequest.codec());
};
PushRequest.decode = (buf) => {
return decodeMessage(buf, PushRequest.codec());
};
})(PushRequest || (PushRequest = {}));
var PushResponse;
(function (PushResponse) {
let _codec;
PushResponse.codec = () => {
if (_codec == null) {
_codec = message((obj, writer, opts = {}) => {
if (opts.lengthDelimited !== false) {
writer.fork();
}
if (obj.isSuccess != null) {
writer.uint32(8);
writer.bool(obj.isSuccess);
}
if (obj.info != null) {
writer.uint32(18);
writer.string(obj.info);
}
if (opts.lengthDelimited !== false) {
writer.ldelim();
}
}, (reader, length) => {
const obj = {};
const end = length == null ? reader.len : reader.pos + length;
while (reader.pos < end) {
const tag = reader.uint32();
switch (tag >>> 3) {
case 1:
obj.isSuccess = reader.bool();
break;
case 2:
obj.info = reader.string();
break;
default:
reader.skipType(tag & 7);
break;
}
}
return obj;
});
}
return _codec;
};
PushResponse.encode = (obj) => {
return encodeMessage(obj, PushResponse.codec());
};
PushResponse.decode = (buf) => {
return decodeMessage(buf, PushResponse.codec());
};
})(PushResponse || (PushResponse = {}));
var PushRPC;
(function (PushRPC) {
let _codec;
PushRPC.codec = () => {
if (_codec == null) {
_codec = message((obj, writer, opts = {}) => {
if (opts.lengthDelimited !== false) {
writer.fork();
}
if (obj.requestId != null) {
writer.uint32(10);
writer.string(obj.requestId);
}
if (obj.request != null) {
writer.uint32(18);
PushRequest.codec().encode(obj.request, writer);
}
if (obj.response != null) {
writer.uint32(26);
PushResponse.codec().encode(obj.response, writer);
}
if (opts.lengthDelimited !== false) {
writer.ldelim();
}
}, (reader, length) => {
const obj = {};
const end = length == null ? reader.len : reader.pos + length;
while (reader.pos < end) {
const tag = reader.uint32();
switch (tag >>> 3) {
case 1:
obj.requestId = reader.string();
break;
case 2:
obj.request = PushRequest.codec().decode(reader, reader.uint32());
break;
case 3:
obj.response = PushResponse.codec().decode(reader, reader.uint32());
break;
default:
reader.skipType(tag & 7);
break;
}
}
return obj;
});
}
return _codec;
};
PushRPC.encode = (obj) => {
return encodeMessage(obj, PushRPC.codec());
};
PushRPC.decode = (buf) => {
return decodeMessage(buf, PushRPC.codec());
};
})(PushRPC || (PushRPC = {}));
var RateLimitProof$2;
(function (RateLimitProof) {
let _codec;
RateLimitProof.codec = () => {
if (_codec == null) {
_codec = message((obj, writer, opts = {}) => {
if (opts.lengthDelimited !== false) {
writer.fork();
}
if (obj.proof != null) {
writer.uint32(10);
writer.bytes(obj.proof);
}
else {
throw new Error('Protocol error: required field "proof" was not found in object');
}
if (obj.merkleRoot != null) {
writer.uint32(18);
writer.bytes(obj.merkleRoot);
}
else {
throw new Error('Protocol error: required field "merkleRoot" was not found in object');
}
if (obj.epoch != null) {
writer.uint32(26);
writer.bytes(obj.epoch);
}
else {
throw new Error('Protocol error: required field "epoch" was not found in object');
}
if (obj.shareX != null) {
writer.uint32(34);
writer.bytes(obj.shareX);
}
else {
throw new Error('Protocol error: required field "shareX" was not found in object');
}
if (obj.shareY != null) {
writer.uint32(42);
writer.bytes(obj.shareY);
}
else {
throw new Error('Protocol error: required field "shareY" was not found in object');
}
if (obj.nullifier != null) {
writer.uint32(50);
writer.bytes(obj.nullifier);
}
else {
throw new Error('Protocol error: required field "nullifier" was not found in object');
}
if (obj.rlnIdentifier != null) {
writer.uint32(58);
writer.bytes(obj.rlnIdentifier);
}
else {
throw new Error('Protocol error: required field "rlnIdentifier" was not found in object');
}
if (opts.lengthDelimited !== false) {
writer.ldelim();
}
}, (reader, length) => {
const obj = {
proof: new Uint8Array(0),
merkleRoot: new Uint8Array(0),
epoch: new Uint8Array(0),
shareX: new Uint8Array(0),
shareY: new Uint8Array(0),
nullifier: new Uint8Array(0),
rlnIdentifier: new Uint8Array(0),
};
const end = length == null ? reader.len : reader.pos + length;
while (reader.pos < end) {
const tag = reader.uint32();
switch (tag >>> 3) {
case 1:
obj.proof = reader.bytes();
break;
case 2:
obj.merkleRoot = reader.bytes();
break;
case 3:
obj.epoch = reader.bytes();
break;
case 4:
obj.shareX = reader.bytes();
break;
case 5:
obj.shareY = reader.bytes();
break;
case 6:
obj.nullifier = reader.bytes();
break;
case 7:
obj.rlnIdentifier = reader.bytes();
break;
default:
reader.skipType(tag & 7);
break;
}
}
if (obj.proof == null) {
throw new Error('Protocol error: value for required field "proof" was not found in protobuf');
}
if (obj.merkleRoot == null) {
throw new Error('Protocol error: value for required field "merkleRoot" was not found in protobuf');
}
if (obj.epoch == null) {
throw new Error('Protocol error: value for required field "epoch" was not found in protobuf');
}
if (obj.shareX == null) {
throw new Error('Protocol error: value for required field "shareX" was not found in protobuf');
}
if (obj.shareY == null) {
throw new Error('Protocol error: value for required field "shareY" was not found in protobuf');
}
if (obj.nullifier == null) {
throw new Error('Protocol error: value for required field "nullifier" was not found in protobuf');
}
if (obj.rlnIdentifier == null) {
throw new Error('Protocol error: value for required field "rlnIdentifier" was not found in protobuf');
}
return obj;
});
}
return _codec;
};
RateLimitProof.encode = (obj) => {
return encodeMessage(obj, RateLimitProof.codec());
};
RateLimitProof.decode = (buf) => {
return decodeMessage(buf, RateLimitProof.codec());
};
})(RateLimitProof$2 || (RateLimitProof$2 = {}));
var WakuMessage$2;
(function (WakuMessage) {
let _codec;
WakuMessage.codec = () => {
if (_codec == null) {
_codec = message((obj, writer, opts = {}) => {
if (opts.lengthDelimited !== false) {
writer.fork();
}
if (obj.payload != null) {
writer.uint32(10);
writer.bytes(obj.payload);
}
if (obj.contentTopic != null) {
writer.uint32(18);
writer.string(obj.contentTopic);
}
if (obj.version != null) {
writer.uint32(24);
writer.uint32(obj.version);
}
if (obj.timestampDeprecated != null) {
writer.uint32(33);
writer.double(obj.timestampDeprecated);
}
if (obj.timestamp != null) {
writer.uint32(80);
writer.sint64(obj.timestamp);
}
if (obj.rateLimitProof != null) {
writer.uint32(170);
RateLimitProof$2.codec().encode(obj.rateLimitProof, writer);
}
if (opts.lengthDelimited !== false) {
writer.ldelim();
}
}, (reader, length) => {
const obj = {};
const end = length == null ? reader.len : reader.pos + length;
while (reader.pos < end) {
const tag = reader.uint32();
switch (tag >>> 3) {
case 1:
obj.payload = reader.bytes();
break;
case 2:
obj.contentTopic = reader.string();
break;
case 3:
obj.version = reader.uint32();
break;
case 4:
obj.timestampDeprecated = reader.double();
break;
case 10:
obj.timestamp = reader.sint64();
break;
case 21:
obj.rateLimitProof = RateLimitProof$2.codec().decode(reader, reader.uint32());
break;
default:
reader.skipType(tag & 7);
break;
}
}
return obj;
});
}
return _codec;
};
WakuMessage.encode = (obj) => {
return encodeMessage(obj, WakuMessage.codec());
};
WakuMessage.decode = (buf) => {
return decodeMessage(buf, WakuMessage.codec());
};
})(WakuMessage$2 || (WakuMessage$2 = {}));
debug("waku:light-push");
debug("waku:message:version-0");
BigInt(1000000);
/**
* RelayCodec is the libp2p identifier for the waku relay protocol
*/
const RelayCodecs = [
"/vac/waku/relay/2.0.0-beta2",
"/vac/waku/relay/2.0.0",
];
/* eslint-disable import/export */
var Index$1;
(function (Index) {
let _codec;
Index.codec = () => {
if (_codec == null) {
_codec = message((obj, writer, opts = {}) => {
if (opts.lengthDelimited !== false) {
writer.fork();
}
if (obj.digest != null) {
writer.uint32(10);
writer.bytes(obj.digest);
}
if (obj.receivedTime != null) {
writer.uint32(16);
writer.sint64(obj.receivedTime);
}
if (obj.senderTime != null) {
writer.uint32(24);
writer.sint64(obj.senderTime);
}
if (obj.pubsubTopic != null) {
writer.uint32(34);
writer.string(obj.pubsubTopic);
}
if (opts.lengthDelimited !== false) {
writer.ldelim();
}
}, (reader, length) => {
const obj = {};
const end = length == null ? reader.len : reader.pos + length;
while (reader.pos < end) {
const tag = reader.uint32();
switch (tag >>> 3) {
case 1:
obj.digest = reader.bytes();
break;
case 2:
obj.receivedTime = reader.sint64();
break;
case 3:
obj.senderTime = reader.sint64();
break;
case 4:
obj.pubsubTopic = reader.string();
break;
default:
reader.skipType(tag & 7);
break;
}
}
return obj;
});
}
return _codec;
};
Index.encode = (obj) => {
return encodeMessage(obj, Index.codec());
};
Index.decode = (buf) => {
return decodeMessage(buf, Index.codec());
};
})(Index$1 || (Index$1 = {}));
var PagingInfo$1;
(function (PagingInfo) {
(function (Direction) {
Direction["DIRECTION_BACKWARD_UNSPECIFIED"] = "DIRECTION_BACKWARD_UNSPECIFIED";
Direction["DIRECTION_FORWARD"] = "DIRECTION_FORWARD";
})(PagingInfo.Direction || (PagingInfo.Direction = {}));
let __DirectionValues;
(function (__DirectionValues) {
__DirectionValues[__DirectionValues["DIRECTION_BACKWARD_UNSPECIFIED"] = 0] = "DIRECTION_BACKWARD_UNSPECIFIED";
__DirectionValues[__DirectionValues["DIRECTION_FORWARD"] = 1] = "DIRECTION_FORWARD";
})(__DirectionValues || (__DirectionValues = {}));
(function (Direction) {
Direction.codec = () => {
return enumeration(__DirectionValues);
};
})(PagingInfo.Direction || (PagingInfo.Direction = {}));
let _codec;
PagingInfo.codec = () => {
if (_codec == null) {
_codec = message((obj, writer, opts = {}) => {
if (opts.lengthDelimited !== false) {
writer.fork();
}
if (obj.pageSize != null) {
writer.uint32(8);
writer.uint64(obj.pageSize);
}
if (obj.cursor != null) {
writer.uint32(18);
Index$1.codec().encode(obj.cursor, writer);
}
if (obj.direction != null) {
writer.uint32(24);
PagingInfo.Direction.codec().encode(obj.direction, writer);
}
if (opts.lengthDelimited !== false) {
writer.ldelim();
}
}, (reader, length) => {
const obj = {};
const end = length == null ? reader.len : reader.pos + length;
while (reader.pos < end) {
const tag = reader.uint32();
switch (tag >>> 3) {
case 1:
obj.pageSize = reader.uint64();
break;
case 2:
obj.cursor = Index$1.codec().decode(reader, reader.uint32());
break;
case 3:
obj.direction = PagingInfo.Direction.codec().decode(reader);
break;
default:
reader.skipType(tag & 7);
break;
}
}
return obj;
});
}
return _codec;
};
PagingInfo.encode = (obj) => {
return encodeMessage(obj, PagingInfo.codec());
};
PagingInfo.decode = (buf) => {
return decodeMessage(buf, PagingInfo.codec());
};
})(PagingInfo$1 || (PagingInfo$1 = {}));
var ContentFilter$1;
(function (ContentFilter) {
let _codec;
ContentFilter.codec = () => {
if (_codec == null) {
_codec = message((obj, writer, opts = {}) => {
if (opts.lengthDelimited !== false) {
writer.fork();
}
if (obj.contentTopic != null) {
writer.uint32(10);
writer.string(obj.contentTopic);
}
if (opts.lengthDelimited !== false) {
writer.ldelim();
}
}, (reader, length) => {
const obj = {};
const end = length == null ? reader.len : reader.pos + length;
while (reader.pos < end) {
const tag = reader.uint32();
switch (tag >>> 3) {
case 1:
obj.contentTopic = reader.string();
break;
default:
reader.skipType(tag & 7);
break;
}
}
return obj;
});
}
return _codec;
};
ContentFilter.encode = (obj) => {
return encodeMessage(obj, ContentFilter.codec());
};
ContentFilter.decode = (buf) => {
return decodeMessage(buf, ContentFilter.codec());
};
})(ContentFilter$1 || (ContentFilter$1 = {}));
var HistoryQuery$1;
(function (HistoryQuery) {
let _codec;
HistoryQuery.codec = () => {
if (_codec == null) {
_codec = message((obj, writer, opts = {}) => {
if (opts.lengthDelimited !== false) {
writer.fork();
}
if (obj.pubSubTopic != null) {
writer.uint32(18);
writer.string(obj.pubSubTopic);
}
if (obj.contentFilters != null) {
for (const value of obj.contentFilters) {
writer.uint32(26);
ContentFilter$1.codec().encode(value, writer);
}
}
else {
throw new Error('Protocol error: required field "contentFilters" was not found in object');
}
if (obj.pagingInfo != null) {
writer.uint32(34);
PagingInfo$1.codec().encode(obj.pagingInfo, writer);
}
if (obj.startTime != null) {
writer.uint32(40);
writer.sint64(obj.startTime);
}
if (obj.endTime != null) {
writer.uint32(48);
writer.sint64(obj.endTime);
}
if (opts.lengthDelimited !== false) {
writer.ldelim();
}
}, (reader, length) => {
const obj = {
contentFilters: [],
};
const end = length == null ? reader.len : reader.pos + length;
while (reader.pos < end) {
const tag = reader.uint32();
switch (tag >>> 3) {
case 2:
obj.pubSubTopic = reader.string();
break;
case 3:
obj.contentFilters.push(ContentFilter$1.codec().decode(reader, reader.uint32()));
break;
case 4:
obj.pagingInfo = PagingInfo$1.codec().decode(reader, reader.uint32());
break;
case 5:
obj.startTime = reader.sint64();
break;
case 6:
obj.endTime = reader.sint64();
break;
default:
reader.skipType(tag & 7);
break;
}
}
return obj;
});
}
return _codec;
};
HistoryQuery.encode = (obj) => {
return encodeMessage(obj, HistoryQuery.codec());
};
HistoryQuery.decode = (buf) => {
return decodeMessage(buf, HistoryQuery.codec());
};
})(HistoryQuery$1 || (HistoryQuery$1 = {}));
var HistoryResponse$1;
(function (HistoryResponse) {
(function (HistoryError) {
HistoryError["ERROR_NONE_UNSPECIFIED"] = "ERROR_NONE_UNSPECIFIED";
HistoryError["ERROR_INVALID_CURSOR"] = "ERROR_INVALID_CURSOR";
})(HistoryResponse.HistoryError || (HistoryResponse.HistoryError = {}));
let __HistoryErrorValues;
(function (__HistoryErrorValues) {
__HistoryErrorValues[__HistoryErrorValues["ERROR_NONE_UNSPECIFIED"] = 0] = "ERROR_NONE_UNSPECIFIED";
__HistoryErrorValues[__HistoryErrorValues["ERROR_INVALID_CURSOR"] = 1] = "ERROR_INVALID_CURSOR";
})(__HistoryErrorValues || (__HistoryErrorValues = {}));
(function (HistoryError) {
HistoryError.codec = () => {
return enumeration(__HistoryErrorValues);
};
})(HistoryResponse.HistoryError || (HistoryResponse.HistoryError = {}));
let _codec;
HistoryResponse.codec = () => {
if (_codec == null) {
_codec = message((obj, writer, opts = {}) => {
if (opts.lengthDelimited !== false) {
writer.fork();
}
if (obj.messages != null) {
for (const value of obj.messages) {
writer.uint32(18);
WakuMessage$1.codec().encode(value, writer);
}
}
else {
throw new Error('Protocol error: required field "messages" was not found in object');
}
if (obj.pagingInfo != null) {
writer.uint32(26);
PagingInfo$1.codec().encode(obj.pagingInfo, writer);
}
if (obj.error != null) {
writer.uint32(32);
HistoryResponse.HistoryError.codec().encode(obj.error, writer);
}
if (opts.lengthDelimited !== false) {
writer.ldelim();
}
}, (reader, length) => {
const obj = {
messages: [],
};
const end = length == null ? reader.len : reader.pos + length;
while (reader.pos < end) {
const tag = reader.uint32();
switch (tag >>> 3) {
case 2:
obj.messages.push(WakuMessage$1.codec().decode(reader, reader.uint32()));
break;
case 3:
obj.pagingInfo = PagingInfo$1.codec().decode(reader, reader.uint32());
break;
case 4:
obj.error = HistoryResponse.HistoryError.codec().decode(reader);
break;
default:
reader.skipType(tag & 7);
break;
}
}
return obj;
});
}
return _codec;
};
HistoryResponse.encode = (obj) => {
return encodeMessage(obj, HistoryResponse.codec());
};
HistoryResponse.decode = (buf) => {
return decodeMessage(buf, HistoryResponse.codec());
};
})(HistoryResponse$1 || (HistoryResponse$1 = {}));
var HistoryRPC$1;
(function (HistoryRPC) {
let _codec;
HistoryRPC.codec = () => {
if (_codec == null) {
_codec = message((obj, writer, opts = {}) => {
if (opts.lengthDelimited !== false) {
writer.fork();
}
if (obj.requestId != null) {
writer.uint32(10);
writer.string(obj.requestId);
}
if (obj.query != null) {
writer.uint32(18);
HistoryQuery$1.codec().encode(obj.query, writer);
}
if (obj.response != null) {
writer.uint32(26);
HistoryResponse$1.codec().encode(obj.response, writer);
}
if (opts.lengthDelimited !== false) {
writer.ldelim();
}
}, (reader, length) => {
const obj = {};
const end = length == null ? reader.len : reader.pos + length;
while (reader.pos < end) {
const tag = reader.uint32();
switch (tag >>> 3) {
case 1:
obj.requestId = reader.string();
break;
case 2:
obj.query = HistoryQuery$1.codec().decode(reader, reader.uint32());
break;
case 3:
obj.response = HistoryResponse$1.codec().decode(reader, reader.uint32());
break;
default:
reader.skipType(tag & 7);
break;
}
}
return obj;
});
}
return _codec;
};
HistoryRPC.encode = (obj) => {
return encodeMessage(obj, HistoryRPC.codec());
};
HistoryRPC.decode = (buf) => {
return decodeMessage(buf, HistoryRPC.codec());
};
})(HistoryRPC$1 || (HistoryRPC$1 = {}));
var RateLimitProof$1;
(function (RateLimitProof) {
let _codec;
RateLimitProof.codec = () => {
if (_codec == null) {
_codec = message((obj, writer, opts = {}) => {
if (opts.lengthDelimited !== false) {
writer.fork();
}
if (obj.proof != null) {
writer.uint32(10);
writer.bytes(obj.proof);
}
else {
throw new Error('Protocol error: required field "proof" was not found in object');
}
if (obj.merkleRoot != null) {
writer.uint32(18);
writer.bytes(obj.merkleRoot);
}
else {
throw new Error('Protocol error: required field "merkleRoot" was not found in object');
}
if (obj.epoch != null) {
writer.uint32(26);
writer.bytes(obj.epoch);
}
else {
throw new Error('Protocol error: required field "epoch" was not found in object');
}
if (obj.shareX != null) {
writer.uint32(34);
writer.bytes(obj.shareX);
}
else {
throw new Error('Protocol error: required field "shareX" was not found in object');
}
if (obj.shareY != null) {
writer.uint32(42);
writer.bytes(obj.shareY);
}
else {
throw new Error('Protocol error: required field "shareY" was not found in object');
}
if (obj.nullifier != null) {
writer.uint32(50);
writer.bytes(obj.nullifier);
}
else {
throw new Error('Protocol error: required field "nullifier" was not found in object');
}
if (obj.rlnIdentifier != null) {
writer.uint32(58);
writer.bytes(obj.rlnIdentifier);
}
else {
throw new Error('Protocol error: required field "rlnIdentifier" was not found in object');
}
if (opts.lengthDelimited !== false) {
writer.ldelim();
}
}, (reader, length) => {
const obj = {
proof: new Uint8Array(0),
merkleRoot: new Uint8Array(0),
epoch: new Uint8Array(0),
shareX: new Uint8Array(0),
shareY: new Uint8Array(0),
nullifier: new Uint8Array(0),
rlnIdentifier: new Uint8Array(0),
};
const end = length == null ? reader.len : reader.pos + length;
while (reader.pos < end) {
const tag = reader.uint32();
switch (tag >>> 3) {
case 1:
obj.proof = reader.bytes();
break;
case 2:
obj.merkleRoot = reader.bytes();
break;
case 3:
obj.epoch = reader.bytes();
break;
case 4:
obj.shareX = reader.bytes();
break;
case 5:
obj.shareY = reader.bytes();
break;
case 6:
obj.nullifier = reader.bytes();
break;
case 7:
obj.rlnIdentifier = reader.bytes();
break;
default:
reader.skipType(tag & 7);
break;
}
}
if (obj.proof == null) {
throw new Error('Protocol error: value for required field "proof" was not found in protobuf');
}
if (obj.merkleRoot == null) {
throw new Error('Protocol error: value for required field "merkleRoot" was not found in protobuf');
}
if (obj.epoch == null) {
throw new Error('Protocol error: value for required field "epoch" was not found in protobuf');
}
if (obj.shareX == null) {
throw new Error('Protocol error: value for required field "shareX" was not found in protobuf');
}
if (obj.shareY == null) {
throw new Error('Protocol error: value for required field "shareY" was not found in protobuf');
}
if (obj.nullifier == null) {
throw new Error('Protocol error: value for required field "nullifier" was not found in protobuf');
}
if (obj.rlnIdentifier == null) {
throw new Error('Protocol error: value for required field "rlnIdentifier" was not found in protobuf');
}
return obj;
});
}
return _codec;
};
RateLimitProof.encode = (obj) => {
return encodeMessage(obj, RateLimitProof.codec());
};
RateLimitProof.decode = (buf) => {
return decodeMessage(buf, RateLimitProof.codec());
};
})(RateLimitProof$1 || (RateLimitProof$1 = {}));
var WakuMessage$1;
(function (WakuMessage) {
let _codec;
WakuMessage.codec = () => {
if (_codec == null) {
_codec = message((obj, writer, opts = {}) => {
if (opts.lengthDelimited !== false) {
writer.fork();
}
if (obj.payload != null) {
writer.uint32(10);
writer.bytes(obj.payload);
}
if (obj.contentTopic != null) {
writer.uint32(18);
writer.string(obj.contentTopic);
}
if (obj.version != null) {
writer.uint32(24);
writer.uint32(obj.version);
}
if (obj.timestampDeprecated != null) {
writer.uint32(33);
writer.double(obj.timestampDeprecated);
}
if (obj.timestamp != null) {
writer.uint32(80);
writer.sint64(obj.timestamp);
}
if (obj.rateLimitProof != null) {
writer.uint32(170);
RateLimitProof$1.codec().encode(obj.rateLimitProof, writer);
}
if (opts.lengthDelimited !== false) {
writer.ldelim();
}
}, (reader, length) => {
const obj = {};
const end = length == null ? reader.len : reader.pos + length;
while (reader.pos < end) {
const tag = reader.uint32();
switch (tag >>> 3) {
case 1:
obj.payload = reader.bytes();
break;
case 2:
obj.contentTopic = reader.string();
break;
case 3:
obj.version = reader.uint32();
break;
case 4:
obj.timestampDeprecated = reader.double();
break;
case 10:
obj.timestamp = reader.sint64();
break;
case 21:
obj.rateLimitProof = RateLimitProof$1.codec().decode(reader, reader.uint32());
break;
default:
reader.skipType(tag & 7);
break;
}
}
return obj;
});
}
return _codec;
};
WakuMessage.encode = (obj) => {
return encodeMessage(obj, WakuMessage.codec());
};
WakuMessage.decode = (buf) => {
return decodeMessage(buf, WakuMessage.codec());
};
})(WakuMessage$1 || (WakuMessage$1 = {}));
/* eslint-disable import/export */
var Index;
(function (Index) {
let _codec;
Index.codec = () => {
if (_codec == null) {
_codec = message((obj, writer, opts = {}) => {
if (opts.lengthDelimited !== false) {
writer.fork();
}
if (obj.digest != null) {
writer.uint32(10);
writer.bytes(obj.digest);
}
if (obj.receivedTime != null) {
writer.uint32(17);
writer.double(obj.receivedTime);
}
if (obj.senderTime != null) {
writer.uint32(25);
writer.double(obj.senderTime);
}
if (opts.lengthDelimited !== false) {
writer.ldelim();
}
}, (reader, length) => {
const obj = {};
const end = length == null ? reader.len : reader.pos + length;
while (reader.pos < end) {
const tag = reader.uint32();
switch (tag >>> 3) {
case 1:
obj.digest = reader.bytes();
break;
case 2:
obj.receivedTime = reader.double();
break;
case 3:
obj.senderTime = reader.double();
break;
default:
reader.skipType(tag & 7);
break;
}
}
return obj;
});
}
return _codec;
};
Index.encode = (obj) => {
return encodeMessage(obj, Index.codec());
};
Index.decode = (buf) => {
return decodeMessage(buf, Index.codec());
};
})(Index || (Index = {}));
var PagingInfo;
(function (PagingInfo) {
(function (Direction) {
Direction["DIRECTION_BACKWARD_UNSPECIFIED"] = "DIRECTION_BACKWARD_UNSPECIFIED";
Direction["DIRECTION_FORWARD"] = "DIRECTION_FORWARD";
})(PagingInfo.Direction || (PagingInfo.Direction = {}));
let __DirectionValues;
(function (__DirectionValues) {
__DirectionValues[__DirectionValues["DIRECTION_BACKWARD_UNSPECIFIED"] = 0] = "DIRECTION_BACKWARD_UNSPECIFIED";
__DirectionValues[__DirectionValues["DIRECTION_FORWARD"] = 1] = "DIRECTION_FORWARD";
})(__DirectionValues || (__DirectionValues = {}));
(function (Direction) {
Direction.codec = () => {
return enumeration(__DirectionValues);
};
})(PagingInfo.Direction || (PagingInfo.Direction = {}));
let _codec;
PagingInfo.codec = () => {
if (_codec == null) {
_codec = message((obj, writer, opts = {}) => {
if (opts.lengthDelimited !== false) {
writer.fork();
}
if (obj.pageSize != null) {
writer.uint32(8);
writer.uint64(obj.pageSize);
}
if (obj.cursor != null) {
writer.uint32(18);
Index.codec().encode(obj.cursor, writer);
}
if (obj.direction != null) {
writer.uint32(24);
PagingInfo.Direction.codec().encode(obj.direction, writer);
}
if (opts.lengthDelimited !== false) {
writer.ldelim();
}
}, (reader, length) => {
const obj = {};
const end = length == null ? reader.len : reader.pos + length;
while (reader.pos < end) {
const tag = reader.uint32();
switch (tag >>> 3) {
case 1:
obj.pageSize = reader.uint64();
break;
case 2:
obj.cursor = Index.codec().decode(reader, reader.uint32());
break;
case 3:
obj.direction = PagingInfo.Direction.codec().decode(reader);
break;
default:
reader.skipType(tag & 7);
break;
}
}
return obj;
});
}
return _codec;
};
PagingInfo.encode = (obj) => {
return encodeMessage(obj, PagingInfo.codec());
};
PagingInfo.decode = (buf) => {
return decodeMessage(buf, PagingInfo.codec());
};
})(PagingInfo || (PagingInfo = {}));
var ContentFilter;
(function (ContentFilter) {
let _codec;
ContentFilter.codec = () => {
if (_codec == null) {
_codec = message((obj, writer, opts = {}) => {
if (opts.lengthDelimited !== false) {
writer.fork();
}
if (obj.contentTopic != null) {
writer.uint32(10);
writer.string(obj.contentTopic);
}
if (opts.lengthDelimited !== false) {
writer.ldelim();
}
}, (reader, length) => {
const obj = {};
const end = length == null ? reader.len : reader.pos + length;
while (reader.pos < end) {
const tag = reader.uint32();
switch (tag >>> 3) {
case 1:
obj.contentTopic = reader.string();
break;
default:
reader.skipType(tag & 7);
break;
}
}
return obj;
});
}
return _codec;
};
ContentFilter.encode = (obj) => {
return encodeMessage(obj, ContentFilter.codec());
};
ContentFilter.decode = (buf) => {
return decodeMessage(buf, ContentFilter.codec());
};
})(ContentFilter || (ContentFilter = {}));
var HistoryQuery;
(function (HistoryQuery) {
let _codec;
HistoryQuery.codec = () => {
if (_codec == null) {
_codec = message((obj, writer, opts = {}) => {
if (opts.lengthDelimited !== false) {
writer.fork();
}
if (obj.pubSubTopic != null) {
writer.uint32(18);
writer.string(obj.pubSubTopic);
}
if (obj.contentFilters != null) {
for (const value of obj.contentFilters) {
writer.uint32(26);
ContentFilter.codec().encode(value, writer);
}
}
else {
throw new Error('Protocol error: required field "contentFilters" was not found in object');
}
if (obj.pagingInfo != null) {
writer.uint32(34);
PagingInfo.codec().encode(obj.pagingInfo, writer);
}
if (obj.startTime != null) {
writer.uint32(41);
writer.double(obj.startTime);
}
if (obj.endTime != null) {
writer.uint32(49);
writer.double(obj.endTime);
}
if (opts.lengthDelimited !== false) {
writer.ldelim();
}
}, (reader, length) => {
const obj = {
contentFilters: [],
};
const end = length == null ? reader.len : reader.pos + length;
while (reader.pos < end) {
const tag = reader.uint32();
switch (tag >>> 3) {
case 2:
obj.pubSubTopic = reader.string();
break;
case 3:
obj.contentFilters.push(ContentFilter.codec().decode(reader, reader.uint32()));
break;
case 4:
obj.pagingInfo = PagingInfo.codec().decode(reader, reader.uint32());
break;
case 5:
obj.startTime = reader.double();
break;
case 6:
obj.endTime = reader.double();
break;
default:
reader.skipType(tag & 7);
break;
}
}
return obj;
});
}
return _codec;
};
HistoryQuery.encode = (obj) => {
return encodeMessage(obj, HistoryQuery.codec());
};
HistoryQuery.decode = (buf) => {
return decodeMessage(buf, HistoryQuery.codec());
};
})(HistoryQuery || (HistoryQuery = {}));
var HistoryResponse;
(function (HistoryResponse) {
(function (HistoryError) {
HistoryError["ERROR_NONE_UNSPECIFIED"] = "ERROR_NONE_UNSPECIFIED";
HistoryError["ERROR_INVALID_CURSOR"] = "ERROR_INVALID_CURSOR";
})(HistoryResponse.HistoryError || (HistoryResponse.HistoryError = {}));
let __HistoryErrorValues;
(function (__HistoryErrorValues) {
__HistoryErrorValues[__HistoryErrorValues["ERROR_NONE_UNSPECIFIED"] = 0] = "ERROR_NONE_UNSPECIFIED";
__HistoryErrorValues[__HistoryErrorValues["ERROR_INVALID_CURSOR"] = 1] = "ERROR_INVALID_CURSOR";
})(__HistoryErrorValues || (__HistoryErrorValues = {}));
(function (HistoryError) {
HistoryError.codec = () => {
return enumeration(__HistoryErrorValues);
};
})(HistoryResponse.HistoryError || (HistoryResponse.HistoryError = {}));
let _codec;
HistoryResponse.codec = () => {
if (_codec == null) {
_codec = message((obj, writer, opts = {}) => {
if (opts.lengthDelimited !== false) {
writer.fork();
}
if (obj.messages != null) {
for (const value of obj.messages) {
writer.uint32(18);
WakuMessage.codec().encode(value, writer);
}
}
else {
throw new Error('Protocol error: required field "messages" was not found in object');
}
if (obj.pagingInfo != null) {
writer.uint32(26);
PagingInfo.codec().encode(obj.pagingInfo, writer);
}
if (obj.error != null) {
writer.uint32(32);
HistoryResponse.HistoryError.codec().encode(obj.error, writer);
}
if (opts.lengthDelimited !== false) {
writer.ldelim();
}
}, (reader, length) => {
const obj = {
messages: [],
};
const end = length == null ? reader.len : reader.pos + length;
while (reader.pos < end) {
const tag = reader.uint32();
switch (tag >>> 3) {
case 2:
obj.messages.push(WakuMessage.codec().decode(reader, reader.uint32()));
break;
case 3:
obj.pagingInfo = PagingInfo.codec().decode(reader, reader.uint32());
break;
case 4:
obj.error = HistoryResponse.HistoryError.codec().decode(reader);
break;
default:
reader.skipType(tag & 7);
break;
}
}
return obj;
});
}
return _codec;
};
HistoryResponse.encode = (obj) => {
return encodeMessage(obj, HistoryResponse.codec());
};
HistoryResponse.decode = (buf) => {
return decodeMessage(buf, HistoryResponse.codec());
};
})(HistoryResponse || (HistoryResponse = {}));
var HistoryRPC;
(function (HistoryRPC) {
let _codec;
HistoryRPC.codec = () => {
if (_codec == null) {
_codec = message((obj, writer, opts = {}) => {
if (opts.lengthDelimited !== false) {
writer.fork();
}
if (obj.requestId != null) {
writer.uint32(10);
writer.string(obj.requestId);
}
if (obj.query != null) {
writer.uint32(18);
HistoryQuery.codec().encode(obj.query, writer);
}
if (obj.response != null) {
writer.uint32(26);
HistoryResponse.codec().encode(obj.response, writer);
}
if (opts.lengthDelimited !== false) {
writer.ldelim();
}
}, (reader, length) => {
const obj = {};
const end = length == null ? reader.len : reader.pos + length;
while (reader.pos < end) {
const tag = reader.uint32();
switch (tag >>> 3) {
case 1:
obj.requestId = reader.string();
break;
case 2:
obj.query = HistoryQuery.codec().decode(reader, reader.uint32());
break;
case 3:
obj.response = HistoryResponse.codec().decode(reader, reader.uint32());
break;
default:
reader.skipType(tag & 7);
break;
}
}
return obj;
});
}
return _codec;
};
HistoryRPC.encode = (obj) => {
return encodeMessage(obj, HistoryRPC.codec());
};
HistoryRPC.decode = (buf) => {
return decodeMessage(buf, HistoryRPC.codec());
};
})(HistoryRPC || (HistoryRPC = {}));
var RateLimitProof;
(function (RateLimitProof) {
let _codec;
RateLimitProof.codec = () => {
if (_codec == null) {
_codec = message((obj, writer, opts = {}) => {
if (opts.lengthDelimited !== false) {
writer.fork();
}
if (obj.proof != null) {
writer.uint32(10);
writer.bytes(obj.proof);
}
else {
throw new Error('Protocol error: required field "proof" was not found in object');
}
if (obj.merkleRoot != null) {
writer.uint32(18);
writer.bytes(obj.merkleRoot);
}
else {
throw new Error('Protocol error: required field "merkleRoot" was not found in object');
}
if (obj.epoch != null) {
writer.uint32(26);
writer.bytes(obj.epoch);
}
else {
throw new Error('Protocol error: required field "epoch" was not found in object');
}
if (obj.shareX != null) {
writer.uint32(34);
writer.bytes(obj.shareX);
}
else {
throw new Error('Protocol error: required field "shareX" was not found in object');
}
if (obj.shareY != null) {
writer.uint32(42);
writer.bytes(obj.shareY);
}
else {
throw new Error('Protocol error: required field "shareY" was not found in object');
}
if (obj.nullifier != null) {
writer.uint32(50);
writer.bytes(obj.nullifier);
}
else {
throw new Error('Protocol error: required field "nullifier" was not found in object');
}
if (obj.rlnIdentifier != null) {
writer.uint32(58);
writer.bytes(obj.rlnIdentifier);
}
else {
throw new Error('Protocol error: required field "rlnIdentifier" was not found in object');
}
if (opts.lengthDelimited !== false) {
writer.ldelim();
}
}, (reader, length) => {
const obj = {
proof: new Uint8Array(0),
merkleRoot: new Uint8Array(0),
epoch: new Uint8Array(0),
shareX: new Uint8Array(0),
shareY: new Uint8Array(0),
nullifier: new Uint8Array(0),
rlnIdentifier: new Uint8Array(0),
};
const end = length == null ? reader.len : reader.pos + length;
while (reader.pos < end) {
const tag = reader.uint32();
switch (tag >>> 3) {
case 1:
obj.proof = reader.bytes();
break;
case 2:
obj.merkleRoot = reader.bytes();
break;
case 3:
obj.epoch = reader.bytes();
break;
case 4:
obj.shareX = reader.bytes();
break;
case 5:
obj.shareY = reader.bytes();
break;
case 6:
obj.nullifier = reader.bytes();
break;
case 7:
obj.rlnIdentifier = reader.bytes();
break;
default:
reader.skipType(tag & 7);
break;
}
}
if (obj.proof == null) {
throw new Error('Protocol error: value for required field "proof" was not found in protobuf');
}
if (obj.merkleRoot == null) {
throw new Error('Protocol error: value for required field "merkleRoot" was not found in protobuf');
}
if (obj.epoch == null) {
throw new Error('Protocol error: value for required field "epoch" was not found in protobuf');
}
if (obj.shareX == null) {
throw new Error('Protocol error: value for required field "shareX" was not found in protobuf');
}
if (obj.shareY == null) {
throw new Error('Protocol error: value for required field "shareY" was not found in protobuf');
}
if (obj.nullifier == null) {
throw new Error('Protocol error: value for required field "nullifier" was not found in protobuf');
}
if (obj.rlnIdentifier == null) {
throw new Error('Protocol error: value for required field "rlnIdentifier" was not found in protobuf');
}
return obj;
});
}
return _codec;
};
RateLimitProof.encode = (obj) => {
return encodeMessage(obj, RateLimitProof.codec());
};
RateLimitProof.decode = (buf) => {
return decodeMessage(buf, RateLimitProof.codec());
};
})(RateLimitProof || (RateLimitProof = {}));
var WakuMessage;
(function (WakuMessage) {
let _codec;
WakuMessage.codec = () => {
if (_codec == null) {
_codec = message((obj, writer, opts = {}) => {
if (opts.lengthDelimited !== false) {
writer.fork();
}
if (obj.payload != null) {
writer.uint32(10);
writer.bytes(obj.payload);
}
if (obj.contentTopic != null) {
writer.uint32(18);
writer.string(obj.contentTopic);
}
if (obj.version != null) {
writer.uint32(24);
writer.uint32(obj.version);
}
if (obj.timestampDeprecated != null) {
writer.uint32(33);
writer.double(obj.timestampDeprecated);
}
if (obj.timestamp != null) {
writer.uint32(80);
writer.sint64(obj.timestamp);
}
if (obj.rateLimitProof != null) {
writer.uint32(170);
RateLimitProof.codec().encode(obj.rateLimitProof, writer);
}
if (opts.lengthDelimited !== false) {
writer.ldelim();
}
}, (reader, length) => {
const obj = {};
const end = length == null ? reader.len : reader.pos + length;
while (reader.pos < end) {
const tag = reader.uint32();
switch (tag >>> 3) {
case 1:
obj.payload = reader.bytes();
break;
case 2:
obj.contentTopic = reader.string();
break;
case 3:
obj.version = reader.uint32();
break;
case 4:
obj.timestampDeprecated = reader.double();
break;
case 10:
obj.timestamp = reader.sint64();
break;
case 21:
obj.rateLimitProof = RateLimitProof.codec().decode(reader, reader.uint32());
break;
default:
reader.skipType(tag & 7);
break;
}
}
return obj;
});
}
return _codec;
};
WakuMessage.encode = (obj) => {
return encodeMessage(obj, WakuMessage.codec());
};
WakuMessage.decode = (buf) => {
return decodeMessage(buf, WakuMessage.codec());
};
})(WakuMessage || (WakuMessage = {}));
var StoreCodecs;
(function (StoreCodecs) {
StoreCodecs["V2Beta3"] = "/vac/waku/store/2.0.0-beta3";
StoreCodecs["V2Beta4"] = "/vac/waku/store/2.0.0-beta4";
})(StoreCodecs || (StoreCodecs = {}));
BigInt(1000000);
var PageDirection;
(function (PageDirection) {
PageDirection["BACKWARD"] = "backward";
PageDirection["FORWARD"] = "forward";
})(PageDirection || (PageDirection = {}));
HistoryResponse$1.HistoryError;
debug("waku:store");
debug("waku:waku");
var Protocols;
(function (Protocols) {
Protocols["Relay"] = "relay";
Protocols["Store"] = "store";
Protocols["LightPush"] = "lightpush";
Protocols["Filter"] = "filter";
})(Protocols || (Protocols = {}));
const codes$1 = {
ERR_SIGNATURE_NOT_VALID: 'ERR_SIGNATURE_NOT_VALID'
};
/* eslint-disable import/export */
var Envelope;
(function (Envelope) {
let _codec;
Envelope.codec = () => {
if (_codec == null) {
_codec = message((obj, writer, opts = {}) => {
if (opts.lengthDelimited !== false) {
writer.fork();
}
if (obj.publicKey != null) {
writer.uint32(10);
writer.bytes(obj.publicKey);
}
else {
throw new Error('Protocol error: required field "publicKey" was not found in object');
}
if (obj.payloadType != null) {
writer.uint32(18);
writer.bytes(obj.payloadType);
}
else {
throw new Error('Protocol error: required field "payloadType" was not found in object');
}
if (obj.payload != null) {
writer.uint32(26);
writer.bytes(obj.payload);
}
else {
throw new Error('Protocol error: required field "payload" was not found in object');
}
if (obj.signature != null) {
writer.uint32(42);
writer.bytes(obj.signature);
}
else {
throw new Error('Protocol error: required field "signature" was not found in object');
}
if (opts.lengthDelimited !== false) {
writer.ldelim();
}
}, (reader, length) => {
const obj = {
publicKey: new Uint8Array(0),
payloadType: new Uint8Array(0),
payload: new Uint8Array(0),
signature: new Uint8Array(0)
};
const end = length == null ? reader.len : reader.pos + length;
while (reader.pos < end) {
const tag = reader.uint32();
switch (tag >>> 3) {
case 1:
obj.publicKey = reader.bytes();
break;
case 2:
obj.payloadType = reader.bytes();
break;
case 3:
obj.payload = reader.bytes();
break;
case 5:
obj.signature = reader.bytes();
break;
default:
reader.skipType(tag & 7);
break;
}
}
if (obj.publicKey == null) {
throw new Error('Protocol error: value for required field "publicKey" was not found in protobuf');
}
if (obj.payloadType == null) {
throw new Error('Protocol error: value for required field "payloadType" was not found in protobuf');
}
if (obj.payload == null) {
throw new Error('Protocol error: value for required field "payload" was not found in protobuf');
}
if (obj.signature == null) {
throw new Error('Protocol error: value for required field "signature" was not found in protobuf');
}
return obj;
});
}
return _codec;
};
Envelope.encode = (obj) => {
return encodeMessage(obj, Envelope.codec());
};
Envelope.decode = (buf) => {
return decodeMessage(buf, Envelope.codec());
};
})(Envelope || (Envelope = {}));
class RecordEnvelope {
/**
* The Envelope is responsible for keeping an arbitrary signed record
* by a libp2p peer.
*/
constructor(init) {
const { peerId, payloadType, payload, signature } = init;
this.peerId = peerId;
this.payloadType = payloadType;
this.payload = payload;
this.signature = signature;
}
/**
* Marshal the envelope content
*/
marshal() {
if (this.peerId.publicKey == null) {
throw new Error('Missing public key');
}
if (this.marshaled == null) {
this.marshaled = Envelope.encode({
publicKey: this.peerId.publicKey,
payloadType: this.payloadType,
payload: this.payload.subarray(),
signature: this.signature
});
}
return this.marshaled;
}
/**
* Verifies if the other Envelope is identical to this one
*/
equals(other) {
return equals(this.marshal(), other.marshal());
}
/**
* Validate envelope data signature for the given domain
*/
async validate(domain) {
const signData = formatSignaturePayload(domain, this.payloadType, this.payload);
if (this.peerId.publicKey == null) {
throw new Error('Missing public key');
}
const key = unmarshalPublicKey(this.peerId.publicKey);
return await key.verify(signData.subarray(), this.signature);
}
}
/**
* Unmarshal a serialized Envelope protobuf message
*/
RecordEnvelope.createFromProtobuf = async (data) => {
const envelopeData = Envelope.decode(data);
const peerId = await peerIdFromKeys(envelopeData.publicKey);
return new RecordEnvelope({
peerId,
payloadType: envelopeData.payloadType,
payload: envelopeData.payload,
signature: envelopeData.signature
});
};
/**
* Seal marshals the given Record, places the marshaled bytes inside an Envelope
* and signs it with the given peerId's private key
*/
RecordEnvelope.seal = async (record, peerId) => {
if (peerId.privateKey == null) {
throw new Error('Missing private key');
}
const domain = record.domain;
const payloadType = record.codec;
const payload = record.marshal();
const signData = formatSignaturePayload(domain, payloadType, payload);
const key = await unmarshalPrivateKey(peerId.privateKey);
const signature = await key.sign(signData.subarray());
return new RecordEnvelope({
peerId,
payloadType,
payload,
signature
});
};
/**
* Open and certify a given marshalled envelope.
* Data is unmarshalled and the signature validated for the given domain.
*/
RecordEnvelope.openAndCertify = async (data, domain) => {
const envelope = await RecordEnvelope.createFromProtobuf(data);
const valid = await envelope.validate(domain);
if (!valid) {
throw errCode(new Error('envelope signature is not valid for the given domain'), codes$1.ERR_SIGNATURE_NOT_VALID);
}
return envelope;
};
/**
* Helper function that prepares a Uint8Array to sign or verify a signature
*/
const formatSignaturePayload = (domain, payloadType, payload) => {
// When signing, a peer will prepare a Uint8Array by concatenating the following:
// - The length of the domain separation string string in bytes
// - The domain separation string, encoded as UTF-8
// - The length of the payload_type field in bytes
// - The value of the payload_type field
// - The length of the payload field in bytes
// - The value of the payload field
const domainUint8Array = fromString$1(domain);
const domainLength = unsigned.encode(domainUint8Array.byteLength);
const payloadTypeLength = unsigned.encode(payloadType.length);
const payloadLength = unsigned.encode(payload.length);
return new Uint8ArrayList(domainLength, domainUint8Array, payloadTypeLength, payloadType, payloadLength, payload);
};
const V = -1;
const names = {};
const codes = {};
const table = [
[4, 32, 'ip4'],
[6, 16, 'tcp'],
[33, 16, 'dccp'],
[41, 128, 'ip6'],
[42, V, 'ip6zone'],
[53, V, 'dns', true],
[54, V, 'dns4', true],
[55, V, 'dns6', true],
[56, V, 'dnsaddr', true],
[132, 16, 'sctp'],
[273, 16, 'udp'],
[275, 0, 'p2p-webrtc-star'],
[276, 0, 'p2p-webrtc-direct'],
[277, 0, 'p2p-stardust'],
[280, 0, 'webrtc'],
[290, 0, 'p2p-circuit'],
[301, 0, 'udt'],
[302, 0, 'utp'],
[400, V, 'unix', false, true],
// `ipfs` is added before `p2p` for legacy support.
// All text representations will default to `p2p`, but `ipfs` will
// still be supported
[421, V, 'ipfs'],
// `p2p` is the preferred name for 421, and is now the default
[421, V, 'p2p'],
[443, 0, 'https'],
[444, 96, 'onion'],
[445, 296, 'onion3'],
[446, V, 'garlic64'],
[460, 0, 'quic'],
[465, 0, 'webtransport'],
[466, V, 'certhash'],
[477, 0, 'ws'],
[478, 0, 'wss'],
[479, 0, 'p2p-websocket-star'],
[480, 0, 'http'],
[777, V, 'memory']
];
// populate tables
table.forEach(row => {
const proto = createProtocol(...row);
codes[proto.code] = proto;
names[proto.name] = proto;
});
function createProtocol(code, size, name, resolvable, path) {
return {
code,
size,
name,
resolvable: Boolean(resolvable),
path: Boolean(path)
};
}
function getProtocol(proto) {
if (typeof proto === 'number') {
if (codes[proto] != null) {
return codes[proto];
}
throw new Error(`no protocol with code: ${proto}`);
}
else if (typeof proto === 'string') {
if (names[proto] != null) {
return names[proto];
}
throw new Error(`no protocol with name: ${proto}`);
}
throw new Error(`invalid protocol id type: ${typeof proto}`);
}
const decoders = Object.values(bases).map((c) => c.decoder);
((function () {
let acc = decoders[0].or(decoders[1]);
decoders.slice(2).forEach((d) => (acc = acc.or(d)));
return acc;
}))();
[
getProtocol('dns').code,
getProtocol('dns4').code,
getProtocol('dns6').code,
getProtocol('dnsaddr').code
];
[
getProtocol('p2p').code,
getProtocol('ipfs').code
];
/* eslint-disable import/export */
var PeerRecord;
(function (PeerRecord) {
(function (AddressInfo) {
let _codec;
AddressInfo.codec = () => {
if (_codec == null) {
_codec = message((obj, writer, opts = {}) => {
if (opts.lengthDelimited !== false) {
writer.fork();
}
if (obj.multiaddr != null) {
writer.uint32(10);
writer.bytes(obj.multiaddr);
}
else {
throw new Error('Protocol error: required field "multiaddr" was not found in object');
}
if (opts.lengthDelimited !== false) {
writer.ldelim();
}
}, (reader, length) => {
const obj = {
multiaddr: new Uint8Array(0)
};
const end = length == null ? reader.len : reader.pos + length;
while (reader.pos < end) {
const tag = reader.uint32();
switch (tag >>> 3) {
case 1:
obj.multiaddr = reader.bytes();
break;
default:
reader.skipType(tag & 7);
break;
}
}
if (obj.multiaddr == null) {
throw new Error('Protocol error: value for required field "multiaddr" was not found in protobuf');
}
return obj;
});
}
return _codec;
};
AddressInfo.encode = (obj) => {
return encodeMessage(obj, AddressInfo.codec());
};
AddressInfo.decode = (buf) => {
return decodeMessage(buf, AddressInfo.codec());
};
})(PeerRecord.AddressInfo || (PeerRecord.AddressInfo = {}));
let _codec;
PeerRecord.codec = () => {
if (_codec == null) {
_codec = message((obj, writer, opts = {}) => {
if (opts.lengthDelimited !== false) {
writer.fork();
}
if (obj.peerId != null) {
writer.uint32(10);
writer.bytes(obj.peerId);
}
else {
throw new Error('Protocol error: required field "peerId" was not found in object');
}
if (obj.seq != null) {
writer.uint32(16);
writer.uint64(obj.seq);
}
else {
throw new Error('Protocol error: required field "seq" was not found in object');
}
if (obj.addresses != null) {
for (const value of obj.addresses) {
writer.uint32(26);
PeerRecord.AddressInfo.codec().encode(value, writer);
}
}
else {
throw new Error('Protocol error: required field "addresses" was not found in object');
}
if (opts.lengthDelimited !== false) {
writer.ldelim();
}
}, (reader, length) => {
const obj = {
peerId: new Uint8Array(0),
seq: 0n,
addresses: []
};
const end = length == null ? reader.len : reader.pos + length;
while (reader.pos < end) {
const tag = reader.uint32();
switch (tag >>> 3) {
case 1:
obj.peerId = reader.bytes();
break;
case 2:
obj.seq = reader.uint64();
break;
case 3:
obj.addresses.push(PeerRecord.AddressInfo.codec().decode(reader, reader.uint32()));
break;
default:
reader.skipType(tag & 7);
break;
}
}
if (obj.peerId == null) {
throw new Error('Protocol error: value for required field "peerId" was not found in protobuf');
}
if (obj.seq == null) {
throw new Error('Protocol error: value for required field "seq" was not found in protobuf');
}
return obj;
});
}
return _codec;
};
PeerRecord.encode = (obj) => {
return encodeMessage(obj, PeerRecord.codec());
};
PeerRecord.decode = (buf) => {
return decodeMessage(buf, PeerRecord.codec());
};
})(PeerRecord || (PeerRecord = {}));
// Add a formatter for converting to a base58 string
debug.formatters.b = (v) => {
return v == null ? 'undefined' : base58btc.baseEncode(v);
};
// Add a formatter for converting to a base32 string
debug.formatters.t = (v) => {
return v == null ? 'undefined' : base32.baseEncode(v);
};
// Add a formatter for converting to a base64 string
debug.formatters.m = (v) => {
return v == null ? 'undefined' : base64$2.baseEncode(v);
};
// Add a formatter for stringifying peer ids
debug.formatters.p = (v) => {
return v == null ? 'undefined' : v.toString();
};
// Add a formatter for stringifying CIDs
debug.formatters.c = (v) => {
return v == null ? 'undefined' : v.toString();
};
// Add a formatter for stringifying Datastore keys
debug.formatters.k = (v) => {
return v == null ? 'undefined' : v.toString();
};
function logger(name) {
return Object.assign(debug(name), {
error: debug(`${name}:error`),
trace: debug(`${name}:trace`)
});
}
const topologySymbol = Symbol.for('@libp2p/topology');
const noop = () => { };
class TopologyImpl {
constructor(init) {
this.min = init.min ?? 0;
this.max = init.max ?? Infinity;
this.peers = new Set();
this.onConnect = init.onConnect ?? noop;
this.onDisconnect = init.onDisconnect ?? noop;
}
get [Symbol.toStringTag]() {
return topologySymbol.toString();
}
get [topologySymbol]() {
return true;
}
async setRegistrar(registrar) {
this.registrar = registrar;
}
/**
* Notify about peer disconnected event
*/
disconnect(peerId) {
this.onDisconnect(peerId);
}
}
function createTopology(init) {
return new TopologyImpl(init);
}
var __classPrivateFieldGet = (undefined && undefined.__classPrivateFieldGet) || function (receiver, state, kind, f) {
if (kind === "a" && !f) throw new TypeError("Private accessor was defined without a getter");
if (typeof state === "function" ? receiver !== state || !f : !state.has(receiver)) throw new TypeError("Cannot read private member from an object whose class did not declare it");
return kind === "m" ? f : kind === "a" ? f.call(receiver) : f ? f.value : state.get(receiver);
};
var _EventEmitter_listeners;
/**
* Adds types to the EventTarget class. Hopefully this won't be necessary forever.
*
* https://github.com/microsoft/TypeScript/issues/28357
* https://github.com/microsoft/TypeScript/issues/43477
* https://github.com/microsoft/TypeScript/issues/299
* etc
*/
class EventEmitter extends EventTarget {
constructor() {
super(...arguments);
_EventEmitter_listeners.set(this, new Map());
}
listenerCount(type) {
const listeners = __classPrivateFieldGet(this, _EventEmitter_listeners, "f").get(type);
if (listeners == null) {
return 0;
}
return listeners.length;
}
addEventListener(type, listener, options) {
super.addEventListener(type, listener, options);
let list = __classPrivateFieldGet(this, _EventEmitter_listeners, "f").get(type);
if (list == null) {
list = [];
__classPrivateFieldGet(this, _EventEmitter_listeners, "f").set(type, list);
}
list.push({
callback: listener,
once: (options !== true && options !== false && options?.once) ?? false
});
}
removeEventListener(type, listener, options) {
super.removeEventListener(type.toString(), listener ?? null, options);
let list = __classPrivateFieldGet(this, _EventEmitter_listeners, "f").get(type);
if (list == null) {
return;
}
list = list.filter(({ callback }) => callback !== listener);
__classPrivateFieldGet(this, _EventEmitter_listeners, "f").set(type, list);
}
dispatchEvent(event) {
const result = super.dispatchEvent(event);
let list = __classPrivateFieldGet(this, _EventEmitter_listeners, "f").get(event.type);
if (list == null) {
return result;
}
list = list.filter(({ once }) => !once);
__classPrivateFieldGet(this, _EventEmitter_listeners, "f").set(event.type, list);
return result;
}
}
_EventEmitter_listeners = new WeakMap();
/**
* CustomEvent is a standard event but it's not supported by node.
*
* Remove this when https://github.com/nodejs/node/issues/40678 is closed.
*
* Ref: https://developer.mozilla.org/en-US/docs/Web/API/CustomEvent
*/
class CustomEventPolyfill extends Event {
constructor(message, data) {
super(message, data);
// @ts-expect-error could be undefined
this.detail = data?.detail;
}
}
const CustomEvent = globalThis.CustomEvent ?? CustomEventPolyfill;
class MessageCache {
/**
* Holds history of messages in timebounded history arrays
*/
constructor(
/**
* The number of indices in the cache history used for gossiping. That means that a message
* won't get gossiped anymore when shift got called `gossip` many times after inserting the
* message in the cache.
*/
gossip, historyCapacity, msgIdToStrFn) {
this.gossip = gossip;
this.msgs = new Map();
this.history = [];
this.msgIdToStrFn = msgIdToStrFn;
for (let i = 0; i < historyCapacity; i++) {
this.history[i] = [];
}
}
get size() {
return this.msgs.size;
}
/**
* Adds a message to the current window and the cache
* Returns true if the message is not known and is inserted in the cache
*/
put(messageId, msg, validated = false) {
const { msgIdStr } = messageId;
// Don't add duplicate entries to the cache.
if (this.msgs.has(msgIdStr)) {
return false;
}
this.msgs.set(msgIdStr, {
message: msg,
validated,
originatingPeers: new Set(),
iwantCounts: new Map()
});
this.history[0].push({ ...messageId, topic: msg.topic });
return true;
}
observeDuplicate(msgId, fromPeerIdStr) {
const entry = this.msgs.get(msgId);
if (entry &&
// if the message is already validated, we don't need to store extra peers sending us
// duplicates as the message has already been forwarded
!entry.validated) {
entry.originatingPeers.add(fromPeerIdStr);
}
}
/**
* Retrieves a message from the cache by its ID, if it is still present
*/
get(msgId) {
return this.msgs.get(this.msgIdToStrFn(msgId))?.message;
}
/**
* Increases the iwant count for the given message by one and returns the message together
* with the iwant if the message exists.
*/
getWithIWantCount(msgIdStr, p) {
const msg = this.msgs.get(msgIdStr);
if (!msg) {
return null;
}
const count = (msg.iwantCounts.get(p) ?? 0) + 1;
msg.iwantCounts.set(p, count);
return { msg: msg.message, count };
}
/**
* Retrieves a list of message IDs for a set of topics
*/
getGossipIDs(topics) {
const msgIdsByTopic = new Map();
for (let i = 0; i < this.gossip; i++) {
this.history[i].forEach((entry) => {
const msg = this.msgs.get(entry.msgIdStr);
if (msg && msg.validated && topics.has(entry.topic)) {
let msgIds = msgIdsByTopic.get(entry.topic);
if (!msgIds) {
msgIds = [];
msgIdsByTopic.set(entry.topic, msgIds);
}
msgIds.push(entry.msgId);
}
});
}
return msgIdsByTopic;
}
/**
* Gets a message with msgId and tags it as validated.
* This function also returns the known peers that have sent us this message. This is used to
* prevent us sending redundant messages to peers who have already propagated it.
*/
validate(msgId) {
const entry = this.msgs.get(msgId);
if (!entry) {
return null;
}
const { message, originatingPeers } = entry;
entry.validated = true;
// Clear the known peers list (after a message is validated, it is forwarded and we no
// longer need to store the originating peers).
entry.originatingPeers = new Set();
return { message, originatingPeers };
}
/**
* Shifts the current window, discarding messages older than this.history.length of the cache
*/
shift() {
const last = this.history[this.history.length - 1];
last.forEach((entry) => {
this.msgs.delete(entry.msgIdStr);
});
this.history.pop();
this.history.unshift([]);
}
remove(msgId) {
const entry = this.msgs.get(msgId);
if (!entry) {
return null;
}
// Keep the message on the history vector, it will be dropped on a shift()
this.msgs.delete(msgId);
return entry;
}
}
function commonjsRequire(path) {
throw new Error('Could not dynamically require "' + path + '". Please configure the dynamicRequireTargets or/and ignoreDynamicRequires option of @rollup/plugin-commonjs appropriately for this require call to work.');
}
var rpc$1 = {exports: {}};
var minimal$1 = {exports: {}};
var indexMinimal = {};
var minimal = {};
var longbits;
var hasRequiredLongbits;
function requireLongbits () {
if (hasRequiredLongbits) return longbits;
hasRequiredLongbits = 1;
longbits = LongBits;
var util = requireMinimal$1();
/**
* Constructs new long bits.
* @classdesc Helper class for working with the low and high bits of a 64 bit value.
* @memberof util
* @constructor
* @param {number} lo Low 32 bits, unsigned
* @param {number} hi High 32 bits, unsigned
*/
function LongBits(lo, hi) {
// note that the casts below are theoretically unnecessary as of today, but older statically
// generated converter code might still call the ctor with signed 32bits. kept for compat.
/**
* Low bits.
* @type {number}
*/
this.lo = lo >>> 0;
/**
* High bits.
* @type {number}
*/
this.hi = hi >>> 0;
}
/**
* Zero bits.
* @memberof util.LongBits
* @type {util.LongBits}
*/
var zero = LongBits.zero = new LongBits(0, 0);
zero.toNumber = function() { return 0; };
zero.zzEncode = zero.zzDecode = function() { return this; };
zero.length = function() { return 1; };
/**
* Zero hash.
* @memberof util.LongBits
* @type {string}
*/
var zeroHash = LongBits.zeroHash = "\0\0\0\0\0\0\0\0";
/**
* Constructs new long bits from the specified number.
* @param {number} value Value
* @returns {util.LongBits} Instance
*/
LongBits.fromNumber = function fromNumber(value) {
if (value === 0)
return zero;
var sign = value < 0;
if (sign)
value = -value;
var lo = value >>> 0,
hi = (value - lo) / 4294967296 >>> 0;
if (sign) {
hi = ~hi >>> 0;
lo = ~lo >>> 0;
if (++lo > 4294967295) {
lo = 0;
if (++hi > 4294967295)
hi = 0;
}
}
return new LongBits(lo, hi);
};
/**
* Constructs new long bits from a number, long or string.
* @param {Long|number|string} value Value
* @returns {util.LongBits} Instance
*/
LongBits.from = function from(value) {
if (typeof value === "number")
return LongBits.fromNumber(value);
if (util.isString(value)) {
/* istanbul ignore else */
if (util.Long)
value = util.Long.fromString(value);
else
return LongBits.fromNumber(parseInt(value, 10));
}
return value.low || value.high ? new LongBits(value.low >>> 0, value.high >>> 0) : zero;
};
/**
* Converts this long bits to a possibly unsafe JavaScript number.
* @param {boolean} [unsigned=false] Whether unsigned or not
* @returns {number} Possibly unsafe number
*/
LongBits.prototype.toNumber = function toNumber(unsigned) {
if (!unsigned && this.hi >>> 31) {
var lo = ~this.lo + 1 >>> 0,
hi = ~this.hi >>> 0;
if (!lo)
hi = hi + 1 >>> 0;
return -(lo + hi * 4294967296);
}
return this.lo + this.hi * 4294967296;
};
/**
* Converts this long bits to a long.
* @param {boolean} [unsigned=false] Whether unsigned or not
* @returns {Long} Long
*/
LongBits.prototype.toLong = function toLong(unsigned) {
return util.Long
? new util.Long(this.lo | 0, this.hi | 0, Boolean(unsigned))
/* istanbul ignore next */
: { low: this.lo | 0, high: this.hi | 0, unsigned: Boolean(unsigned) };
};
var charCodeAt = String.prototype.charCodeAt;
/**
* Constructs new long bits from the specified 8 characters long hash.
* @param {string} hash Hash
* @returns {util.LongBits} Bits
*/
LongBits.fromHash = function fromHash(hash) {
if (hash === zeroHash)
return zero;
return new LongBits(
( charCodeAt.call(hash, 0)
| charCodeAt.call(hash, 1) << 8
| charCodeAt.call(hash, 2) << 16
| charCodeAt.call(hash, 3) << 24) >>> 0
,
( charCodeAt.call(hash, 4)
| charCodeAt.call(hash, 5) << 8
| charCodeAt.call(hash, 6) << 16
| charCodeAt.call(hash, 7) << 24) >>> 0
);
};
/**
* Converts this long bits to a 8 characters long hash.
* @returns {string} Hash
*/
LongBits.prototype.toHash = function toHash() {
return String.fromCharCode(
this.lo & 255,
this.lo >>> 8 & 255,
this.lo >>> 16 & 255,
this.lo >>> 24 ,
this.hi & 255,
this.hi >>> 8 & 255,
this.hi >>> 16 & 255,
this.hi >>> 24
);
};
/**
* Zig-zag encodes this long bits.
* @returns {util.LongBits} `this`
*/
LongBits.prototype.zzEncode = function zzEncode() {
var mask = this.hi >> 31;
this.hi = ((this.hi << 1 | this.lo >>> 31) ^ mask) >>> 0;
this.lo = ( this.lo << 1 ^ mask) >>> 0;
return this;
};
/**
* Zig-zag decodes this long bits.
* @returns {util.LongBits} `this`
*/
LongBits.prototype.zzDecode = function zzDecode() {
var mask = -(this.lo & 1);
this.lo = ((this.lo >>> 1 | this.hi << 31) ^ mask) >>> 0;
this.hi = ( this.hi >>> 1 ^ mask) >>> 0;
return this;
};
/**
* Calculates the length of this longbits when encoded as a varint.
* @returns {number} Length
*/
LongBits.prototype.length = function length() {
var part0 = this.lo,
part1 = (this.lo >>> 28 | this.hi << 4) >>> 0,
part2 = this.hi >>> 24;
return part2 === 0
? part1 === 0
? part0 < 16384
? part0 < 128 ? 1 : 2
: part0 < 2097152 ? 3 : 4
: part1 < 16384
? part1 < 128 ? 5 : 6
: part1 < 2097152 ? 7 : 8
: part2 < 128 ? 9 : 10;
};
return longbits;
}
var hasRequiredMinimal$1;
function requireMinimal$1 () {
if (hasRequiredMinimal$1) return minimal;
hasRequiredMinimal$1 = 1;
(function (exports) {
var util = exports;
// used to return a Promise where callback is omitted
util.asPromise = requireAspromise();
// converts to / from base64 encoded strings
util.base64 = requireBase64();
// base class of rpc.Service
util.EventEmitter = requireEventemitter();
// float handling accross browsers
util.float = requireFloat();
// requires modules optionally and hides the call from bundlers
util.inquire = requireInquire();
// converts to / from utf8 encoded strings
util.utf8 = requireUtf8();
// provides a node-like buffer pool in the browser
util.pool = requirePool();
// utility to work with the low and high bits of a 64 bit value
util.LongBits = requireLongbits();
/**
* Whether running within node or not.
* @memberof util
* @type {boolean}
*/
util.isNode = Boolean(typeof commonjsGlobal !== "undefined"
&& commonjsGlobal
&& commonjsGlobal.process
&& commonjsGlobal.process.versions
&& commonjsGlobal.process.versions.node);
/**
* Global object reference.
* @memberof util
* @type {Object}
*/
util.global = util.isNode && commonjsGlobal
|| typeof window !== "undefined" && window
|| typeof self !== "undefined" && self
|| commonjsGlobal; // eslint-disable-line no-invalid-this
/**
* An immuable empty array.
* @memberof util
* @type {Array.<*>}
* @const
*/
util.emptyArray = Object.freeze ? Object.freeze([]) : /* istanbul ignore next */ []; // used on prototypes
/**
* An immutable empty object.
* @type {Object}
* @const
*/
util.emptyObject = Object.freeze ? Object.freeze({}) : /* istanbul ignore next */ {}; // used on prototypes
/**
* Tests if the specified value is an integer.
* @function
* @param {*} value Value to test
* @returns {boolean} `true` if the value is an integer
*/
util.isInteger = Number.isInteger || /* istanbul ignore next */ function isInteger(value) {
return typeof value === "number" && isFinite(value) && Math.floor(value) === value;
};
/**
* Tests if the specified value is a string.
* @param {*} value Value to test
* @returns {boolean} `true` if the value is a string
*/
util.isString = function isString(value) {
return typeof value === "string" || value instanceof String;
};
/**
* Tests if the specified value is a non-null object.
* @param {*} value Value to test
* @returns {boolean} `true` if the value is a non-null object
*/
util.isObject = function isObject(value) {
return value && typeof value === "object";
};
/**
* Checks if a property on a message is considered to be present.
* This is an alias of {@link util.isSet}.
* @function
* @param {Object} obj Plain object or message instance
* @param {string} prop Property name
* @returns {boolean} `true` if considered to be present, otherwise `false`
*/
util.isset =
/**
* Checks if a property on a message is considered to be present.
* @param {Object} obj Plain object or message instance
* @param {string} prop Property name
* @returns {boolean} `true` if considered to be present, otherwise `false`
*/
util.isSet = function isSet(obj, prop) {
var value = obj[prop];
if (value != null && obj.hasOwnProperty(prop)) // eslint-disable-line eqeqeq, no-prototype-builtins
return typeof value !== "object" || (Array.isArray(value) ? value.length : Object.keys(value).length) > 0;
return false;
};
/**
* Any compatible Buffer instance.
* This is a minimal stand-alone definition of a Buffer instance. The actual type is that exported by node's typings.
* @interface Buffer
* @extends Uint8Array
*/
/**
* Node's Buffer class if available.
* @type {Constructor<Buffer>}
*/
util.Buffer = (function() {
try {
var Buffer = util.inquire("buffer").Buffer;
// refuse to use non-node buffers if not explicitly assigned (perf reasons):
return Buffer.prototype.utf8Write ? Buffer : /* istanbul ignore next */ null;
} catch (e) {
/* istanbul ignore next */
return null;
}
})();
// Internal alias of or polyfull for Buffer.from.
util._Buffer_from = null;
// Internal alias of or polyfill for Buffer.allocUnsafe.
util._Buffer_allocUnsafe = null;
/**
* Creates a new buffer of whatever type supported by the environment.
* @param {number|number[]} [sizeOrArray=0] Buffer size or number array
* @returns {Uint8Array|Buffer} Buffer
*/
util.newBuffer = function newBuffer(sizeOrArray) {
/* istanbul ignore next */
return typeof sizeOrArray === "number"
? util.Buffer
? util._Buffer_allocUnsafe(sizeOrArray)
: new util.Array(sizeOrArray)
: util.Buffer
? util._Buffer_from(sizeOrArray)
: typeof Uint8Array === "undefined"
? sizeOrArray
: new Uint8Array(sizeOrArray);
};
/**
* Array implementation used in the browser. `Uint8Array` if supported, otherwise `Array`.
* @type {Constructor<Uint8Array>}
*/
util.Array = typeof Uint8Array !== "undefined" ? Uint8Array /* istanbul ignore next */ : Array;
/**
* Any compatible Long instance.
* This is a minimal stand-alone definition of a Long instance. The actual type is that exported by long.js.
* @interface Long
* @property {number} low Low bits
* @property {number} high High bits
* @property {boolean} unsigned Whether unsigned or not
*/
/**
* Long.js's Long class if available.
* @type {Constructor<Long>}
*/
util.Long = /* istanbul ignore next */ util.global.dcodeIO && /* istanbul ignore next */ util.global.dcodeIO.Long
|| /* istanbul ignore next */ util.global.Long
|| util.inquire("long");
/**
* Regular expression used to verify 2 bit (`bool`) map keys.
* @type {RegExp}
* @const
*/
util.key2Re = /^true|false|0|1$/;
/**
* Regular expression used to verify 32 bit (`int32` etc.) map keys.
* @type {RegExp}
* @const
*/
util.key32Re = /^-?(?:0|[1-9][0-9]*)$/;
/**
* Regular expression used to verify 64 bit (`int64` etc.) map keys.
* @type {RegExp}
* @const
*/
util.key64Re = /^(?:[\\x00-\\xff]{8}|-?(?:0|[1-9][0-9]*))$/;
/**
* Converts a number or long to an 8 characters long hash string.
* @param {Long|number} value Value to convert
* @returns {string} Hash
*/
util.longToHash = function longToHash(value) {
return value
? util.LongBits.from(value).toHash()
: util.LongBits.zeroHash;
};
/**
* Converts an 8 characters long hash string to a long or number.
* @param {string} hash Hash
* @param {boolean} [unsigned=false] Whether unsigned or not
* @returns {Long|number} Original value
*/
util.longFromHash = function longFromHash(hash, unsigned) {
var bits = util.LongBits.fromHash(hash);
if (util.Long)
return util.Long.fromBits(bits.lo, bits.hi, unsigned);
return bits.toNumber(Boolean(unsigned));
};
/**
* Merges the properties of the source object into the destination object.
* @memberof util
* @param {Object.<string,*>} dst Destination object
* @param {Object.<string,*>} src Source object
* @param {boolean} [ifNotSet=false] Merges only if the key is not already set
* @returns {Object.<string,*>} Destination object
*/
function merge(dst, src, ifNotSet) { // used by converters
for (var keys = Object.keys(src), i = 0; i < keys.length; ++i)
if (dst[keys[i]] === undefined || !ifNotSet)
dst[keys[i]] = src[keys[i]];
return dst;
}
util.merge = merge;
/**
* Converts the first character of a string to lower case.
* @param {string} str String to convert
* @returns {string} Converted string
*/
util.lcFirst = function lcFirst(str) {
return str.charAt(0).toLowerCase() + str.substring(1);
};
/**
* Creates a custom error constructor.
* @memberof util
* @param {string} name Error name
* @returns {Constructor<Error>} Custom error constructor
*/
function newError(name) {
function CustomError(message, properties) {
if (!(this instanceof CustomError))
return new CustomError(message, properties);
// Error.call(this, message);
// ^ just returns a new error instance because the ctor can be called as a function
Object.defineProperty(this, "message", { get: function() { return message; } });
/* istanbul ignore next */
if (Error.captureStackTrace) // node
Error.captureStackTrace(this, CustomError);
else
Object.defineProperty(this, "stack", { value: new Error().stack || "" });
if (properties)
merge(this, properties);
}
(CustomError.prototype = Object.create(Error.prototype)).constructor = CustomError;
Object.defineProperty(CustomError.prototype, "name", { get: function() { return name; } });
CustomError.prototype.toString = function toString() {
return this.name + ": " + this.message;
};
return CustomError;
}
util.newError = newError;
/**
* Constructs a new protocol error.
* @classdesc Error subclass indicating a protocol specifc error.
* @memberof util
* @extends Error
* @template T extends Message<T>
* @constructor
* @param {string} message Error message
* @param {Object.<string,*>} [properties] Additional properties
* @example
* try {
* MyMessage.decode(someBuffer); // throws if required fields are missing
* } catch (e) {
* if (e instanceof ProtocolError && e.instance)
* console.log("decoded so far: " + JSON.stringify(e.instance));
* }
*/
util.ProtocolError = newError("ProtocolError");
/**
* So far decoded message instance.
* @name util.ProtocolError#instance
* @type {Message<T>}
*/
/**
* A OneOf getter as returned by {@link util.oneOfGetter}.
* @typedef OneOfGetter
* @type {function}
* @returns {string|undefined} Set field name, if any
*/
/**
* Builds a getter for a oneof's present field name.
* @param {string[]} fieldNames Field names
* @returns {OneOfGetter} Unbound getter
*/
util.oneOfGetter = function getOneOf(fieldNames) {
var fieldMap = {};
for (var i = 0; i < fieldNames.length; ++i)
fieldMap[fieldNames[i]] = 1;
/**
* @returns {string|undefined} Set field name, if any
* @this Object
* @ignore
*/
return function() { // eslint-disable-line consistent-return
for (var keys = Object.keys(this), i = keys.length - 1; i > -1; --i)
if (fieldMap[keys[i]] === 1 && this[keys[i]] !== undefined && this[keys[i]] !== null)
return keys[i];
};
};
/**
* A OneOf setter as returned by {@link util.oneOfSetter}.
* @typedef OneOfSetter
* @type {function}
* @param {string|undefined} value Field name
* @returns {undefined}
*/
/**
* Builds a setter for a oneof's present field name.
* @param {string[]} fieldNames Field names
* @returns {OneOfSetter} Unbound setter
*/
util.oneOfSetter = function setOneOf(fieldNames) {
/**
* @param {string} name Field name
* @returns {undefined}
* @this Object
* @ignore
*/
return function(name) {
for (var i = 0; i < fieldNames.length; ++i)
if (fieldNames[i] !== name)
delete this[fieldNames[i]];
};
};
/**
* Default conversion options used for {@link Message#toJSON} implementations.
*
* These options are close to proto3's JSON mapping with the exception that internal types like Any are handled just like messages. More precisely:
*
* - Longs become strings
* - Enums become string keys
* - Bytes become base64 encoded strings
* - (Sub-)Messages become plain objects
* - Maps become plain objects with all string keys
* - Repeated fields become arrays
* - NaN and Infinity for float and double fields become strings
*
* @type {IConversionOptions}
* @see https://developers.google.com/protocol-buffers/docs/proto3?hl=en#json
*/
util.toJSONOptions = {
longs: String,
enums: String,
bytes: String,
json: true
};
// Sets up buffer utility according to the environment (called in index-minimal)
util._configure = function() {
var Buffer = util.Buffer;
/* istanbul ignore if */
if (!Buffer) {
util._Buffer_from = util._Buffer_allocUnsafe = null;
return;
}
// because node 4.x buffers are incompatible & immutable
// see: https://github.com/dcodeIO/protobuf.js/pull/665
util._Buffer_from = Buffer.from !== Uint8Array.from && Buffer.from ||
/* istanbul ignore next */
function Buffer_from(value, encoding) {
return new Buffer(value, encoding);
};
util._Buffer_allocUnsafe = Buffer.allocUnsafe ||
/* istanbul ignore next */
function Buffer_allocUnsafe(size) {
return new Buffer(size);
};
};
} (minimal));
return minimal;
}
var writer;
var hasRequiredWriter;
function requireWriter () {
if (hasRequiredWriter) return writer;
hasRequiredWriter = 1;
writer = Writer;
var util = requireMinimal$1();
var BufferWriter; // cyclic
var LongBits = util.LongBits,
base64 = util.base64,
utf8 = util.utf8;
/**
* Constructs a new writer operation instance.
* @classdesc Scheduled writer operation.
* @constructor
* @param {function(*, Uint8Array, number)} fn Function to call
* @param {number} len Value byte length
* @param {*} val Value to write
* @ignore
*/
function Op(fn, len, val) {
/**
* Function to call.
* @type {function(Uint8Array, number, *)}
*/
this.fn = fn;
/**
* Value byte length.
* @type {number}
*/
this.len = len;
/**
* Next operation.
* @type {Writer.Op|undefined}
*/
this.next = undefined;
/**
* Value to write.
* @type {*}
*/
this.val = val; // type varies
}
/* istanbul ignore next */
function noop() {} // eslint-disable-line no-empty-function
/**
* Constructs a new writer state instance.
* @classdesc Copied writer state.
* @memberof Writer
* @constructor
* @param {Writer} writer Writer to copy state from
* @ignore
*/
function State(writer) {
/**
* Current head.
* @type {Writer.Op}
*/
this.head = writer.head;
/**
* Current tail.
* @type {Writer.Op}
*/
this.tail = writer.tail;
/**
* Current buffer length.
* @type {number}
*/
this.len = writer.len;
/**
* Next state.
* @type {State|null}
*/
this.next = writer.states;
}
/**
* Constructs a new writer instance.
* @classdesc Wire format writer using `Uint8Array` if available, otherwise `Array`.
* @constructor
*/
function Writer() {
/**
* Current length.
* @type {number}
*/
this.len = 0;
/**
* Operations head.
* @type {Object}
*/
this.head = new Op(noop, 0, 0);
/**
* Operations tail
* @type {Object}
*/
this.tail = this.head;
/**
* Linked forked states.
* @type {Object|null}
*/
this.states = null;
// When a value is written, the writer calculates its byte length and puts it into a linked
// list of operations to perform when finish() is called. This both allows us to allocate
// buffers of the exact required size and reduces the amount of work we have to do compared
// to first calculating over objects and then encoding over objects. In our case, the encoding
// part is just a linked list walk calling operations with already prepared values.
}
var create = function create() {
return util.Buffer
? function create_buffer_setup() {
return (Writer.create = function create_buffer() {
return new BufferWriter();
})();
}
/* istanbul ignore next */
: function create_array() {
return new Writer();
};
};
/**
* Creates a new writer.
* @function
* @returns {BufferWriter|Writer} A {@link BufferWriter} when Buffers are supported, otherwise a {@link Writer}
*/
Writer.create = create();
/**
* Allocates a buffer of the specified size.
* @param {number} size Buffer size
* @returns {Uint8Array} Buffer
*/
Writer.alloc = function alloc(size) {
return new util.Array(size);
};
// Use Uint8Array buffer pool in the browser, just like node does with buffers
/* istanbul ignore else */
if (util.Array !== Array)
Writer.alloc = util.pool(Writer.alloc, util.Array.prototype.subarray);
/**
* Pushes a new operation to the queue.
* @param {function(Uint8Array, number, *)} fn Function to call
* @param {number} len Value byte length
* @param {number} val Value to write
* @returns {Writer} `this`
* @private
*/
Writer.prototype._push = function push(fn, len, val) {
this.tail = this.tail.next = new Op(fn, len, val);
this.len += len;
return this;
};
function writeByte(val, buf, pos) {
buf[pos] = val & 255;
}
function writeVarint32(val, buf, pos) {
while (val > 127) {
buf[pos++] = val & 127 | 128;
val >>>= 7;
}
buf[pos] = val;
}
/**
* Constructs a new varint writer operation instance.
* @classdesc Scheduled varint writer operation.
* @extends Op
* @constructor
* @param {number} len Value byte length
* @param {number} val Value to write
* @ignore
*/
function VarintOp(len, val) {
this.len = len;
this.next = undefined;
this.val = val;
}
VarintOp.prototype = Object.create(Op.prototype);
VarintOp.prototype.fn = writeVarint32;
/**
* Writes an unsigned 32 bit value as a varint.
* @param {number} value Value to write
* @returns {Writer} `this`
*/
Writer.prototype.uint32 = function write_uint32(value) {
// here, the call to this.push has been inlined and a varint specific Op subclass is used.
// uint32 is by far the most frequently used operation and benefits significantly from this.
this.len += (this.tail = this.tail.next = new VarintOp(
(value = value >>> 0)
< 128 ? 1
: value < 16384 ? 2
: value < 2097152 ? 3
: value < 268435456 ? 4
: 5,
value)).len;
return this;
};
/**
* Writes a signed 32 bit value as a varint.
* @function
* @param {number} value Value to write
* @returns {Writer} `this`
*/
Writer.prototype.int32 = function write_int32(value) {
return value < 0
? this._push(writeVarint64, 10, LongBits.fromNumber(value)) // 10 bytes per spec
: this.uint32(value);
};
/**
* Writes a 32 bit value as a varint, zig-zag encoded.
* @param {number} value Value to write
* @returns {Writer} `this`
*/
Writer.prototype.sint32 = function write_sint32(value) {
return this.uint32((value << 1 ^ value >> 31) >>> 0);
};
function writeVarint64(val, buf, pos) {
while (val.hi) {
buf[pos++] = val.lo & 127 | 128;
val.lo = (val.lo >>> 7 | val.hi << 25) >>> 0;
val.hi >>>= 7;
}
while (val.lo > 127) {
buf[pos++] = val.lo & 127 | 128;
val.lo = val.lo >>> 7;
}
buf[pos++] = val.lo;
}
/**
* Writes an unsigned 64 bit value as a varint.
* @param {Long|number|string} value Value to write
* @returns {Writer} `this`
* @throws {TypeError} If `value` is a string and no long library is present.
*/
Writer.prototype.uint64 = function write_uint64(value) {
var bits = LongBits.from(value);
return this._push(writeVarint64, bits.length(), bits);
};
/**
* Writes a signed 64 bit value as a varint.
* @function
* @param {Long|number|string} value Value to write
* @returns {Writer} `this`
* @throws {TypeError} If `value` is a string and no long library is present.
*/
Writer.prototype.int64 = Writer.prototype.uint64;
/**
* Writes a signed 64 bit value as a varint, zig-zag encoded.
* @param {Long|number|string} value Value to write
* @returns {Writer} `this`
* @throws {TypeError} If `value` is a string and no long library is present.
*/
Writer.prototype.sint64 = function write_sint64(value) {
var bits = LongBits.from(value).zzEncode();
return this._push(writeVarint64, bits.length(), bits);
};
/**
* Writes a boolish value as a varint.
* @param {boolean} value Value to write
* @returns {Writer} `this`
*/
Writer.prototype.bool = function write_bool(value) {
return this._push(writeByte, 1, value ? 1 : 0);
};
function writeFixed32(val, buf, pos) {
buf[pos ] = val & 255;
buf[pos + 1] = val >>> 8 & 255;
buf[pos + 2] = val >>> 16 & 255;
buf[pos + 3] = val >>> 24;
}
/**
* Writes an unsigned 32 bit value as fixed 32 bits.
* @param {number} value Value to write
* @returns {Writer} `this`
*/
Writer.prototype.fixed32 = function write_fixed32(value) {
return this._push(writeFixed32, 4, value >>> 0);
};
/**
* Writes a signed 32 bit value as fixed 32 bits.
* @function
* @param {number} value Value to write
* @returns {Writer} `this`
*/
Writer.prototype.sfixed32 = Writer.prototype.fixed32;
/**
* Writes an unsigned 64 bit value as fixed 64 bits.
* @param {Long|number|string} value Value to write
* @returns {Writer} `this`
* @throws {TypeError} If `value` is a string and no long library is present.
*/
Writer.prototype.fixed64 = function write_fixed64(value) {
var bits = LongBits.from(value);
return this._push(writeFixed32, 4, bits.lo)._push(writeFixed32, 4, bits.hi);
};
/**
* Writes a signed 64 bit value as fixed 64 bits.
* @function
* @param {Long|number|string} value Value to write
* @returns {Writer} `this`
* @throws {TypeError} If `value` is a string and no long library is present.
*/
Writer.prototype.sfixed64 = Writer.prototype.fixed64;
/**
* Writes a float (32 bit).
* @function
* @param {number} value Value to write
* @returns {Writer} `this`
*/
Writer.prototype.float = function write_float(value) {
return this._push(util.float.writeFloatLE, 4, value);
};
/**
* Writes a double (64 bit float).
* @function
* @param {number} value Value to write
* @returns {Writer} `this`
*/
Writer.prototype.double = function write_double(value) {
return this._push(util.float.writeDoubleLE, 8, value);
};
var writeBytes = util.Array.prototype.set
? function writeBytes_set(val, buf, pos) {
buf.set(val, pos); // also works for plain array values
}
/* istanbul ignore next */
: function writeBytes_for(val, buf, pos) {
for (var i = 0; i < val.length; ++i)
buf[pos + i] = val[i];
};
/**
* Writes a sequence of bytes.
* @param {Uint8Array|string} value Buffer or base64 encoded string to write
* @returns {Writer} `this`
*/
Writer.prototype.bytes = function write_bytes(value) {
var len = value.length >>> 0;
if (!len)
return this._push(writeByte, 1, 0);
if (util.isString(value)) {
var buf = Writer.alloc(len = base64.length(value));
base64.decode(value, buf, 0);
value = buf;
}
return this.uint32(len)._push(writeBytes, len, value);
};
/**
* Writes a string.
* @param {string} value Value to write
* @returns {Writer} `this`
*/
Writer.prototype.string = function write_string(value) {
var len = utf8.length(value);
return len
? this.uint32(len)._push(utf8.write, len, value)
: this._push(writeByte, 1, 0);
};
/**
* Forks this writer's state by pushing it to a stack.
* Calling {@link Writer#reset|reset} or {@link Writer#ldelim|ldelim} resets the writer to the previous state.
* @returns {Writer} `this`
*/
Writer.prototype.fork = function fork() {
this.states = new State(this);
this.head = this.tail = new Op(noop, 0, 0);
this.len = 0;
return this;
};
/**
* Resets this instance to the last state.
* @returns {Writer} `this`
*/
Writer.prototype.reset = function reset() {
if (this.states) {
this.head = this.states.head;
this.tail = this.states.tail;
this.len = this.states.len;
this.states = this.states.next;
} else {
this.head = this.tail = new Op(noop, 0, 0);
this.len = 0;
}
return this;
};
/**
* Resets to the last state and appends the fork state's current write length as a varint followed by its operations.
* @returns {Writer} `this`
*/
Writer.prototype.ldelim = function ldelim() {
var head = this.head,
tail = this.tail,
len = this.len;
this.reset().uint32(len);
if (len) {
this.tail.next = head.next; // skip noop
this.tail = tail;
this.len += len;
}
return this;
};
/**
* Finishes the write operation.
* @returns {Uint8Array} Finished buffer
*/
Writer.prototype.finish = function finish() {
var head = this.head.next, // skip noop
buf = this.constructor.alloc(this.len),
pos = 0;
while (head) {
head.fn(head.val, buf, pos);
pos += head.len;
head = head.next;
}
// this.head = this.tail = null;
return buf;
};
Writer._configure = function(BufferWriter_) {
BufferWriter = BufferWriter_;
Writer.create = create();
BufferWriter._configure();
};
return writer;
}
var writer_buffer;
var hasRequiredWriter_buffer;
function requireWriter_buffer () {
if (hasRequiredWriter_buffer) return writer_buffer;
hasRequiredWriter_buffer = 1;
writer_buffer = BufferWriter;
// extends Writer
var Writer = requireWriter();
(BufferWriter.prototype = Object.create(Writer.prototype)).constructor = BufferWriter;
var util = requireMinimal$1();
/**
* Constructs a new buffer writer instance.
* @classdesc Wire format writer using node buffers.
* @extends Writer
* @constructor
*/
function BufferWriter() {
Writer.call(this);
}
BufferWriter._configure = function () {
/**
* Allocates a buffer of the specified size.
* @function
* @param {number} size Buffer size
* @returns {Buffer} Buffer
*/
BufferWriter.alloc = util._Buffer_allocUnsafe;
BufferWriter.writeBytesBuffer = util.Buffer && util.Buffer.prototype instanceof Uint8Array && util.Buffer.prototype.set.name === "set"
? function writeBytesBuffer_set(val, buf, pos) {
buf.set(val, pos); // faster than copy (requires node >= 4 where Buffers extend Uint8Array and set is properly inherited)
// also works for plain array values
}
/* istanbul ignore next */
: function writeBytesBuffer_copy(val, buf, pos) {
if (val.copy) // Buffer values
val.copy(buf, pos, 0, val.length);
else for (var i = 0; i < val.length;) // plain array values
buf[pos++] = val[i++];
};
};
/**
* @override
*/
BufferWriter.prototype.bytes = function write_bytes_buffer(value) {
if (util.isString(value))
value = util._Buffer_from(value, "base64");
var len = value.length >>> 0;
this.uint32(len);
if (len)
this._push(BufferWriter.writeBytesBuffer, len, value);
return this;
};
function writeStringBuffer(val, buf, pos) {
if (val.length < 40) // plain js is faster for short strings (probably due to redundant assertions)
util.utf8.write(val, buf, pos);
else if (buf.utf8Write)
buf.utf8Write(val, pos);
else
buf.write(val, pos);
}
/**
* @override
*/
BufferWriter.prototype.string = function write_string_buffer(value) {
var len = util.Buffer.byteLength(value);
this.uint32(len);
if (len)
this._push(writeStringBuffer, len, value);
return this;
};
/**
* Finishes the write operation.
* @name BufferWriter#finish
* @function
* @returns {Buffer} Finished buffer
*/
BufferWriter._configure();
return writer_buffer;
}
var reader;
var hasRequiredReader;
function requireReader () {
if (hasRequiredReader) return reader;
hasRequiredReader = 1;
reader = Reader;
var util = requireMinimal$1();
var BufferReader; // cyclic
var LongBits = util.LongBits,
utf8 = util.utf8;
/* istanbul ignore next */
function indexOutOfRange(reader, writeLength) {
return RangeError("index out of range: " + reader.pos + " + " + (writeLength || 1) + " > " + reader.len);
}
/**
* Constructs a new reader instance using the specified buffer.
* @classdesc Wire format reader using `Uint8Array` if available, otherwise `Array`.
* @constructor
* @param {Uint8Array} buffer Buffer to read from
*/
function Reader(buffer) {
/**
* Read buffer.
* @type {Uint8Array}
*/
this.buf = buffer;
/**
* Read buffer position.
* @type {number}
*/
this.pos = 0;
/**
* Read buffer length.
* @type {number}
*/
this.len = buffer.length;
}
var create_array = typeof Uint8Array !== "undefined"
? function create_typed_array(buffer) {
if (buffer instanceof Uint8Array || Array.isArray(buffer))
return new Reader(buffer);
throw Error("illegal buffer");
}
/* istanbul ignore next */
: function create_array(buffer) {
if (Array.isArray(buffer))
return new Reader(buffer);
throw Error("illegal buffer");
};
var create = function create() {
return util.Buffer
? function create_buffer_setup(buffer) {
return (Reader.create = function create_buffer(buffer) {
return util.Buffer.isBuffer(buffer)
? new BufferReader(buffer)
/* istanbul ignore next */
: create_array(buffer);
})(buffer);
}
/* istanbul ignore next */
: create_array;
};
/**
* Creates a new reader using the specified buffer.
* @function
* @param {Uint8Array|Buffer} buffer Buffer to read from
* @returns {Reader|BufferReader} A {@link BufferReader} if `buffer` is a Buffer, otherwise a {@link Reader}
* @throws {Error} If `buffer` is not a valid buffer
*/
Reader.create = create();
Reader.prototype._slice = util.Array.prototype.subarray || /* istanbul ignore next */ util.Array.prototype.slice;
/**
* Reads a varint as an unsigned 32 bit value.
* @function
* @returns {number} Value read
*/
Reader.prototype.uint32 = (function read_uint32_setup() {
var value = 4294967295; // optimizer type-hint, tends to deopt otherwise (?!)
return function read_uint32() {
value = ( this.buf[this.pos] & 127 ) >>> 0; if (this.buf[this.pos++] < 128) return value;
value = (value | (this.buf[this.pos] & 127) << 7) >>> 0; if (this.buf[this.pos++] < 128) return value;
value = (value | (this.buf[this.pos] & 127) << 14) >>> 0; if (this.buf[this.pos++] < 128) return value;
value = (value | (this.buf[this.pos] & 127) << 21) >>> 0; if (this.buf[this.pos++] < 128) return value;
value = (value | (this.buf[this.pos] & 15) << 28) >>> 0; if (this.buf[this.pos++] < 128) return value;
/* istanbul ignore if */
if ((this.pos += 5) > this.len) {
this.pos = this.len;
throw indexOutOfRange(this, 10);
}
return value;
};
})();
/**
* Reads a varint as a signed 32 bit value.
* @returns {number} Value read
*/
Reader.prototype.int32 = function read_int32() {
return this.uint32() | 0;
};
/**
* Reads a zig-zag encoded varint as a signed 32 bit value.
* @returns {number} Value read
*/
Reader.prototype.sint32 = function read_sint32() {
var value = this.uint32();
return value >>> 1 ^ -(value & 1) | 0;
};
/* eslint-disable no-invalid-this */
function readLongVarint() {
// tends to deopt with local vars for octet etc.
var bits = new LongBits(0, 0);
var i = 0;
if (this.len - this.pos > 4) { // fast route (lo)
for (; i < 4; ++i) {
// 1st..4th
bits.lo = (bits.lo | (this.buf[this.pos] & 127) << i * 7) >>> 0;
if (this.buf[this.pos++] < 128)
return bits;
}
// 5th
bits.lo = (bits.lo | (this.buf[this.pos] & 127) << 28) >>> 0;
bits.hi = (bits.hi | (this.buf[this.pos] & 127) >> 4) >>> 0;
if (this.buf[this.pos++] < 128)
return bits;
i = 0;
} else {
for (; i < 3; ++i) {
/* istanbul ignore if */
if (this.pos >= this.len)
throw indexOutOfRange(this);
// 1st..3th
bits.lo = (bits.lo | (this.buf[this.pos] & 127) << i * 7) >>> 0;
if (this.buf[this.pos++] < 128)
return bits;
}
// 4th
bits.lo = (bits.lo | (this.buf[this.pos++] & 127) << i * 7) >>> 0;
return bits;
}
if (this.len - this.pos > 4) { // fast route (hi)
for (; i < 5; ++i) {
// 6th..10th
bits.hi = (bits.hi | (this.buf[this.pos] & 127) << i * 7 + 3) >>> 0;
if (this.buf[this.pos++] < 128)
return bits;
}
} else {
for (; i < 5; ++i) {
/* istanbul ignore if */
if (this.pos >= this.len)
throw indexOutOfRange(this);
// 6th..10th
bits.hi = (bits.hi | (this.buf[this.pos] & 127) << i * 7 + 3) >>> 0;
if (this.buf[this.pos++] < 128)
return bits;
}
}
/* istanbul ignore next */
throw Error("invalid varint encoding");
}
/* eslint-enable no-invalid-this */
/**
* Reads a varint as a signed 64 bit value.
* @name Reader#int64
* @function
* @returns {Long} Value read
*/
/**
* Reads a varint as an unsigned 64 bit value.
* @name Reader#uint64
* @function
* @returns {Long} Value read
*/
/**
* Reads a zig-zag encoded varint as a signed 64 bit value.
* @name Reader#sint64
* @function
* @returns {Long} Value read
*/
/**
* Reads a varint as a boolean.
* @returns {boolean} Value read
*/
Reader.prototype.bool = function read_bool() {
return this.uint32() !== 0;
};
function readFixed32_end(buf, end) { // note that this uses `end`, not `pos`
return (buf[end - 4]
| buf[end - 3] << 8
| buf[end - 2] << 16
| buf[end - 1] << 24) >>> 0;
}
/**
* Reads fixed 32 bits as an unsigned 32 bit integer.
* @returns {number} Value read
*/
Reader.prototype.fixed32 = function read_fixed32() {
/* istanbul ignore if */
if (this.pos + 4 > this.len)
throw indexOutOfRange(this, 4);
return readFixed32_end(this.buf, this.pos += 4);
};
/**
* Reads fixed 32 bits as a signed 32 bit integer.
* @returns {number} Value read
*/
Reader.prototype.sfixed32 = function read_sfixed32() {
/* istanbul ignore if */
if (this.pos + 4 > this.len)
throw indexOutOfRange(this, 4);
return readFixed32_end(this.buf, this.pos += 4) | 0;
};
/* eslint-disable no-invalid-this */
function readFixed64(/* this: Reader */) {
/* istanbul ignore if */
if (this.pos + 8 > this.len)
throw indexOutOfRange(this, 8);
return new LongBits(readFixed32_end(this.buf, this.pos += 4), readFixed32_end(this.buf, this.pos += 4));
}
/* eslint-enable no-invalid-this */
/**
* Reads fixed 64 bits.
* @name Reader#fixed64
* @function
* @returns {Long} Value read
*/
/**
* Reads zig-zag encoded fixed 64 bits.
* @name Reader#sfixed64
* @function
* @returns {Long} Value read
*/
/**
* Reads a float (32 bit) as a number.
* @function
* @returns {number} Value read
*/
Reader.prototype.float = function read_float() {
/* istanbul ignore if */
if (this.pos + 4 > this.len)
throw indexOutOfRange(this, 4);
var value = util.float.readFloatLE(this.buf, this.pos);
this.pos += 4;
return value;
};
/**
* Reads a double (64 bit float) as a number.
* @function
* @returns {number} Value read
*/
Reader.prototype.double = function read_double() {
/* istanbul ignore if */
if (this.pos + 8 > this.len)
throw indexOutOfRange(this, 4);
var value = util.float.readDoubleLE(this.buf, this.pos);
this.pos += 8;
return value;
};
/**
* Reads a sequence of bytes preceeded by its length as a varint.
* @returns {Uint8Array} Value read
*/
Reader.prototype.bytes = function read_bytes() {
var length = this.uint32(),
start = this.pos,
end = this.pos + length;
/* istanbul ignore if */
if (end > this.len)
throw indexOutOfRange(this, length);
this.pos += length;
if (Array.isArray(this.buf)) // plain array
return this.buf.slice(start, end);
return start === end // fix for IE 10/Win8 and others' subarray returning array of size 1
? new this.buf.constructor(0)
: this._slice.call(this.buf, start, end);
};
/**
* Reads a string preceeded by its byte length as a varint.
* @returns {string} Value read
*/
Reader.prototype.string = function read_string() {
var bytes = this.bytes();
return utf8.read(bytes, 0, bytes.length);
};
/**
* Skips the specified number of bytes if specified, otherwise skips a varint.
* @param {number} [length] Length if known, otherwise a varint is assumed
* @returns {Reader} `this`
*/
Reader.prototype.skip = function skip(length) {
if (typeof length === "number") {
/* istanbul ignore if */
if (this.pos + length > this.len)
throw indexOutOfRange(this, length);
this.pos += length;
} else {
do {
/* istanbul ignore if */
if (this.pos >= this.len)
throw indexOutOfRange(this);
} while (this.buf[this.pos++] & 128);
}
return this;
};
/**
* Skips the next element of the specified wire type.
* @param {number} wireType Wire type received
* @returns {Reader} `this`
*/
Reader.prototype.skipType = function(wireType) {
switch (wireType) {
case 0:
this.skip();
break;
case 1:
this.skip(8);
break;
case 2:
this.skip(this.uint32());
break;
case 3:
while ((wireType = this.uint32() & 7) !== 4) {
this.skipType(wireType);
}
break;
case 5:
this.skip(4);
break;
/* istanbul ignore next */
default:
throw Error("invalid wire type " + wireType + " at offset " + this.pos);
}
return this;
};
Reader._configure = function(BufferReader_) {
BufferReader = BufferReader_;
Reader.create = create();
BufferReader._configure();
var fn = util.Long ? "toLong" : /* istanbul ignore next */ "toNumber";
util.merge(Reader.prototype, {
int64: function read_int64() {
return readLongVarint.call(this)[fn](false);
},
uint64: function read_uint64() {
return readLongVarint.call(this)[fn](true);
},
sint64: function read_sint64() {
return readLongVarint.call(this).zzDecode()[fn](false);
},
fixed64: function read_fixed64() {
return readFixed64.call(this)[fn](true);
},
sfixed64: function read_sfixed64() {
return readFixed64.call(this)[fn](false);
}
});
};
return reader;
}
var reader_buffer;
var hasRequiredReader_buffer;
function requireReader_buffer () {
if (hasRequiredReader_buffer) return reader_buffer;
hasRequiredReader_buffer = 1;
reader_buffer = BufferReader;
// extends Reader
var Reader = requireReader();
(BufferReader.prototype = Object.create(Reader.prototype)).constructor = BufferReader;
var util = requireMinimal$1();
/**
* Constructs a new buffer reader instance.
* @classdesc Wire format reader using node buffers.
* @extends Reader
* @constructor
* @param {Buffer} buffer Buffer to read from
*/
function BufferReader(buffer) {
Reader.call(this, buffer);
/**
* Read buffer.
* @name BufferReader#buf
* @type {Buffer}
*/
}
BufferReader._configure = function () {
/* istanbul ignore else */
if (util.Buffer)
BufferReader.prototype._slice = util.Buffer.prototype.slice;
};
/**
* @override
*/
BufferReader.prototype.string = function read_string_buffer() {
var len = this.uint32(); // modifies pos
return this.buf.utf8Slice
? this.buf.utf8Slice(this.pos, this.pos = Math.min(this.pos + len, this.len))
: this.buf.toString("utf-8", this.pos, this.pos = Math.min(this.pos + len, this.len));
};
/**
* Reads a sequence of bytes preceeded by its length as a varint.
* @name BufferReader#bytes
* @function
* @returns {Buffer} Value read
*/
BufferReader._configure();
return reader_buffer;
}
var rpc = {};
var service;
var hasRequiredService;
function requireService () {
if (hasRequiredService) return service;
hasRequiredService = 1;
service = Service;
var util = requireMinimal$1();
// Extends EventEmitter
(Service.prototype = Object.create(util.EventEmitter.prototype)).constructor = Service;
/**
* A service method callback as used by {@link rpc.ServiceMethod|ServiceMethod}.
*
* Differs from {@link RPCImplCallback} in that it is an actual callback of a service method which may not return `response = null`.
* @typedef rpc.ServiceMethodCallback
* @template TRes extends Message<TRes>
* @type {function}
* @param {Error|null} error Error, if any
* @param {TRes} [response] Response message
* @returns {undefined}
*/
/**
* A service method part of a {@link rpc.Service} as created by {@link Service.create}.
* @typedef rpc.ServiceMethod
* @template TReq extends Message<TReq>
* @template TRes extends Message<TRes>
* @type {function}
* @param {TReq|Properties<TReq>} request Request message or plain object
* @param {rpc.ServiceMethodCallback<TRes>} [callback] Node-style callback called with the error, if any, and the response message
* @returns {Promise<Message<TRes>>} Promise if `callback` has been omitted, otherwise `undefined`
*/
/**
* Constructs a new RPC service instance.
* @classdesc An RPC service as returned by {@link Service#create}.
* @exports rpc.Service
* @extends util.EventEmitter
* @constructor
* @param {RPCImpl} rpcImpl RPC implementation
* @param {boolean} [requestDelimited=false] Whether requests are length-delimited
* @param {boolean} [responseDelimited=false] Whether responses are length-delimited
*/
function Service(rpcImpl, requestDelimited, responseDelimited) {
if (typeof rpcImpl !== "function")
throw TypeError("rpcImpl must be a function");
util.EventEmitter.call(this);
/**
* RPC implementation. Becomes `null` once the service is ended.
* @type {RPCImpl|null}
*/
this.rpcImpl = rpcImpl;
/**
* Whether requests are length-delimited.
* @type {boolean}
*/
this.requestDelimited = Boolean(requestDelimited);
/**
* Whether responses are length-delimited.
* @type {boolean}
*/
this.responseDelimited = Boolean(responseDelimited);
}
/**
* Calls a service method through {@link rpc.Service#rpcImpl|rpcImpl}.
* @param {Method|rpc.ServiceMethod<TReq,TRes>} method Reflected or static method
* @param {Constructor<TReq>} requestCtor Request constructor
* @param {Constructor<TRes>} responseCtor Response constructor
* @param {TReq|Properties<TReq>} request Request message or plain object
* @param {rpc.ServiceMethodCallback<TRes>} callback Service callback
* @returns {undefined}
* @template TReq extends Message<TReq>
* @template TRes extends Message<TRes>
*/
Service.prototype.rpcCall = function rpcCall(method, requestCtor, responseCtor, request, callback) {
if (!request)
throw TypeError("request must be specified");
var self = this;
if (!callback)
return util.asPromise(rpcCall, self, method, requestCtor, responseCtor, request);
if (!self.rpcImpl) {
setTimeout(function() { callback(Error("already ended")); }, 0);
return undefined;
}
try {
return self.rpcImpl(
method,
requestCtor[self.requestDelimited ? "encodeDelimited" : "encode"](request).finish(),
function rpcCallback(err, response) {
if (err) {
self.emit("error", err, method);
return callback(err);
}
if (response === null) {
self.end(/* endedByRPC */ true);
return undefined;
}
if (!(response instanceof responseCtor)) {
try {
response = responseCtor[self.responseDelimited ? "decodeDelimited" : "decode"](response);
} catch (err) {
self.emit("error", err, method);
return callback(err);
}
}
self.emit("data", response, method);
return callback(null, response);
}
);
} catch (err) {
self.emit("error", err, method);
setTimeout(function() { callback(err); }, 0);
return undefined;
}
};
/**
* Ends this service and emits the `end` event.
* @param {boolean} [endedByRPC=false] Whether the service has been ended by the RPC implementation.
* @returns {rpc.Service} `this`
*/
Service.prototype.end = function end(endedByRPC) {
if (this.rpcImpl) {
if (!endedByRPC) // signal end to rpcImpl
this.rpcImpl(null, null, null);
this.rpcImpl = null;
this.emit("end").off();
}
return this;
};
return service;
}
var hasRequiredRpc;
function requireRpc () {
if (hasRequiredRpc) return rpc;
hasRequiredRpc = 1;
(function (exports) {
/**
* Streaming RPC helpers.
* @namespace
*/
var rpc = exports;
/**
* RPC implementation passed to {@link Service#create} performing a service request on network level, i.e. by utilizing http requests or websockets.
* @typedef RPCImpl
* @type {function}
* @param {Method|rpc.ServiceMethod<Message<{}>,Message<{}>>} method Reflected or static method being called
* @param {Uint8Array} requestData Request data
* @param {RPCImplCallback} callback Callback function
* @returns {undefined}
* @example
* function rpcImpl(method, requestData, callback) {
* if (protobuf.util.lcFirst(method.name) !== "myMethod") // compatible with static code
* throw Error("no such method");
* asynchronouslyObtainAResponse(requestData, function(err, responseData) {
* callback(err, responseData);
* });
* }
*/
/**
* Node-style callback as used by {@link RPCImpl}.
* @typedef RPCImplCallback
* @type {function}
* @param {Error|null} error Error, if any, otherwise `null`
* @param {Uint8Array|null} [response] Response data or `null` to signal end of stream, if there hasn't been an error
* @returns {undefined}
*/
rpc.Service = requireService();
} (rpc));
return rpc;
}
var roots;
var hasRequiredRoots;
function requireRoots () {
if (hasRequiredRoots) return roots;
hasRequiredRoots = 1;
roots = {};
/**
* Named roots.
* This is where pbjs stores generated structures (the option `-r, --root` specifies a name).
* Can also be used manually to make roots available accross modules.
* @name roots
* @type {Object.<string,Root>}
* @example
* // pbjs -r myroot -o compiled.js ...
*
* // in another module:
* require("./compiled.js");
*
* // in any subsequent module:
* var root = protobuf.roots["myroot"];
*/
return roots;
}
var hasRequiredIndexMinimal;
function requireIndexMinimal () {
if (hasRequiredIndexMinimal) return indexMinimal;
hasRequiredIndexMinimal = 1;
(function (exports) {
var protobuf = exports;
/**
* Build type, one of `"full"`, `"light"` or `"minimal"`.
* @name build
* @type {string}
* @const
*/
protobuf.build = "minimal";
// Serialization
protobuf.Writer = requireWriter();
protobuf.BufferWriter = requireWriter_buffer();
protobuf.Reader = requireReader();
protobuf.BufferReader = requireReader_buffer();
// Utility
protobuf.util = requireMinimal$1();
protobuf.rpc = requireRpc();
protobuf.roots = requireRoots();
protobuf.configure = configure;
/* istanbul ignore next */
/**
* Reconfigures the library according to the environment.
* @returns {undefined}
*/
function configure() {
protobuf.util._configure();
protobuf.Writer._configure(protobuf.BufferWriter);
protobuf.Reader._configure(protobuf.BufferReader);
}
// Set up buffer utility according to the environment
configure();
} (indexMinimal));
return indexMinimal;
}
var hasRequiredMinimal;
function requireMinimal () {
if (hasRequiredMinimal) return minimal$1.exports;
hasRequiredMinimal = 1;
(function (module) {
module.exports = requireIndexMinimal();
} (minimal$1));
return minimal$1.exports;
}
(function (module) {
// @ts-nocheck
/*eslint-disable*/
(function (global, factory) {
/* AMD */ if (typeof commonjsRequire === 'function' && 'object' === 'object' && module && module.exports)
module.exports = factory(requireMinimal());
})(commonjsGlobal, function ($protobuf) {
// Common aliases
var $Reader = $protobuf.Reader, $Writer = $protobuf.Writer, $util = $protobuf.util;
// Exported root namespace
var $root = $protobuf.roots["default"] || ($protobuf.roots["default"] = {});
$root.RPC = (function () {
/**
* Properties of a RPC.
* @exports IRPC
* @interface IRPC
* @property {Array.<RPC.ISubOpts>|null} [subscriptions] RPC subscriptions
* @property {Array.<RPC.IMessage>|null} [messages] RPC messages
* @property {RPC.IControlMessage|null} [control] RPC control
*/
/**
* Constructs a new RPC.
* @exports RPC
* @classdesc Represents a RPC.
* @implements IRPC
* @constructor
* @param {IRPC=} [p] Properties to set
*/
function RPC(p) {
this.subscriptions = [];
this.messages = [];
if (p)
for (var ks = Object.keys(p), i = 0; i < ks.length; ++i)
if (p[ks[i]] != null)
this[ks[i]] = p[ks[i]];
}
/**
* RPC subscriptions.
* @member {Array.<RPC.ISubOpts>} subscriptions
* @memberof RPC
* @instance
*/
RPC.prototype.subscriptions = $util.emptyArray;
/**
* RPC messages.
* @member {Array.<RPC.IMessage>} messages
* @memberof RPC
* @instance
*/
RPC.prototype.messages = $util.emptyArray;
/**
* RPC control.
* @member {RPC.IControlMessage|null|undefined} control
* @memberof RPC
* @instance
*/
RPC.prototype.control = null;
// OneOf field names bound to virtual getters and setters
var $oneOfFields;
/**
* RPC _control.
* @member {"control"|undefined} _control
* @memberof RPC
* @instance
*/
Object.defineProperty(RPC.prototype, "_control", {
get: $util.oneOfGetter($oneOfFields = ["control"]),
set: $util.oneOfSetter($oneOfFields)
});
/**
* Encodes the specified RPC message. Does not implicitly {@link RPC.verify|verify} messages.
* @function encode
* @memberof RPC
* @static
* @param {IRPC} m RPC message or plain object to encode
* @param {$protobuf.Writer} [w] Writer to encode to
* @returns {$protobuf.Writer} Writer
*/
RPC.encode = function encode(m, w) {
if (!w)
w = $Writer.create();
if (m.subscriptions != null && m.subscriptions.length) {
for (var i = 0; i < m.subscriptions.length; ++i)
$root.RPC.SubOpts.encode(m.subscriptions[i], w.uint32(10).fork()).ldelim();
}
if (m.messages != null && m.messages.length) {
for (var i = 0; i < m.messages.length; ++i)
$root.RPC.Message.encode(m.messages[i], w.uint32(18).fork()).ldelim();
}
if (m.control != null && Object.hasOwnProperty.call(m, "control"))
$root.RPC.ControlMessage.encode(m.control, w.uint32(26).fork()).ldelim();
return w;
};
/**
* Decodes a RPC message from the specified reader or buffer.
* @function decode
* @memberof RPC
* @static
* @param {$protobuf.Reader|Uint8Array} r Reader or buffer to decode from
* @param {number} [l] Message length if known beforehand
* @returns {RPC} RPC
* @throws {Error} If the payload is not a reader or valid buffer
* @throws {$protobuf.util.ProtocolError} If required fields are missing
*/
RPC.decode = function decode(r, l) {
if (!(r instanceof $Reader))
r = $Reader.create(r);
var c = l === undefined ? r.len : r.pos + l, m = new $root.RPC();
while (r.pos < c) {
var t = r.uint32();
switch (t >>> 3) {
case 1:
if (!(m.subscriptions && m.subscriptions.length))
m.subscriptions = [];
m.subscriptions.push($root.RPC.SubOpts.decode(r, r.uint32()));
break;
case 2:
if (!(m.messages && m.messages.length))
m.messages = [];
m.messages.push($root.RPC.Message.decode(r, r.uint32()));
break;
case 3:
m.control = $root.RPC.ControlMessage.decode(r, r.uint32());
break;
default:
r.skipType(t & 7);
break;
}
}
return m;
};
/**
* Creates a RPC message from a plain object. Also converts values to their respective internal types.
* @function fromObject
* @memberof RPC
* @static
* @param {Object.<string,*>} d Plain object
* @returns {RPC} RPC
*/
RPC.fromObject = function fromObject(d) {
if (d instanceof $root.RPC)
return d;
var m = new $root.RPC();
if (d.subscriptions) {
if (!Array.isArray(d.subscriptions))
throw TypeError(".RPC.subscriptions: array expected");
m.subscriptions = [];
for (var i = 0; i < d.subscriptions.length; ++i) {
if (typeof d.subscriptions[i] !== "object")
throw TypeError(".RPC.subscriptions: object expected");
m.subscriptions[i] = $root.RPC.SubOpts.fromObject(d.subscriptions[i]);
}
}
if (d.messages) {
if (!Array.isArray(d.messages))
throw TypeError(".RPC.messages: array expected");
m.messages = [];
for (var i = 0; i < d.messages.length; ++i) {
if (typeof d.messages[i] !== "object")
throw TypeError(".RPC.messages: object expected");
m.messages[i] = $root.RPC.Message.fromObject(d.messages[i]);
}
}
if (d.control != null) {
if (typeof d.control !== "object")
throw TypeError(".RPC.control: object expected");
m.control = $root.RPC.ControlMessage.fromObject(d.control);
}
return m;
};
/**
* Creates a plain object from a RPC message. Also converts values to other types if specified.
* @function toObject
* @memberof RPC
* @static
* @param {RPC} m RPC
* @param {$protobuf.IConversionOptions} [o] Conversion options
* @returns {Object.<string,*>} Plain object
*/
RPC.toObject = function toObject(m, o) {
if (!o)
o = {};
var d = {};
if (o.arrays || o.defaults) {
d.subscriptions = [];
d.messages = [];
}
if (m.subscriptions && m.subscriptions.length) {
d.subscriptions = [];
for (var j = 0; j < m.subscriptions.length; ++j) {
d.subscriptions[j] = $root.RPC.SubOpts.toObject(m.subscriptions[j], o);
}
}
if (m.messages && m.messages.length) {
d.messages = [];
for (var j = 0; j < m.messages.length; ++j) {
d.messages[j] = $root.RPC.Message.toObject(m.messages[j], o);
}
}
if (m.control != null && m.hasOwnProperty("control")) {
d.control = $root.RPC.ControlMessage.toObject(m.control, o);
if (o.oneofs)
d._control = "control";
}
return d;
};
/**
* Converts this RPC to JSON.
* @function toJSON
* @memberof RPC
* @instance
* @returns {Object.<string,*>} JSON object
*/
RPC.prototype.toJSON = function toJSON() {
return this.constructor.toObject(this, $protobuf.util.toJSONOptions);
};
RPC.SubOpts = (function () {
/**
* Properties of a SubOpts.
* @memberof RPC
* @interface ISubOpts
* @property {boolean|null} [subscribe] SubOpts subscribe
* @property {string|null} [topic] SubOpts topic
*/
/**
* Constructs a new SubOpts.
* @memberof RPC
* @classdesc Represents a SubOpts.
* @implements ISubOpts
* @constructor
* @param {RPC.ISubOpts=} [p] Properties to set
*/
function SubOpts(p) {
if (p)
for (var ks = Object.keys(p), i = 0; i < ks.length; ++i)
if (p[ks[i]] != null)
this[ks[i]] = p[ks[i]];
}
/**
* SubOpts subscribe.
* @member {boolean|null|undefined} subscribe
* @memberof RPC.SubOpts
* @instance
*/
SubOpts.prototype.subscribe = null;
/**
* SubOpts topic.
* @member {string|null|undefined} topic
* @memberof RPC.SubOpts
* @instance
*/
SubOpts.prototype.topic = null;
// OneOf field names bound to virtual getters and setters
var $oneOfFields;
/**
* SubOpts _subscribe.
* @member {"subscribe"|undefined} _subscribe
* @memberof RPC.SubOpts
* @instance
*/
Object.defineProperty(SubOpts.prototype, "_subscribe", {
get: $util.oneOfGetter($oneOfFields = ["subscribe"]),
set: $util.oneOfSetter($oneOfFields)
});
/**
* SubOpts _topic.
* @member {"topic"|undefined} _topic
* @memberof RPC.SubOpts
* @instance
*/
Object.defineProperty(SubOpts.prototype, "_topic", {
get: $util.oneOfGetter($oneOfFields = ["topic"]),
set: $util.oneOfSetter($oneOfFields)
});
/**
* Encodes the specified SubOpts message. Does not implicitly {@link RPC.SubOpts.verify|verify} messages.
* @function encode
* @memberof RPC.SubOpts
* @static
* @param {RPC.ISubOpts} m SubOpts message or plain object to encode
* @param {$protobuf.Writer} [w] Writer to encode to
* @returns {$protobuf.Writer} Writer
*/
SubOpts.encode = function encode(m, w) {
if (!w)
w = $Writer.create();
if (m.subscribe != null && Object.hasOwnProperty.call(m, "subscribe"))
w.uint32(8).bool(m.subscribe);
if (m.topic != null && Object.hasOwnProperty.call(m, "topic"))
w.uint32(18).string(m.topic);
return w;
};
/**
* Decodes a SubOpts message from the specified reader or buffer.
* @function decode
* @memberof RPC.SubOpts
* @static
* @param {$protobuf.Reader|Uint8Array} r Reader or buffer to decode from
* @param {number} [l] Message length if known beforehand
* @returns {RPC.SubOpts} SubOpts
* @throws {Error} If the payload is not a reader or valid buffer
* @throws {$protobuf.util.ProtocolError} If required fields are missing
*/
SubOpts.decode = function decode(r, l) {
if (!(r instanceof $Reader))
r = $Reader.create(r);
var c = l === undefined ? r.len : r.pos + l, m = new $root.RPC.SubOpts();
while (r.pos < c) {
var t = r.uint32();
switch (t >>> 3) {
case 1:
m.subscribe = r.bool();
break;
case 2:
m.topic = r.string();
break;
default:
r.skipType(t & 7);
break;
}
}
return m;
};
/**
* Creates a SubOpts message from a plain object. Also converts values to their respective internal types.
* @function fromObject
* @memberof RPC.SubOpts
* @static
* @param {Object.<string,*>} d Plain object
* @returns {RPC.SubOpts} SubOpts
*/
SubOpts.fromObject = function fromObject(d) {
if (d instanceof $root.RPC.SubOpts)
return d;
var m = new $root.RPC.SubOpts();
if (d.subscribe != null) {
m.subscribe = Boolean(d.subscribe);
}
if (d.topic != null) {
m.topic = String(d.topic);
}
return m;
};
/**
* Creates a plain object from a SubOpts message. Also converts values to other types if specified.
* @function toObject
* @memberof RPC.SubOpts
* @static
* @param {RPC.SubOpts} m SubOpts
* @param {$protobuf.IConversionOptions} [o] Conversion options
* @returns {Object.<string,*>} Plain object
*/
SubOpts.toObject = function toObject(m, o) {
if (!o)
o = {};
var d = {};
if (m.subscribe != null && m.hasOwnProperty("subscribe")) {
d.subscribe = m.subscribe;
if (o.oneofs)
d._subscribe = "subscribe";
}
if (m.topic != null && m.hasOwnProperty("topic")) {
d.topic = m.topic;
if (o.oneofs)
d._topic = "topic";
}
return d;
};
/**
* Converts this SubOpts to JSON.
* @function toJSON
* @memberof RPC.SubOpts
* @instance
* @returns {Object.<string,*>} JSON object
*/
SubOpts.prototype.toJSON = function toJSON() {
return this.constructor.toObject(this, $protobuf.util.toJSONOptions);
};
return SubOpts;
})();
RPC.Message = (function () {
/**
* Properties of a Message.
* @memberof RPC
* @interface IMessage
* @property {Uint8Array|null} [from] Message from
* @property {Uint8Array|null} [data] Message data
* @property {Uint8Array|null} [seqno] Message seqno
* @property {string} topic Message topic
* @property {Uint8Array|null} [signature] Message signature
* @property {Uint8Array|null} [key] Message key
*/
/**
* Constructs a new Message.
* @memberof RPC
* @classdesc Represents a Message.
* @implements IMessage
* @constructor
* @param {RPC.IMessage=} [p] Properties to set
*/
function Message(p) {
if (p)
for (var ks = Object.keys(p), i = 0; i < ks.length; ++i)
if (p[ks[i]] != null)
this[ks[i]] = p[ks[i]];
}
/**
* Message from.
* @member {Uint8Array|null|undefined} from
* @memberof RPC.Message
* @instance
*/
Message.prototype.from = null;
/**
* Message data.
* @member {Uint8Array|null|undefined} data
* @memberof RPC.Message
* @instance
*/
Message.prototype.data = null;
/**
* Message seqno.
* @member {Uint8Array|null|undefined} seqno
* @memberof RPC.Message
* @instance
*/
Message.prototype.seqno = null;
/**
* Message topic.
* @member {string} topic
* @memberof RPC.Message
* @instance
*/
Message.prototype.topic = "";
/**
* Message signature.
* @member {Uint8Array|null|undefined} signature
* @memberof RPC.Message
* @instance
*/
Message.prototype.signature = null;
/**
* Message key.
* @member {Uint8Array|null|undefined} key
* @memberof RPC.Message
* @instance
*/
Message.prototype.key = null;
// OneOf field names bound to virtual getters and setters
var $oneOfFields;
/**
* Message _from.
* @member {"from"|undefined} _from
* @memberof RPC.Message
* @instance
*/
Object.defineProperty(Message.prototype, "_from", {
get: $util.oneOfGetter($oneOfFields = ["from"]),
set: $util.oneOfSetter($oneOfFields)
});
/**
* Message _data.
* @member {"data"|undefined} _data
* @memberof RPC.Message
* @instance
*/
Object.defineProperty(Message.prototype, "_data", {
get: $util.oneOfGetter($oneOfFields = ["data"]),
set: $util.oneOfSetter($oneOfFields)
});
/**
* Message _seqno.
* @member {"seqno"|undefined} _seqno
* @memberof RPC.Message
* @instance
*/
Object.defineProperty(Message.prototype, "_seqno", {
get: $util.oneOfGetter($oneOfFields = ["seqno"]),
set: $util.oneOfSetter($oneOfFields)
});
/**
* Message _signature.
* @member {"signature"|undefined} _signature
* @memberof RPC.Message
* @instance
*/
Object.defineProperty(Message.prototype, "_signature", {
get: $util.oneOfGetter($oneOfFields = ["signature"]),
set: $util.oneOfSetter($oneOfFields)
});
/**
* Message _key.
* @member {"key"|undefined} _key
* @memberof RPC.Message
* @instance
*/
Object.defineProperty(Message.prototype, "_key", {
get: $util.oneOfGetter($oneOfFields = ["key"]),
set: $util.oneOfSetter($oneOfFields)
});
/**
* Encodes the specified Message message. Does not implicitly {@link RPC.Message.verify|verify} messages.
* @function encode
* @memberof RPC.Message
* @static
* @param {RPC.IMessage} m Message message or plain object to encode
* @param {$protobuf.Writer} [w] Writer to encode to
* @returns {$protobuf.Writer} Writer
*/
Message.encode = function encode(m, w) {
if (!w)
w = $Writer.create();
if (m.from != null && Object.hasOwnProperty.call(m, "from"))
w.uint32(10).bytes(m.from);
if (m.data != null && Object.hasOwnProperty.call(m, "data"))
w.uint32(18).bytes(m.data);
if (m.seqno != null && Object.hasOwnProperty.call(m, "seqno"))
w.uint32(26).bytes(m.seqno);
w.uint32(34).string(m.topic);
if (m.signature != null && Object.hasOwnProperty.call(m, "signature"))
w.uint32(42).bytes(m.signature);
if (m.key != null && Object.hasOwnProperty.call(m, "key"))
w.uint32(50).bytes(m.key);
return w;
};
/**
* Decodes a Message message from the specified reader or buffer.
* @function decode
* @memberof RPC.Message
* @static
* @param {$protobuf.Reader|Uint8Array} r Reader or buffer to decode from
* @param {number} [l] Message length if known beforehand
* @returns {RPC.Message} Message
* @throws {Error} If the payload is not a reader or valid buffer
* @throws {$protobuf.util.ProtocolError} If required fields are missing
*/
Message.decode = function decode(r, l) {
if (!(r instanceof $Reader))
r = $Reader.create(r);
var c = l === undefined ? r.len : r.pos + l, m = new $root.RPC.Message();
while (r.pos < c) {
var t = r.uint32();
switch (t >>> 3) {
case 1:
m.from = r.bytes();
break;
case 2:
m.data = r.bytes();
break;
case 3:
m.seqno = r.bytes();
break;
case 4:
m.topic = r.string();
break;
case 5:
m.signature = r.bytes();
break;
case 6:
m.key = r.bytes();
break;
default:
r.skipType(t & 7);
break;
}
}
if (!m.hasOwnProperty("topic"))
throw $util.ProtocolError("missing required 'topic'", { instance: m });
return m;
};
/**
* Creates a Message message from a plain object. Also converts values to their respective internal types.
* @function fromObject
* @memberof RPC.Message
* @static
* @param {Object.<string,*>} d Plain object
* @returns {RPC.Message} Message
*/
Message.fromObject = function fromObject(d) {
if (d instanceof $root.RPC.Message)
return d;
var m = new $root.RPC.Message();
if (d.from != null) {
if (typeof d.from === "string")
$util.base64.decode(d.from, m.from = $util.newBuffer($util.base64.length(d.from)), 0);
else if (d.from.length)
m.from = d.from;
}
if (d.data != null) {
if (typeof d.data === "string")
$util.base64.decode(d.data, m.data = $util.newBuffer($util.base64.length(d.data)), 0);
else if (d.data.length)
m.data = d.data;
}
if (d.seqno != null) {
if (typeof d.seqno === "string")
$util.base64.decode(d.seqno, m.seqno = $util.newBuffer($util.base64.length(d.seqno)), 0);
else if (d.seqno.length)
m.seqno = d.seqno;
}
if (d.topic != null) {
m.topic = String(d.topic);
}
if (d.signature != null) {
if (typeof d.signature === "string")
$util.base64.decode(d.signature, m.signature = $util.newBuffer($util.base64.length(d.signature)), 0);
else if (d.signature.length)
m.signature = d.signature;
}
if (d.key != null) {
if (typeof d.key === "string")
$util.base64.decode(d.key, m.key = $util.newBuffer($util.base64.length(d.key)), 0);
else if (d.key.length)
m.key = d.key;
}
return m;
};
/**
* Creates a plain object from a Message message. Also converts values to other types if specified.
* @function toObject
* @memberof RPC.Message
* @static
* @param {RPC.Message} m Message
* @param {$protobuf.IConversionOptions} [o] Conversion options
* @returns {Object.<string,*>} Plain object
*/
Message.toObject = function toObject(m, o) {
if (!o)
o = {};
var d = {};
if (o.defaults) {
d.topic = "";
}
if (m.from != null && m.hasOwnProperty("from")) {
d.from = o.bytes === String ? $util.base64.encode(m.from, 0, m.from.length) : o.bytes === Array ? Array.prototype.slice.call(m.from) : m.from;
if (o.oneofs)
d._from = "from";
}
if (m.data != null && m.hasOwnProperty("data")) {
d.data = o.bytes === String ? $util.base64.encode(m.data, 0, m.data.length) : o.bytes === Array ? Array.prototype.slice.call(m.data) : m.data;
if (o.oneofs)
d._data = "data";
}
if (m.seqno != null && m.hasOwnProperty("seqno")) {
d.seqno = o.bytes === String ? $util.base64.encode(m.seqno, 0, m.seqno.length) : o.bytes === Array ? Array.prototype.slice.call(m.seqno) : m.seqno;
if (o.oneofs)
d._seqno = "seqno";
}
if (m.topic != null && m.hasOwnProperty("topic")) {
d.topic = m.topic;
}
if (m.signature != null && m.hasOwnProperty("signature")) {
d.signature = o.bytes === String ? $util.base64.encode(m.signature, 0, m.signature.length) : o.bytes === Array ? Array.prototype.slice.call(m.signature) : m.signature;
if (o.oneofs)
d._signature = "signature";
}
if (m.key != null && m.hasOwnProperty("key")) {
d.key = o.bytes === String ? $util.base64.encode(m.key, 0, m.key.length) : o.bytes === Array ? Array.prototype.slice.call(m.key) : m.key;
if (o.oneofs)
d._key = "key";
}
return d;
};
/**
* Converts this Message to JSON.
* @function toJSON
* @memberof RPC.Message
* @instance
* @returns {Object.<string,*>} JSON object
*/
Message.prototype.toJSON = function toJSON() {
return this.constructor.toObject(this, $protobuf.util.toJSONOptions);
};
return Message;
})();
RPC.ControlMessage = (function () {
/**
* Properties of a ControlMessage.
* @memberof RPC
* @interface IControlMessage
* @property {Array.<RPC.IControlIHave>|null} [ihave] ControlMessage ihave
* @property {Array.<RPC.IControlIWant>|null} [iwant] ControlMessage iwant
* @property {Array.<RPC.IControlGraft>|null} [graft] ControlMessage graft
* @property {Array.<RPC.IControlPrune>|null} [prune] ControlMessage prune
*/
/**
* Constructs a new ControlMessage.
* @memberof RPC
* @classdesc Represents a ControlMessage.
* @implements IControlMessage
* @constructor
* @param {RPC.IControlMessage=} [p] Properties to set
*/
function ControlMessage(p) {
this.ihave = [];
this.iwant = [];
this.graft = [];
this.prune = [];
if (p)
for (var ks = Object.keys(p), i = 0; i < ks.length; ++i)
if (p[ks[i]] != null)
this[ks[i]] = p[ks[i]];
}
/**
* ControlMessage ihave.
* @member {Array.<RPC.IControlIHave>} ihave
* @memberof RPC.ControlMessage
* @instance
*/
ControlMessage.prototype.ihave = $util.emptyArray;
/**
* ControlMessage iwant.
* @member {Array.<RPC.IControlIWant>} iwant
* @memberof RPC.ControlMessage
* @instance
*/
ControlMessage.prototype.iwant = $util.emptyArray;
/**
* ControlMessage graft.
* @member {Array.<RPC.IControlGraft>} graft
* @memberof RPC.ControlMessage
* @instance
*/
ControlMessage.prototype.graft = $util.emptyArray;
/**
* ControlMessage prune.
* @member {Array.<RPC.IControlPrune>} prune
* @memberof RPC.ControlMessage
* @instance
*/
ControlMessage.prototype.prune = $util.emptyArray;
/**
* Encodes the specified ControlMessage message. Does not implicitly {@link RPC.ControlMessage.verify|verify} messages.
* @function encode
* @memberof RPC.ControlMessage
* @static
* @param {RPC.IControlMessage} m ControlMessage message or plain object to encode
* @param {$protobuf.Writer} [w] Writer to encode to
* @returns {$protobuf.Writer} Writer
*/
ControlMessage.encode = function encode(m, w) {
if (!w)
w = $Writer.create();
if (m.ihave != null && m.ihave.length) {
for (var i = 0; i < m.ihave.length; ++i)
$root.RPC.ControlIHave.encode(m.ihave[i], w.uint32(10).fork()).ldelim();
}
if (m.iwant != null && m.iwant.length) {
for (var i = 0; i < m.iwant.length; ++i)
$root.RPC.ControlIWant.encode(m.iwant[i], w.uint32(18).fork()).ldelim();
}
if (m.graft != null && m.graft.length) {
for (var i = 0; i < m.graft.length; ++i)
$root.RPC.ControlGraft.encode(m.graft[i], w.uint32(26).fork()).ldelim();
}
if (m.prune != null && m.prune.length) {
for (var i = 0; i < m.prune.length; ++i)
$root.RPC.ControlPrune.encode(m.prune[i], w.uint32(34).fork()).ldelim();
}
return w;
};
/**
* Decodes a ControlMessage message from the specified reader or buffer.
* @function decode
* @memberof RPC.ControlMessage
* @static
* @param {$protobuf.Reader|Uint8Array} r Reader or buffer to decode from
* @param {number} [l] Message length if known beforehand
* @returns {RPC.ControlMessage} ControlMessage
* @throws {Error} If the payload is not a reader or valid buffer
* @throws {$protobuf.util.ProtocolError} If required fields are missing
*/
ControlMessage.decode = function decode(r, l) {
if (!(r instanceof $Reader))
r = $Reader.create(r);
var c = l === undefined ? r.len : r.pos + l, m = new $root.RPC.ControlMessage();
while (r.pos < c) {
var t = r.uint32();
switch (t >>> 3) {
case 1:
if (!(m.ihave && m.ihave.length))
m.ihave = [];
m.ihave.push($root.RPC.ControlIHave.decode(r, r.uint32()));
break;
case 2:
if (!(m.iwant && m.iwant.length))
m.iwant = [];
m.iwant.push($root.RPC.ControlIWant.decode(r, r.uint32()));
break;
case 3:
if (!(m.graft && m.graft.length))
m.graft = [];
m.graft.push($root.RPC.ControlGraft.decode(r, r.uint32()));
break;
case 4:
if (!(m.prune && m.prune.length))
m.prune = [];
m.prune.push($root.RPC.ControlPrune.decode(r, r.uint32()));
break;
default:
r.skipType(t & 7);
break;
}
}
return m;
};
/**
* Creates a ControlMessage message from a plain object. Also converts values to their respective internal types.
* @function fromObject
* @memberof RPC.ControlMessage
* @static
* @param {Object.<string,*>} d Plain object
* @returns {RPC.ControlMessage} ControlMessage
*/
ControlMessage.fromObject = function fromObject(d) {
if (d instanceof $root.RPC.ControlMessage)
return d;
var m = new $root.RPC.ControlMessage();
if (d.ihave) {
if (!Array.isArray(d.ihave))
throw TypeError(".RPC.ControlMessage.ihave: array expected");
m.ihave = [];
for (var i = 0; i < d.ihave.length; ++i) {
if (typeof d.ihave[i] !== "object")
throw TypeError(".RPC.ControlMessage.ihave: object expected");
m.ihave[i] = $root.RPC.ControlIHave.fromObject(d.ihave[i]);
}
}
if (d.iwant) {
if (!Array.isArray(d.iwant))
throw TypeError(".RPC.ControlMessage.iwant: array expected");
m.iwant = [];
for (var i = 0; i < d.iwant.length; ++i) {
if (typeof d.iwant[i] !== "object")
throw TypeError(".RPC.ControlMessage.iwant: object expected");
m.iwant[i] = $root.RPC.ControlIWant.fromObject(d.iwant[i]);
}
}
if (d.graft) {
if (!Array.isArray(d.graft))
throw TypeError(".RPC.ControlMessage.graft: array expected");
m.graft = [];
for (var i = 0; i < d.graft.length; ++i) {
if (typeof d.graft[i] !== "object")
throw TypeError(".RPC.ControlMessage.graft: object expected");
m.graft[i] = $root.RPC.ControlGraft.fromObject(d.graft[i]);
}
}
if (d.prune) {
if (!Array.isArray(d.prune))
throw TypeError(".RPC.ControlMessage.prune: array expected");
m.prune = [];
for (var i = 0; i < d.prune.length; ++i) {
if (typeof d.prune[i] !== "object")
throw TypeError(".RPC.ControlMessage.prune: object expected");
m.prune[i] = $root.RPC.ControlPrune.fromObject(d.prune[i]);
}
}
return m;
};
/**
* Creates a plain object from a ControlMessage message. Also converts values to other types if specified.
* @function toObject
* @memberof RPC.ControlMessage
* @static
* @param {RPC.ControlMessage} m ControlMessage
* @param {$protobuf.IConversionOptions} [o] Conversion options
* @returns {Object.<string,*>} Plain object
*/
ControlMessage.toObject = function toObject(m, o) {
if (!o)
o = {};
var d = {};
if (o.arrays || o.defaults) {
d.ihave = [];
d.iwant = [];
d.graft = [];
d.prune = [];
}
if (m.ihave && m.ihave.length) {
d.ihave = [];
for (var j = 0; j < m.ihave.length; ++j) {
d.ihave[j] = $root.RPC.ControlIHave.toObject(m.ihave[j], o);
}
}
if (m.iwant && m.iwant.length) {
d.iwant = [];
for (var j = 0; j < m.iwant.length; ++j) {
d.iwant[j] = $root.RPC.ControlIWant.toObject(m.iwant[j], o);
}
}
if (m.graft && m.graft.length) {
d.graft = [];
for (var j = 0; j < m.graft.length; ++j) {
d.graft[j] = $root.RPC.ControlGraft.toObject(m.graft[j], o);
}
}
if (m.prune && m.prune.length) {
d.prune = [];
for (var j = 0; j < m.prune.length; ++j) {
d.prune[j] = $root.RPC.ControlPrune.toObject(m.prune[j], o);
}
}
return d;
};
/**
* Converts this ControlMessage to JSON.
* @function toJSON
* @memberof RPC.ControlMessage
* @instance
* @returns {Object.<string,*>} JSON object
*/
ControlMessage.prototype.toJSON = function toJSON() {
return this.constructor.toObject(this, $protobuf.util.toJSONOptions);
};
return ControlMessage;
})();
RPC.ControlIHave = (function () {
/**
* Properties of a ControlIHave.
* @memberof RPC
* @interface IControlIHave
* @property {string|null} [topicID] ControlIHave topicID
* @property {Array.<Uint8Array>|null} [messageIDs] ControlIHave messageIDs
*/
/**
* Constructs a new ControlIHave.
* @memberof RPC
* @classdesc Represents a ControlIHave.
* @implements IControlIHave
* @constructor
* @param {RPC.IControlIHave=} [p] Properties to set
*/
function ControlIHave(p) {
this.messageIDs = [];
if (p)
for (var ks = Object.keys(p), i = 0; i < ks.length; ++i)
if (p[ks[i]] != null)
this[ks[i]] = p[ks[i]];
}
/**
* ControlIHave topicID.
* @member {string|null|undefined} topicID
* @memberof RPC.ControlIHave
* @instance
*/
ControlIHave.prototype.topicID = null;
/**
* ControlIHave messageIDs.
* @member {Array.<Uint8Array>} messageIDs
* @memberof RPC.ControlIHave
* @instance
*/
ControlIHave.prototype.messageIDs = $util.emptyArray;
// OneOf field names bound to virtual getters and setters
var $oneOfFields;
/**
* ControlIHave _topicID.
* @member {"topicID"|undefined} _topicID
* @memberof RPC.ControlIHave
* @instance
*/
Object.defineProperty(ControlIHave.prototype, "_topicID", {
get: $util.oneOfGetter($oneOfFields = ["topicID"]),
set: $util.oneOfSetter($oneOfFields)
});
/**
* Encodes the specified ControlIHave message. Does not implicitly {@link RPC.ControlIHave.verify|verify} messages.
* @function encode
* @memberof RPC.ControlIHave
* @static
* @param {RPC.IControlIHave} m ControlIHave message or plain object to encode
* @param {$protobuf.Writer} [w] Writer to encode to
* @returns {$protobuf.Writer} Writer
*/
ControlIHave.encode = function encode(m, w) {
if (!w)
w = $Writer.create();
if (m.topicID != null && Object.hasOwnProperty.call(m, "topicID"))
w.uint32(10).string(m.topicID);
if (m.messageIDs != null && m.messageIDs.length) {
for (var i = 0; i < m.messageIDs.length; ++i)
w.uint32(18).bytes(m.messageIDs[i]);
}
return w;
};
/**
* Decodes a ControlIHave message from the specified reader or buffer.
* @function decode
* @memberof RPC.ControlIHave
* @static
* @param {$protobuf.Reader|Uint8Array} r Reader or buffer to decode from
* @param {number} [l] Message length if known beforehand
* @returns {RPC.ControlIHave} ControlIHave
* @throws {Error} If the payload is not a reader or valid buffer
* @throws {$protobuf.util.ProtocolError} If required fields are missing
*/
ControlIHave.decode = function decode(r, l) {
if (!(r instanceof $Reader))
r = $Reader.create(r);
var c = l === undefined ? r.len : r.pos + l, m = new $root.RPC.ControlIHave();
while (r.pos < c) {
var t = r.uint32();
switch (t >>> 3) {
case 1:
m.topicID = r.string();
break;
case 2:
if (!(m.messageIDs && m.messageIDs.length))
m.messageIDs = [];
m.messageIDs.push(r.bytes());
break;
default:
r.skipType(t & 7);
break;
}
}
return m;
};
/**
* Creates a ControlIHave message from a plain object. Also converts values to their respective internal types.
* @function fromObject
* @memberof RPC.ControlIHave
* @static
* @param {Object.<string,*>} d Plain object
* @returns {RPC.ControlIHave} ControlIHave
*/
ControlIHave.fromObject = function fromObject(d) {
if (d instanceof $root.RPC.ControlIHave)
return d;
var m = new $root.RPC.ControlIHave();
if (d.topicID != null) {
m.topicID = String(d.topicID);
}
if (d.messageIDs) {
if (!Array.isArray(d.messageIDs))
throw TypeError(".RPC.ControlIHave.messageIDs: array expected");
m.messageIDs = [];
for (var i = 0; i < d.messageIDs.length; ++i) {
if (typeof d.messageIDs[i] === "string")
$util.base64.decode(d.messageIDs[i], m.messageIDs[i] = $util.newBuffer($util.base64.length(d.messageIDs[i])), 0);
else if (d.messageIDs[i].length)
m.messageIDs[i] = d.messageIDs[i];
}
}
return m;
};
/**
* Creates a plain object from a ControlIHave message. Also converts values to other types if specified.
* @function toObject
* @memberof RPC.ControlIHave
* @static
* @param {RPC.ControlIHave} m ControlIHave
* @param {$protobuf.IConversionOptions} [o] Conversion options
* @returns {Object.<string,*>} Plain object
*/
ControlIHave.toObject = function toObject(m, o) {
if (!o)
o = {};
var d = {};
if (o.arrays || o.defaults) {
d.messageIDs = [];
}
if (m.topicID != null && m.hasOwnProperty("topicID")) {
d.topicID = m.topicID;
if (o.oneofs)
d._topicID = "topicID";
}
if (m.messageIDs && m.messageIDs.length) {
d.messageIDs = [];
for (var j = 0; j < m.messageIDs.length; ++j) {
d.messageIDs[j] = o.bytes === String ? $util.base64.encode(m.messageIDs[j], 0, m.messageIDs[j].length) : o.bytes === Array ? Array.prototype.slice.call(m.messageIDs[j]) : m.messageIDs[j];
}
}
return d;
};
/**
* Converts this ControlIHave to JSON.
* @function toJSON
* @memberof RPC.ControlIHave
* @instance
* @returns {Object.<string,*>} JSON object
*/
ControlIHave.prototype.toJSON = function toJSON() {
return this.constructor.toObject(this, $protobuf.util.toJSONOptions);
};
return ControlIHave;
})();
RPC.ControlIWant = (function () {
/**
* Properties of a ControlIWant.
* @memberof RPC
* @interface IControlIWant
* @property {Array.<Uint8Array>|null} [messageIDs] ControlIWant messageIDs
*/
/**
* Constructs a new ControlIWant.
* @memberof RPC
* @classdesc Represents a ControlIWant.
* @implements IControlIWant
* @constructor
* @param {RPC.IControlIWant=} [p] Properties to set
*/
function ControlIWant(p) {
this.messageIDs = [];
if (p)
for (var ks = Object.keys(p), i = 0; i < ks.length; ++i)
if (p[ks[i]] != null)
this[ks[i]] = p[ks[i]];
}
/**
* ControlIWant messageIDs.
* @member {Array.<Uint8Array>} messageIDs
* @memberof RPC.ControlIWant
* @instance
*/
ControlIWant.prototype.messageIDs = $util.emptyArray;
/**
* Encodes the specified ControlIWant message. Does not implicitly {@link RPC.ControlIWant.verify|verify} messages.
* @function encode
* @memberof RPC.ControlIWant
* @static
* @param {RPC.IControlIWant} m ControlIWant message or plain object to encode
* @param {$protobuf.Writer} [w] Writer to encode to
* @returns {$protobuf.Writer} Writer
*/
ControlIWant.encode = function encode(m, w) {
if (!w)
w = $Writer.create();
if (m.messageIDs != null && m.messageIDs.length) {
for (var i = 0; i < m.messageIDs.length; ++i)
w.uint32(10).bytes(m.messageIDs[i]);
}
return w;
};
/**
* Decodes a ControlIWant message from the specified reader or buffer.
* @function decode
* @memberof RPC.ControlIWant
* @static
* @param {$protobuf.Reader|Uint8Array} r Reader or buffer to decode from
* @param {number} [l] Message length if known beforehand
* @returns {RPC.ControlIWant} ControlIWant
* @throws {Error} If the payload is not a reader or valid buffer
* @throws {$protobuf.util.ProtocolError} If required fields are missing
*/
ControlIWant.decode = function decode(r, l) {
if (!(r instanceof $Reader))
r = $Reader.create(r);
var c = l === undefined ? r.len : r.pos + l, m = new $root.RPC.ControlIWant();
while (r.pos < c) {
var t = r.uint32();
switch (t >>> 3) {
case 1:
if (!(m.messageIDs && m.messageIDs.length))
m.messageIDs = [];
m.messageIDs.push(r.bytes());
break;
default:
r.skipType(t & 7);
break;
}
}
return m;
};
/**
* Creates a ControlIWant message from a plain object. Also converts values to their respective internal types.
* @function fromObject
* @memberof RPC.ControlIWant
* @static
* @param {Object.<string,*>} d Plain object
* @returns {RPC.ControlIWant} ControlIWant
*/
ControlIWant.fromObject = function fromObject(d) {
if (d instanceof $root.RPC.ControlIWant)
return d;
var m = new $root.RPC.ControlIWant();
if (d.messageIDs) {
if (!Array.isArray(d.messageIDs))
throw TypeError(".RPC.ControlIWant.messageIDs: array expected");
m.messageIDs = [];
for (var i = 0; i < d.messageIDs.length; ++i) {
if (typeof d.messageIDs[i] === "string")
$util.base64.decode(d.messageIDs[i], m.messageIDs[i] = $util.newBuffer($util.base64.length(d.messageIDs[i])), 0);
else if (d.messageIDs[i].length)
m.messageIDs[i] = d.messageIDs[i];
}
}
return m;
};
/**
* Creates a plain object from a ControlIWant message. Also converts values to other types if specified.
* @function toObject
* @memberof RPC.ControlIWant
* @static
* @param {RPC.ControlIWant} m ControlIWant
* @param {$protobuf.IConversionOptions} [o] Conversion options
* @returns {Object.<string,*>} Plain object
*/
ControlIWant.toObject = function toObject(m, o) {
if (!o)
o = {};
var d = {};
if (o.arrays || o.defaults) {
d.messageIDs = [];
}
if (m.messageIDs && m.messageIDs.length) {
d.messageIDs = [];
for (var j = 0; j < m.messageIDs.length; ++j) {
d.messageIDs[j] = o.bytes === String ? $util.base64.encode(m.messageIDs[j], 0, m.messageIDs[j].length) : o.bytes === Array ? Array.prototype.slice.call(m.messageIDs[j]) : m.messageIDs[j];
}
}
return d;
};
/**
* Converts this ControlIWant to JSON.
* @function toJSON
* @memberof RPC.ControlIWant
* @instance
* @returns {Object.<string,*>} JSON object
*/
ControlIWant.prototype.toJSON = function toJSON() {
return this.constructor.toObject(this, $protobuf.util.toJSONOptions);
};
return ControlIWant;
})();
RPC.ControlGraft = (function () {
/**
* Properties of a ControlGraft.
* @memberof RPC
* @interface IControlGraft
* @property {string|null} [topicID] ControlGraft topicID
*/
/**
* Constructs a new ControlGraft.
* @memberof RPC
* @classdesc Represents a ControlGraft.
* @implements IControlGraft
* @constructor
* @param {RPC.IControlGraft=} [p] Properties to set
*/
function ControlGraft(p) {
if (p)
for (var ks = Object.keys(p), i = 0; i < ks.length; ++i)
if (p[ks[i]] != null)
this[ks[i]] = p[ks[i]];
}
/**
* ControlGraft topicID.
* @member {string|null|undefined} topicID
* @memberof RPC.ControlGraft
* @instance
*/
ControlGraft.prototype.topicID = null;
// OneOf field names bound to virtual getters and setters
var $oneOfFields;
/**
* ControlGraft _topicID.
* @member {"topicID"|undefined} _topicID
* @memberof RPC.ControlGraft
* @instance
*/
Object.defineProperty(ControlGraft.prototype, "_topicID", {
get: $util.oneOfGetter($oneOfFields = ["topicID"]),
set: $util.oneOfSetter($oneOfFields)
});
/**
* Encodes the specified ControlGraft message. Does not implicitly {@link RPC.ControlGraft.verify|verify} messages.
* @function encode
* @memberof RPC.ControlGraft
* @static
* @param {RPC.IControlGraft} m ControlGraft message or plain object to encode
* @param {$protobuf.Writer} [w] Writer to encode to
* @returns {$protobuf.Writer} Writer
*/
ControlGraft.encode = function encode(m, w) {
if (!w)
w = $Writer.create();
if (m.topicID != null && Object.hasOwnProperty.call(m, "topicID"))
w.uint32(10).string(m.topicID);
return w;
};
/**
* Decodes a ControlGraft message from the specified reader or buffer.
* @function decode
* @memberof RPC.ControlGraft
* @static
* @param {$protobuf.Reader|Uint8Array} r Reader or buffer to decode from
* @param {number} [l] Message length if known beforehand
* @returns {RPC.ControlGraft} ControlGraft
* @throws {Error} If the payload is not a reader or valid buffer
* @throws {$protobuf.util.ProtocolError} If required fields are missing
*/
ControlGraft.decode = function decode(r, l) {
if (!(r instanceof $Reader))
r = $Reader.create(r);
var c = l === undefined ? r.len : r.pos + l, m = new $root.RPC.ControlGraft();
while (r.pos < c) {
var t = r.uint32();
switch (t >>> 3) {
case 1:
m.topicID = r.string();
break;
default:
r.skipType(t & 7);
break;
}
}
return m;
};
/**
* Creates a ControlGraft message from a plain object. Also converts values to their respective internal types.
* @function fromObject
* @memberof RPC.ControlGraft
* @static
* @param {Object.<string,*>} d Plain object
* @returns {RPC.ControlGraft} ControlGraft
*/
ControlGraft.fromObject = function fromObject(d) {
if (d instanceof $root.RPC.ControlGraft)
return d;
var m = new $root.RPC.ControlGraft();
if (d.topicID != null) {
m.topicID = String(d.topicID);
}
return m;
};
/**
* Creates a plain object from a ControlGraft message. Also converts values to other types if specified.
* @function toObject
* @memberof RPC.ControlGraft
* @static
* @param {RPC.ControlGraft} m ControlGraft
* @param {$protobuf.IConversionOptions} [o] Conversion options
* @returns {Object.<string,*>} Plain object
*/
ControlGraft.toObject = function toObject(m, o) {
if (!o)
o = {};
var d = {};
if (m.topicID != null && m.hasOwnProperty("topicID")) {
d.topicID = m.topicID;
if (o.oneofs)
d._topicID = "topicID";
}
return d;
};
/**
* Converts this ControlGraft to JSON.
* @function toJSON
* @memberof RPC.ControlGraft
* @instance
* @returns {Object.<string,*>} JSON object
*/
ControlGraft.prototype.toJSON = function toJSON() {
return this.constructor.toObject(this, $protobuf.util.toJSONOptions);
};
return ControlGraft;
})();
RPC.ControlPrune = (function () {
/**
* Properties of a ControlPrune.
* @memberof RPC
* @interface IControlPrune
* @property {string|null} [topicID] ControlPrune topicID
* @property {Array.<RPC.IPeerInfo>|null} [peers] ControlPrune peers
* @property {number|null} [backoff] ControlPrune backoff
*/
/**
* Constructs a new ControlPrune.
* @memberof RPC
* @classdesc Represents a ControlPrune.
* @implements IControlPrune
* @constructor
* @param {RPC.IControlPrune=} [p] Properties to set
*/
function ControlPrune(p) {
this.peers = [];
if (p)
for (var ks = Object.keys(p), i = 0; i < ks.length; ++i)
if (p[ks[i]] != null)
this[ks[i]] = p[ks[i]];
}
/**
* ControlPrune topicID.
* @member {string|null|undefined} topicID
* @memberof RPC.ControlPrune
* @instance
*/
ControlPrune.prototype.topicID = null;
/**
* ControlPrune peers.
* @member {Array.<RPC.IPeerInfo>} peers
* @memberof RPC.ControlPrune
* @instance
*/
ControlPrune.prototype.peers = $util.emptyArray;
/**
* ControlPrune backoff.
* @member {number|null|undefined} backoff
* @memberof RPC.ControlPrune
* @instance
*/
ControlPrune.prototype.backoff = null;
// OneOf field names bound to virtual getters and setters
var $oneOfFields;
/**
* ControlPrune _topicID.
* @member {"topicID"|undefined} _topicID
* @memberof RPC.ControlPrune
* @instance
*/
Object.defineProperty(ControlPrune.prototype, "_topicID", {
get: $util.oneOfGetter($oneOfFields = ["topicID"]),
set: $util.oneOfSetter($oneOfFields)
});
/**
* ControlPrune _backoff.
* @member {"backoff"|undefined} _backoff
* @memberof RPC.ControlPrune
* @instance
*/
Object.defineProperty(ControlPrune.prototype, "_backoff", {
get: $util.oneOfGetter($oneOfFields = ["backoff"]),
set: $util.oneOfSetter($oneOfFields)
});
/**
* Encodes the specified ControlPrune message. Does not implicitly {@link RPC.ControlPrune.verify|verify} messages.
* @function encode
* @memberof RPC.ControlPrune
* @static
* @param {RPC.IControlPrune} m ControlPrune message or plain object to encode
* @param {$protobuf.Writer} [w] Writer to encode to
* @returns {$protobuf.Writer} Writer
*/
ControlPrune.encode = function encode(m, w) {
if (!w)
w = $Writer.create();
if (m.topicID != null && Object.hasOwnProperty.call(m, "topicID"))
w.uint32(10).string(m.topicID);
if (m.peers != null && m.peers.length) {
for (var i = 0; i < m.peers.length; ++i)
$root.RPC.PeerInfo.encode(m.peers[i], w.uint32(18).fork()).ldelim();
}
if (m.backoff != null && Object.hasOwnProperty.call(m, "backoff"))
w.uint32(24).uint64(m.backoff);
return w;
};
/**
* Decodes a ControlPrune message from the specified reader or buffer.
* @function decode
* @memberof RPC.ControlPrune
* @static
* @param {$protobuf.Reader|Uint8Array} r Reader or buffer to decode from
* @param {number} [l] Message length if known beforehand
* @returns {RPC.ControlPrune} ControlPrune
* @throws {Error} If the payload is not a reader or valid buffer
* @throws {$protobuf.util.ProtocolError} If required fields are missing
*/
ControlPrune.decode = function decode(r, l) {
if (!(r instanceof $Reader))
r = $Reader.create(r);
var c = l === undefined ? r.len : r.pos + l, m = new $root.RPC.ControlPrune();
while (r.pos < c) {
var t = r.uint32();
switch (t >>> 3) {
case 1:
m.topicID = r.string();
break;
case 2:
if (!(m.peers && m.peers.length))
m.peers = [];
m.peers.push($root.RPC.PeerInfo.decode(r, r.uint32()));
break;
case 3:
m.backoff = r.uint64();
break;
default:
r.skipType(t & 7);
break;
}
}
return m;
};
/**
* Creates a ControlPrune message from a plain object. Also converts values to their respective internal types.
* @function fromObject
* @memberof RPC.ControlPrune
* @static
* @param {Object.<string,*>} d Plain object
* @returns {RPC.ControlPrune} ControlPrune
*/
ControlPrune.fromObject = function fromObject(d) {
if (d instanceof $root.RPC.ControlPrune)
return d;
var m = new $root.RPC.ControlPrune();
if (d.topicID != null) {
m.topicID = String(d.topicID);
}
if (d.peers) {
if (!Array.isArray(d.peers))
throw TypeError(".RPC.ControlPrune.peers: array expected");
m.peers = [];
for (var i = 0; i < d.peers.length; ++i) {
if (typeof d.peers[i] !== "object")
throw TypeError(".RPC.ControlPrune.peers: object expected");
m.peers[i] = $root.RPC.PeerInfo.fromObject(d.peers[i]);
}
}
if (d.backoff != null) {
if ($util.Long)
(m.backoff = $util.Long.fromValue(d.backoff)).unsigned = true;
else if (typeof d.backoff === "string")
m.backoff = parseInt(d.backoff, 10);
else if (typeof d.backoff === "number")
m.backoff = d.backoff;
else if (typeof d.backoff === "object")
m.backoff = new $util.LongBits(d.backoff.low >>> 0, d.backoff.high >>> 0).toNumber(true);
}
return m;
};
/**
* Creates a plain object from a ControlPrune message. Also converts values to other types if specified.
* @function toObject
* @memberof RPC.ControlPrune
* @static
* @param {RPC.ControlPrune} m ControlPrune
* @param {$protobuf.IConversionOptions} [o] Conversion options
* @returns {Object.<string,*>} Plain object
*/
ControlPrune.toObject = function toObject(m, o) {
if (!o)
o = {};
var d = {};
if (o.arrays || o.defaults) {
d.peers = [];
}
if (m.topicID != null && m.hasOwnProperty("topicID")) {
d.topicID = m.topicID;
if (o.oneofs)
d._topicID = "topicID";
}
if (m.peers && m.peers.length) {
d.peers = [];
for (var j = 0; j < m.peers.length; ++j) {
d.peers[j] = $root.RPC.PeerInfo.toObject(m.peers[j], o);
}
}
if (m.backoff != null && m.hasOwnProperty("backoff")) {
if (typeof m.backoff === "number")
d.backoff = o.longs === String ? String(m.backoff) : m.backoff;
else
d.backoff = o.longs === String ? $util.Long.prototype.toString.call(m.backoff) : o.longs === Number ? new $util.LongBits(m.backoff.low >>> 0, m.backoff.high >>> 0).toNumber(true) : m.backoff;
if (o.oneofs)
d._backoff = "backoff";
}
return d;
};
/**
* Converts this ControlPrune to JSON.
* @function toJSON
* @memberof RPC.ControlPrune
* @instance
* @returns {Object.<string,*>} JSON object
*/
ControlPrune.prototype.toJSON = function toJSON() {
return this.constructor.toObject(this, $protobuf.util.toJSONOptions);
};
return ControlPrune;
})();
RPC.PeerInfo = (function () {
/**
* Properties of a PeerInfo.
* @memberof RPC
* @interface IPeerInfo
* @property {Uint8Array|null} [peerID] PeerInfo peerID
* @property {Uint8Array|null} [signedPeerRecord] PeerInfo signedPeerRecord
*/
/**
* Constructs a new PeerInfo.
* @memberof RPC
* @classdesc Represents a PeerInfo.
* @implements IPeerInfo
* @constructor
* @param {RPC.IPeerInfo=} [p] Properties to set
*/
function PeerInfo(p) {
if (p)
for (var ks = Object.keys(p), i = 0; i < ks.length; ++i)
if (p[ks[i]] != null)
this[ks[i]] = p[ks[i]];
}
/**
* PeerInfo peerID.
* @member {Uint8Array|null|undefined} peerID
* @memberof RPC.PeerInfo
* @instance
*/
PeerInfo.prototype.peerID = null;
/**
* PeerInfo signedPeerRecord.
* @member {Uint8Array|null|undefined} signedPeerRecord
* @memberof RPC.PeerInfo
* @instance
*/
PeerInfo.prototype.signedPeerRecord = null;
// OneOf field names bound to virtual getters and setters
var $oneOfFields;
/**
* PeerInfo _peerID.
* @member {"peerID"|undefined} _peerID
* @memberof RPC.PeerInfo
* @instance
*/
Object.defineProperty(PeerInfo.prototype, "_peerID", {
get: $util.oneOfGetter($oneOfFields = ["peerID"]),
set: $util.oneOfSetter($oneOfFields)
});
/**
* PeerInfo _signedPeerRecord.
* @member {"signedPeerRecord"|undefined} _signedPeerRecord
* @memberof RPC.PeerInfo
* @instance
*/
Object.defineProperty(PeerInfo.prototype, "_signedPeerRecord", {
get: $util.oneOfGetter($oneOfFields = ["signedPeerRecord"]),
set: $util.oneOfSetter($oneOfFields)
});
/**
* Encodes the specified PeerInfo message. Does not implicitly {@link RPC.PeerInfo.verify|verify} messages.
* @function encode
* @memberof RPC.PeerInfo
* @static
* @param {RPC.IPeerInfo} m PeerInfo message or plain object to encode
* @param {$protobuf.Writer} [w] Writer to encode to
* @returns {$protobuf.Writer} Writer
*/
PeerInfo.encode = function encode(m, w) {
if (!w)
w = $Writer.create();
if (m.peerID != null && Object.hasOwnProperty.call(m, "peerID"))
w.uint32(10).bytes(m.peerID);
if (m.signedPeerRecord != null && Object.hasOwnProperty.call(m, "signedPeerRecord"))
w.uint32(18).bytes(m.signedPeerRecord);
return w;
};
/**
* Decodes a PeerInfo message from the specified reader or buffer.
* @function decode
* @memberof RPC.PeerInfo
* @static
* @param {$protobuf.Reader|Uint8Array} r Reader or buffer to decode from
* @param {number} [l] Message length if known beforehand
* @returns {RPC.PeerInfo} PeerInfo
* @throws {Error} If the payload is not a reader or valid buffer
* @throws {$protobuf.util.ProtocolError} If required fields are missing
*/
PeerInfo.decode = function decode(r, l) {
if (!(r instanceof $Reader))
r = $Reader.create(r);
var c = l === undefined ? r.len : r.pos + l, m = new $root.RPC.PeerInfo();
while (r.pos < c) {
var t = r.uint32();
switch (t >>> 3) {
case 1:
m.peerID = r.bytes();
break;
case 2:
m.signedPeerRecord = r.bytes();
break;
default:
r.skipType(t & 7);
break;
}
}
return m;
};
/**
* Creates a PeerInfo message from a plain object. Also converts values to their respective internal types.
* @function fromObject
* @memberof RPC.PeerInfo
* @static
* @param {Object.<string,*>} d Plain object
* @returns {RPC.PeerInfo} PeerInfo
*/
PeerInfo.fromObject = function fromObject(d) {
if (d instanceof $root.RPC.PeerInfo)
return d;
var m = new $root.RPC.PeerInfo();
if (d.peerID != null) {
if (typeof d.peerID === "string")
$util.base64.decode(d.peerID, m.peerID = $util.newBuffer($util.base64.length(d.peerID)), 0);
else if (d.peerID.length)
m.peerID = d.peerID;
}
if (d.signedPeerRecord != null) {
if (typeof d.signedPeerRecord === "string")
$util.base64.decode(d.signedPeerRecord, m.signedPeerRecord = $util.newBuffer($util.base64.length(d.signedPeerRecord)), 0);
else if (d.signedPeerRecord.length)
m.signedPeerRecord = d.signedPeerRecord;
}
return m;
};
/**
* Creates a plain object from a PeerInfo message. Also converts values to other types if specified.
* @function toObject
* @memberof RPC.PeerInfo
* @static
* @param {RPC.PeerInfo} m PeerInfo
* @param {$protobuf.IConversionOptions} [o] Conversion options
* @returns {Object.<string,*>} Plain object
*/
PeerInfo.toObject = function toObject(m, o) {
if (!o)
o = {};
var d = {};
if (m.peerID != null && m.hasOwnProperty("peerID")) {
d.peerID = o.bytes === String ? $util.base64.encode(m.peerID, 0, m.peerID.length) : o.bytes === Array ? Array.prototype.slice.call(m.peerID) : m.peerID;
if (o.oneofs)
d._peerID = "peerID";
}
if (m.signedPeerRecord != null && m.hasOwnProperty("signedPeerRecord")) {
d.signedPeerRecord = o.bytes === String ? $util.base64.encode(m.signedPeerRecord, 0, m.signedPeerRecord.length) : o.bytes === Array ? Array.prototype.slice.call(m.signedPeerRecord) : m.signedPeerRecord;
if (o.oneofs)
d._signedPeerRecord = "signedPeerRecord";
}
return d;
};
/**
* Converts this PeerInfo to JSON.
* @function toJSON
* @memberof RPC.PeerInfo
* @instance
* @returns {Object.<string,*>} JSON object
*/
PeerInfo.prototype.toJSON = function toJSON() {
return this.constructor.toObject(this, $protobuf.util.toJSONOptions);
};
return PeerInfo;
})();
return RPC;
})();
return $root;
});
} (rpc$1));
var cjs = rpc$1.exports;
const { RPC } = cjs;
const second = 1000;
const minute = 60 * second;
// Protocol identifiers
const FloodsubID = '/floodsub/1.0.0';
/**
* The protocol ID for version 1.0.0 of the Gossipsub protocol
* It is advertised along with GossipsubIDv11 for backwards compatability
*/
const GossipsubIDv10 = '/meshsub/1.0.0';
/**
* The protocol ID for version 1.1.0 of the Gossipsub protocol
* See the spec for details about how v1.1.0 compares to v1.0.0:
* https://github.com/libp2p/specs/blob/master/pubsub/gossipsub/gossipsub-v1.1.md
*/
const GossipsubIDv11 = '/meshsub/1.1.0';
// Overlay parameters
/**
* GossipsubD sets the optimal degree for a Gossipsub topic mesh. For example, if GossipsubD == 6,
* each peer will want to have about six peers in their mesh for each topic they're subscribed to.
* GossipsubD should be set somewhere between GossipsubDlo and GossipsubDhi.
*/
const GossipsubD = 6;
/**
* GossipsubDlo sets the lower bound on the number of peers we keep in a Gossipsub topic mesh.
* If we have fewer than GossipsubDlo peers, we will attempt to graft some more into the mesh at
* the next heartbeat.
*/
const GossipsubDlo = 4;
/**
* GossipsubDhi sets the upper bound on the number of peers we keep in a Gossipsub topic mesh.
* If we have more than GossipsubDhi peers, we will select some to prune from the mesh at the next heartbeat.
*/
const GossipsubDhi = 12;
/**
* GossipsubDscore affects how peers are selected when pruning a mesh due to over subscription.
* At least GossipsubDscore of the retained peers will be high-scoring, while the remainder are
* chosen randomly.
*/
const GossipsubDscore = 4;
/**
* GossipsubDout sets the quota for the number of outbound connections to maintain in a topic mesh.
* When the mesh is pruned due to over subscription, we make sure that we have outbound connections
* to at least GossipsubDout of the survivor peers. This prevents sybil attackers from overwhelming
* our mesh with incoming connections.
*
* GossipsubDout must be set below GossipsubDlo, and must not exceed GossipsubD / 2.
*/
const GossipsubDout = 2;
// Gossip parameters
/**
* GossipsubHistoryLength controls the size of the message cache used for gossip.
* The message cache will remember messages for GossipsubHistoryLength heartbeats.
*/
const GossipsubHistoryLength = 5;
/**
* GossipsubHistoryGossip controls how many cached message ids we will advertise in
* IHAVE gossip messages. When asked for our seen message IDs, we will return
* only those from the most recent GossipsubHistoryGossip heartbeats. The slack between
* GossipsubHistoryGossip and GossipsubHistoryLength allows us to avoid advertising messages
* that will be expired by the time they're requested.
*
* GossipsubHistoryGossip must be less than or equal to GossipsubHistoryLength to
* avoid a runtime panic.
*/
const GossipsubHistoryGossip = 3;
/**
* GossipsubDlazy affects how many peers we will emit gossip to at each heartbeat.
* We will send gossip to at least GossipsubDlazy peers outside our mesh. The actual
* number may be more, depending on GossipsubGossipFactor and how many peers we're
* connected to.
*/
const GossipsubDlazy = 6;
/**
* GossipsubGossipFactor affects how many peers we will emit gossip to at each heartbeat.
* We will send gossip to GossipsubGossipFactor * (total number of non-mesh peers), or
* GossipsubDlazy, whichever is greater.
*/
const GossipsubGossipFactor = 0.25;
/**
* GossipsubGossipRetransmission controls how many times we will allow a peer to request
* the same message id through IWANT gossip before we start ignoring them. This is designed
* to prevent peers from spamming us with requests and wasting our resources.
*/
const GossipsubGossipRetransmission = 3;
// Heartbeat interval
/**
* GossipsubHeartbeatInitialDelay is the short delay before the heartbeat timer begins
* after the router is initialized.
*/
const GossipsubHeartbeatInitialDelay = 100;
/**
* GossipsubHeartbeatInterval controls the time between heartbeats.
*/
const GossipsubHeartbeatInterval = second;
/**
* GossipsubFanoutTTL controls how long we keep track of the fanout state. If it's been
* GossipsubFanoutTTL since we've published to a topic that we're not subscribed to,
* we'll delete the fanout map for that topic.
*/
const GossipsubFanoutTTL = minute;
/**
* GossipsubPrunePeers controls the number of peers to include in prune Peer eXchange.
* When we prune a peer that's eligible for PX (has a good score, etc), we will try to
* send them signed peer records for up to GossipsubPrunePeers other peers that we
* know of.
*/
const GossipsubPrunePeers = 16;
/**
* GossipsubPruneBackoff controls the backoff time for pruned peers. This is how long
* a peer must wait before attempting to graft into our mesh again after being pruned.
* When pruning a peer, we send them our value of GossipsubPruneBackoff so they know
* the minimum time to wait. Peers running older versions may not send a backoff time,
* so if we receive a prune message without one, we will wait at least GossipsubPruneBackoff
* before attempting to re-graft.
*/
const GossipsubPruneBackoff = minute;
/**
* GossipsubPruneBackoffTicks is the number of heartbeat ticks for attempting to prune expired
* backoff timers.
*/
const GossipsubPruneBackoffTicks = 15;
/**
* GossipsubDirectConnectTicks is the number of heartbeat ticks for attempting to reconnect direct peers
* that are not currently connected.
*/
const GossipsubDirectConnectTicks = 300;
/**
* GossipsubDirectConnectInitialDelay is the initial delay before opening connections to direct peers
*/
const GossipsubDirectConnectInitialDelay = second;
/**
* GossipsubOpportunisticGraftTicks is the number of heartbeat ticks for attempting to improve the mesh
* with opportunistic grafting. Every GossipsubOpportunisticGraftTicks we will attempt to select some
* high-scoring mesh peers to replace lower-scoring ones, if the median score of our mesh peers falls
* below a threshold
*/
const GossipsubOpportunisticGraftTicks = 60;
/**
* GossipsubOpportunisticGraftPeers is the number of peers to opportunistically graft.
*/
const GossipsubOpportunisticGraftPeers = 2;
/**
* If a GRAFT comes before GossipsubGraftFloodThreshold has elapsed since the last PRUNE,
* then there is an extra score penalty applied to the peer through P7.
*/
const GossipsubGraftFloodThreshold = 10 * second;
/**
* GossipsubMaxIHaveLength is the maximum number of messages to include in an IHAVE message.
* Also controls the maximum number of IHAVE ids we will accept and request with IWANT from a
* peer within a heartbeat, to protect from IHAVE floods. You should adjust this value from the
* default if your system is pushing more than 5000 messages in GossipsubHistoryGossip heartbeats;
* with the defaults this is 1666 messages/s.
*/
const GossipsubMaxIHaveLength = 5000;
/**
* GossipsubMaxIHaveMessages is the maximum number of IHAVE messages to accept from a peer within a heartbeat.
*/
const GossipsubMaxIHaveMessages = 10;
/**
* Time to wait for a message requested through IWANT following an IHAVE advertisement.
* If the message is not received within this window, a broken promise is declared and
* the router may apply bahavioural penalties.
*/
const GossipsubIWantFollowupTime = 3 * second;
/**
* Time in milliseconds to keep message ids in the seen cache
*/
const GossipsubSeenTTL = 2 * minute;
const TimeCacheDuration = 120 * 1000;
const ERR_TOPIC_VALIDATOR_REJECT = 'ERR_TOPIC_VALIDATOR_REJECT';
const ERR_TOPIC_VALIDATOR_IGNORE = 'ERR_TOPIC_VALIDATOR_IGNORE';
/**
* If peer score is better than this, we accept messages from this peer
* within ACCEPT_FROM_WHITELIST_DURATION_MS from the last time computing score.
**/
const ACCEPT_FROM_WHITELIST_THRESHOLD_SCORE = 0;
/**
* If peer score >= ACCEPT_FROM_WHITELIST_THRESHOLD_SCORE, accept up to this
* number of messages from that peer.
*/
const ACCEPT_FROM_WHITELIST_MAX_MESSAGES = 128;
/**
* If peer score >= ACCEPT_FROM_WHITELIST_THRESHOLD_SCORE, accept messages from
* this peer up to this time duration.
*/
const ACCEPT_FROM_WHITELIST_DURATION_MS = 1000;
/**
* The default MeshMessageDeliveriesWindow to be used in metrics.
*/
const DEFAULT_METRIC_MESH_MESSAGE_DELIVERIES_WINDOWS = 1000;
/**
* Create a gossipsub RPC object
*/
function createGossipRpc(messages = [], control) {
return {
subscriptions: [],
messages,
control: control
? {
graft: control.graft || [],
prune: control.prune || [],
ihave: control.ihave || [],
iwant: control.iwant || []
}
: undefined
};
}
/**
* Pseudo-randomly shuffles an array
*
* Mutates the input array
*/
function shuffle(arr) {
if (arr.length <= 1) {
return arr;
}
const randInt = () => {
return Math.floor(Math.random() * Math.floor(arr.length));
};
for (let i = 0; i < arr.length; i++) {
const j = randInt();
const tmp = arr[i];
arr[i] = arr[j];
arr[j] = tmp;
}
return arr;
}
/**
* Browser friendly function to convert Uint8Array message id to base64 string.
*/
function messageIdToString(msgId) {
return toString$3(msgId, 'base64');
}
/**
* On the producing side:
* * Build messages with the signature, key (from may be enough for certain inlineable public key types), from and seqno fields.
*
* On the consuming side:
* * Enforce the fields to be present, reject otherwise.
* * Propagate only if the fields are valid and signature can be verified, reject otherwise.
*/
const StrictSign = 'StrictSign';
/**
* On the producing side:
* * Build messages without the signature, key, from and seqno fields.
* * The corresponding protobuf key-value pairs are absent from the marshalled message, not just empty.
*
* On the consuming side:
* * Enforce the fields to be absent, reject otherwise.
* * Propagate only if the fields are absent, reject otherwise.
* * A message_id function will not be able to use the above fields, and should instead rely on the data field. A commonplace strategy is to calculate a hash.
*/
const StrictNoSign = 'StrictNoSign';
var SignaturePolicy;
(function (SignaturePolicy) {
/**
* On the producing side:
* - Build messages with the signature, key (from may be enough for certain inlineable public key types), from and seqno fields.
*
* On the consuming side:
* - Enforce the fields to be present, reject otherwise.
* - Propagate only if the fields are valid and signature can be verified, reject otherwise.
*/
SignaturePolicy["StrictSign"] = "StrictSign";
/**
* On the producing side:
* - Build messages without the signature, key, from and seqno fields.
* - The corresponding protobuf key-value pairs are absent from the marshalled message, not just empty.
*
* On the consuming side:
* - Enforce the fields to be absent, reject otherwise.
* - Propagate only if the fields are absent, reject otherwise.
* - A message_id function will not be able to use the above fields, and should instead rely on the data field. A commonplace strategy is to calculate a hash.
*/
SignaturePolicy["StrictNoSign"] = "StrictNoSign";
})(SignaturePolicy || (SignaturePolicy = {}));
var PublishConfigType;
(function (PublishConfigType) {
PublishConfigType[PublishConfigType["Signing"] = 0] = "Signing";
PublishConfigType[PublishConfigType["Anonymous"] = 1] = "Anonymous";
})(PublishConfigType || (PublishConfigType = {}));
var MessageAcceptance;
(function (MessageAcceptance) {
/// The message is considered valid, and it should be delivered and forwarded to the network.
MessageAcceptance["Accept"] = "accept";
/// The message is neither delivered nor forwarded to the network, but the router does not
/// trigger the P₄ penalty.
MessageAcceptance["Ignore"] = "ignore";
/// The message is considered invalid, and it should be rejected and trigger the P₄ penalty.
MessageAcceptance["Reject"] = "reject";
})(MessageAcceptance || (MessageAcceptance = {}));
var RejectReason;
(function (RejectReason) {
/**
* The message failed the configured validation during decoding.
* SelfOrigin is considered a ValidationError
*/
RejectReason["Error"] = "error";
/**
* Custom validator fn reported status IGNORE.
*/
RejectReason["Ignore"] = "ignore";
/**
* Custom validator fn reported status REJECT.
*/
RejectReason["Reject"] = "reject";
/**
* The peer that sent the message OR the source from field is blacklisted.
* Causes messages to be ignored, not penalized, neither do score record creation.
*/
RejectReason["Blacklisted"] = "blacklisted";
})(RejectReason || (RejectReason = {}));
var ValidateError;
(function (ValidateError) {
/// The message has an invalid signature,
ValidateError["InvalidSignature"] = "invalid_signature";
/// The sequence number was the incorrect size
ValidateError["InvalidSeqno"] = "invalid_seqno";
/// The PeerId was invalid
ValidateError["InvalidPeerId"] = "invalid_peerid";
/// Signature existed when validation has been sent to
/// [`crate::behaviour::MessageAuthenticity::Anonymous`].
ValidateError["SignaturePresent"] = "signature_present";
/// Sequence number existed when validation has been sent to
/// [`crate::behaviour::MessageAuthenticity::Anonymous`].
ValidateError["SeqnoPresent"] = "seqno_present";
/// Message source existed when validation has been sent to
/// [`crate::behaviour::MessageAuthenticity::Anonymous`].
ValidateError["FromPresent"] = "from_present";
/// The data transformation failed.
ValidateError["TransformFailed"] = "transform_failed";
})(ValidateError || (ValidateError = {}));
var MessageStatus;
(function (MessageStatus) {
MessageStatus["duplicate"] = "duplicate";
MessageStatus["invalid"] = "invalid";
MessageStatus["valid"] = "valid";
})(MessageStatus || (MessageStatus = {}));
/**
* Typesafe conversion of MessageAcceptance -> RejectReason. TS ensures all values covered
*/
function rejectReasonFromAcceptance(acceptance) {
switch (acceptance) {
case MessageAcceptance.Ignore:
return RejectReason.Ignore;
case MessageAcceptance.Reject:
return RejectReason.Reject;
}
}
/**
* Prepare a PublishConfig object from a PeerId.
*/
async function getPublishConfigFromPeerId(signaturePolicy, peerId) {
switch (signaturePolicy) {
case StrictSign: {
if (!peerId) {
throw Error('Must provide PeerId');
}
if (peerId.privateKey == null) {
throw Error('Cannot sign message, no private key present');
}
if (peerId.publicKey == null) {
throw Error('Cannot sign message, no public key present');
}
// Transform privateKey once at initialization time instead of once per message
const privateKey = await unmarshalPrivateKey(peerId.privateKey);
return {
type: PublishConfigType.Signing,
author: peerId,
key: peerId.publicKey,
privateKey
};
}
case StrictNoSign:
return {
type: PublishConfigType.Anonymous
};
default:
throw new Error(`Unknown signature policy "${signaturePolicy}"`);
}
}
const ERR_INVALID_PEER_SCORE_PARAMS = 'ERR_INVALID_PEER_SCORE_PARAMS';
const defaultPeerScoreParams = {
topics: {},
topicScoreCap: 10.0,
appSpecificScore: () => 0.0,
appSpecificWeight: 10.0,
IPColocationFactorWeight: -5.0,
IPColocationFactorThreshold: 10.0,
IPColocationFactorWhitelist: new Set(),
behaviourPenaltyWeight: -10.0,
behaviourPenaltyThreshold: 0.0,
behaviourPenaltyDecay: 0.2,
decayInterval: 1000.0,
decayToZero: 0.1,
retainScore: 3600 * 1000
};
const defaultTopicScoreParams = {
topicWeight: 0.5,
timeInMeshWeight: 1,
timeInMeshQuantum: 1,
timeInMeshCap: 3600,
firstMessageDeliveriesWeight: 1,
firstMessageDeliveriesDecay: 0.5,
firstMessageDeliveriesCap: 2000,
meshMessageDeliveriesWeight: -1,
meshMessageDeliveriesDecay: 0.5,
meshMessageDeliveriesCap: 100,
meshMessageDeliveriesThreshold: 20,
meshMessageDeliveriesWindow: 10,
meshMessageDeliveriesActivation: 5000,
meshFailurePenaltyWeight: -1,
meshFailurePenaltyDecay: 0.5,
invalidMessageDeliveriesWeight: -1,
invalidMessageDeliveriesDecay: 0.3
};
function createPeerScoreParams(p = {}) {
return {
...defaultPeerScoreParams,
...p,
topics: p.topics
? Object.entries(p.topics).reduce((topics, [topic, topicScoreParams]) => {
topics[topic] = createTopicScoreParams(topicScoreParams);
return topics;
}, {})
: {}
};
}
function createTopicScoreParams(p = {}) {
return {
...defaultTopicScoreParams,
...p
};
}
// peer score parameter validation
function validatePeerScoreParams(p) {
for (const [topic, params] of Object.entries(p.topics)) {
try {
validateTopicScoreParams(params);
}
catch (e) {
throw errCode(new Error(`invalid score parameters for topic ${topic}: ${e.message}`), ERR_INVALID_PEER_SCORE_PARAMS);
}
}
// check that the topic score is 0 or something positive
if (p.topicScoreCap < 0) {
throw errCode(new Error('invalid topic score cap; must be positive (or 0 for no cap)'), ERR_INVALID_PEER_SCORE_PARAMS);
}
// check that we have an app specific score; the weight can be anything (but expected positive)
if (p.appSpecificScore === null || p.appSpecificScore === undefined) {
throw errCode(new Error('missing application specific score function'), ERR_INVALID_PEER_SCORE_PARAMS);
}
// check the IP colocation factor
if (p.IPColocationFactorWeight > 0) {
throw errCode(new Error('invalid IPColocationFactorWeight; must be negative (or 0 to disable)'), ERR_INVALID_PEER_SCORE_PARAMS);
}
if (p.IPColocationFactorWeight !== 0 && p.IPColocationFactorThreshold < 1) {
throw errCode(new Error('invalid IPColocationFactorThreshold; must be at least 1'), ERR_INVALID_PEER_SCORE_PARAMS);
}
// check the behaviour penalty
if (p.behaviourPenaltyWeight > 0) {
throw errCode(new Error('invalid BehaviourPenaltyWeight; must be negative (or 0 to disable)'), ERR_INVALID_PEER_SCORE_PARAMS);
}
if (p.behaviourPenaltyWeight !== 0 && (p.behaviourPenaltyDecay <= 0 || p.behaviourPenaltyDecay >= 1)) {
throw errCode(new Error('invalid BehaviourPenaltyDecay; must be between 0 and 1'), ERR_INVALID_PEER_SCORE_PARAMS);
}
// check the decay parameters
if (p.decayInterval < 1000) {
throw errCode(new Error('invalid DecayInterval; must be at least 1s'), ERR_INVALID_PEER_SCORE_PARAMS);
}
if (p.decayToZero <= 0 || p.decayToZero >= 1) {
throw errCode(new Error('invalid DecayToZero; must be between 0 and 1'), ERR_INVALID_PEER_SCORE_PARAMS);
}
// no need to check the score retention; a value of 0 means that we don't retain scores
}
function validateTopicScoreParams(p) {
// make sure we have a sane topic weight
if (p.topicWeight < 0) {
throw errCode(new Error('invalid topic weight; must be >= 0'), ERR_INVALID_PEER_SCORE_PARAMS);
}
// check P1
if (p.timeInMeshQuantum === 0) {
throw errCode(new Error('invalid TimeInMeshQuantum; must be non zero'), ERR_INVALID_PEER_SCORE_PARAMS);
}
if (p.timeInMeshWeight < 0) {
throw errCode(new Error('invalid TimeInMeshWeight; must be positive (or 0 to disable)'), ERR_INVALID_PEER_SCORE_PARAMS);
}
if (p.timeInMeshWeight !== 0 && p.timeInMeshQuantum <= 0) {
throw errCode(new Error('invalid TimeInMeshQuantum; must be positive'), ERR_INVALID_PEER_SCORE_PARAMS);
}
if (p.timeInMeshWeight !== 0 && p.timeInMeshCap <= 0) {
throw errCode(new Error('invalid TimeInMeshCap; must be positive'), ERR_INVALID_PEER_SCORE_PARAMS);
}
// check P2
if (p.firstMessageDeliveriesWeight < 0) {
throw errCode(new Error('invallid FirstMessageDeliveriesWeight; must be positive (or 0 to disable)'), ERR_INVALID_PEER_SCORE_PARAMS);
}
if (p.firstMessageDeliveriesWeight !== 0 &&
(p.firstMessageDeliveriesDecay <= 0 || p.firstMessageDeliveriesDecay >= 1)) {
throw errCode(new Error('invalid FirstMessageDeliveriesDecay; must be between 0 and 1'), ERR_INVALID_PEER_SCORE_PARAMS);
}
if (p.firstMessageDeliveriesWeight !== 0 && p.firstMessageDeliveriesCap <= 0) {
throw errCode(new Error('invalid FirstMessageDeliveriesCap; must be positive'), ERR_INVALID_PEER_SCORE_PARAMS);
}
// check P3
if (p.meshMessageDeliveriesWeight > 0) {
throw errCode(new Error('invalid MeshMessageDeliveriesWeight; must be negative (or 0 to disable)'), ERR_INVALID_PEER_SCORE_PARAMS);
}
if (p.meshMessageDeliveriesWeight !== 0 && (p.meshMessageDeliveriesDecay <= 0 || p.meshMessageDeliveriesDecay >= 1)) {
throw errCode(new Error('invalid MeshMessageDeliveriesDecay; must be between 0 and 1'), ERR_INVALID_PEER_SCORE_PARAMS);
}
if (p.meshMessageDeliveriesWeight !== 0 && p.meshMessageDeliveriesCap <= 0) {
throw errCode(new Error('invalid MeshMessageDeliveriesCap; must be positive'), ERR_INVALID_PEER_SCORE_PARAMS);
}
if (p.meshMessageDeliveriesWeight !== 0 && p.meshMessageDeliveriesThreshold <= 0) {
throw errCode(new Error('invalid MeshMessageDeliveriesThreshold; must be positive'), ERR_INVALID_PEER_SCORE_PARAMS);
}
if (p.meshMessageDeliveriesWindow < 0) {
throw errCode(new Error('invalid MeshMessageDeliveriesWindow; must be non-negative'), ERR_INVALID_PEER_SCORE_PARAMS);
}
if (p.meshMessageDeliveriesWeight !== 0 && p.meshMessageDeliveriesActivation < 1000) {
throw errCode(new Error('invalid MeshMessageDeliveriesActivation; must be at least 1s'), ERR_INVALID_PEER_SCORE_PARAMS);
}
// check P3b
if (p.meshFailurePenaltyWeight > 0) {
throw errCode(new Error('invalid MeshFailurePenaltyWeight; must be negative (or 0 to disable)'), ERR_INVALID_PEER_SCORE_PARAMS);
}
if (p.meshFailurePenaltyWeight !== 0 && (p.meshFailurePenaltyDecay <= 0 || p.meshFailurePenaltyDecay >= 1)) {
throw errCode(new Error('invalid MeshFailurePenaltyDecay; must be between 0 and 1'), ERR_INVALID_PEER_SCORE_PARAMS);
}
// check P4
if (p.invalidMessageDeliveriesWeight > 0) {
throw errCode(new Error('invalid InvalidMessageDeliveriesWeight; must be negative (or 0 to disable)'), ERR_INVALID_PEER_SCORE_PARAMS);
}
if (p.invalidMessageDeliveriesDecay <= 0 || p.invalidMessageDeliveriesDecay >= 1) {
throw errCode(new Error('invalid InvalidMessageDeliveriesDecay; must be between 0 and 1'), ERR_INVALID_PEER_SCORE_PARAMS);
}
}
const defaultPeerScoreThresholds = {
gossipThreshold: -10,
publishThreshold: -50,
graylistThreshold: -80,
acceptPXThreshold: 10,
opportunisticGraftThreshold: 20
};
function createPeerScoreThresholds(p = {}) {
return {
...defaultPeerScoreThresholds,
...p
};
}
function computeScore(peer, pstats, params, peerIPs) {
let score = 0;
// topic stores
Object.entries(pstats.topics).forEach(([topic, tstats]) => {
// the topic parameters
const topicParams = params.topics[topic];
if (topicParams === undefined) {
// we are not scoring this topic
return;
}
let topicScore = 0;
// P1: time in Mesh
if (tstats.inMesh) {
let p1 = tstats.meshTime / topicParams.timeInMeshQuantum;
if (p1 > topicParams.timeInMeshCap) {
p1 = topicParams.timeInMeshCap;
}
topicScore += p1 * topicParams.timeInMeshWeight;
}
// P2: first message deliveries
let p2 = tstats.firstMessageDeliveries;
if (p2 > topicParams.firstMessageDeliveriesCap) {
p2 = topicParams.firstMessageDeliveriesCap;
}
topicScore += p2 * topicParams.firstMessageDeliveriesWeight;
// P3: mesh message deliveries
if (tstats.meshMessageDeliveriesActive &&
tstats.meshMessageDeliveries < topicParams.meshMessageDeliveriesThreshold) {
const deficit = topicParams.meshMessageDeliveriesThreshold - tstats.meshMessageDeliveries;
const p3 = deficit * deficit;
topicScore += p3 * topicParams.meshMessageDeliveriesWeight;
}
// P3b:
// NOTE: the weight of P3b is negative (validated in validateTopicScoreParams) so this detracts
const p3b = tstats.meshFailurePenalty;
topicScore += p3b * topicParams.meshFailurePenaltyWeight;
// P4: invalid messages
// NOTE: the weight of P4 is negative (validated in validateTopicScoreParams) so this detracts
const p4 = tstats.invalidMessageDeliveries * tstats.invalidMessageDeliveries;
topicScore += p4 * topicParams.invalidMessageDeliveriesWeight;
// update score, mixing with topic weight
score += topicScore * topicParams.topicWeight;
});
// apply the topic score cap, if any
if (params.topicScoreCap > 0 && score > params.topicScoreCap) {
score = params.topicScoreCap;
}
// P5: application-specific score
const p5 = params.appSpecificScore(peer);
score += p5 * params.appSpecificWeight;
// P6: IP colocation factor
pstats.ips.forEach((ip) => {
if (params.IPColocationFactorWhitelist.has(ip)) {
return;
}
// P6 has a cliff (IPColocationFactorThreshold)
// It's only applied if at least that many peers are connected to us from that source IP addr.
// It is quadratic, and the weight is negative (validated in validatePeerScoreParams)
const peersInIP = peerIPs.get(ip);
const numPeersInIP = peersInIP ? peersInIP.size : 0;
if (numPeersInIP > params.IPColocationFactorThreshold) {
const surplus = numPeersInIP - params.IPColocationFactorThreshold;
const p6 = surplus * surplus;
score += p6 * params.IPColocationFactorWeight;
}
});
// P7: behavioural pattern penalty
if (pstats.behaviourPenalty > params.behaviourPenaltyThreshold) {
const excess = pstats.behaviourPenalty - params.behaviourPenaltyThreshold;
const p7 = excess * excess;
score += p7 * params.behaviourPenaltyWeight;
}
return score;
}
/**
* Custom implementation of a double ended queue.
*/
function Denque(array, options) {
var options = options || {};
this._head = 0;
this._tail = 0;
this._capacity = options.capacity;
this._capacityMask = 0x3;
this._list = new Array(4);
if (Array.isArray(array)) {
this._fromArray(array);
}
}
/**
* -------------
* PUBLIC API
* -------------
*/
/**
* Returns the item at the specified index from the list.
* 0 is the first element, 1 is the second, and so on...
* Elements at negative values are that many from the end: -1 is one before the end
* (the last element), -2 is two before the end (one before last), etc.
* @param index
* @returns {*}
*/
Denque.prototype.peekAt = function peekAt(index) {
var i = index;
// expect a number or return undefined
if ((i !== (i | 0))) {
return void 0;
}
var len = this.size();
if (i >= len || i < -len) return undefined;
if (i < 0) i += len;
i = (this._head + i) & this._capacityMask;
return this._list[i];
};
/**
* Alias for peekAt()
* @param i
* @returns {*}
*/
Denque.prototype.get = function get(i) {
return this.peekAt(i);
};
/**
* Returns the first item in the list without removing it.
* @returns {*}
*/
Denque.prototype.peek = function peek() {
if (this._head === this._tail) return undefined;
return this._list[this._head];
};
/**
* Alias for peek()
* @returns {*}
*/
Denque.prototype.peekFront = function peekFront() {
return this.peek();
};
/**
* Returns the item that is at the back of the queue without removing it.
* Uses peekAt(-1)
*/
Denque.prototype.peekBack = function peekBack() {
return this.peekAt(-1);
};
/**
* Returns the current length of the queue
* @return {Number}
*/
Object.defineProperty(Denque.prototype, 'length', {
get: function length() {
return this.size();
}
});
/**
* Return the number of items on the list, or 0 if empty.
* @returns {number}
*/
Denque.prototype.size = function size() {
if (this._head === this._tail) return 0;
if (this._head < this._tail) return this._tail - this._head;
else return this._capacityMask + 1 - (this._head - this._tail);
};
/**
* Add an item at the beginning of the list.
* @param item
*/
Denque.prototype.unshift = function unshift(item) {
if (item === undefined) return this.size();
var len = this._list.length;
this._head = (this._head - 1 + len) & this._capacityMask;
this._list[this._head] = item;
if (this._tail === this._head) this._growArray();
if (this._capacity && this.size() > this._capacity) this.pop();
if (this._head < this._tail) return this._tail - this._head;
else return this._capacityMask + 1 - (this._head - this._tail);
};
/**
* Remove and return the first item on the list,
* Returns undefined if the list is empty.
* @returns {*}
*/
Denque.prototype.shift = function shift() {
var head = this._head;
if (head === this._tail) return undefined;
var item = this._list[head];
this._list[head] = undefined;
this._head = (head + 1) & this._capacityMask;
if (head < 2 && this._tail > 10000 && this._tail <= this._list.length >>> 2) this._shrinkArray();
return item;
};
/**
* Add an item to the bottom of the list.
* @param item
*/
Denque.prototype.push = function push(item) {
if (item === undefined) return this.size();
var tail = this._tail;
this._list[tail] = item;
this._tail = (tail + 1) & this._capacityMask;
if (this._tail === this._head) {
this._growArray();
}
if (this._capacity && this.size() > this._capacity) {
this.shift();
}
if (this._head < this._tail) return this._tail - this._head;
else return this._capacityMask + 1 - (this._head - this._tail);
};
/**
* Remove and return the last item on the list.
* Returns undefined if the list is empty.
* @returns {*}
*/
Denque.prototype.pop = function pop() {
var tail = this._tail;
if (tail === this._head) return undefined;
var len = this._list.length;
this._tail = (tail - 1 + len) & this._capacityMask;
var item = this._list[this._tail];
this._list[this._tail] = undefined;
if (this._head < 2 && tail > 10000 && tail <= len >>> 2) this._shrinkArray();
return item;
};
/**
* Remove and return the item at the specified index from the list.
* Returns undefined if the list is empty.
* @param index
* @returns {*}
*/
Denque.prototype.removeOne = function removeOne(index) {
var i = index;
// expect a number or return undefined
if ((i !== (i | 0))) {
return void 0;
}
if (this._head === this._tail) return void 0;
var size = this.size();
var len = this._list.length;
if (i >= size || i < -size) return void 0;
if (i < 0) i += size;
i = (this._head + i) & this._capacityMask;
var item = this._list[i];
var k;
if (index < size / 2) {
for (k = index; k > 0; k--) {
this._list[i] = this._list[i = (i - 1 + len) & this._capacityMask];
}
this._list[i] = void 0;
this._head = (this._head + 1 + len) & this._capacityMask;
} else {
for (k = size - 1 - index; k > 0; k--) {
this._list[i] = this._list[i = ( i + 1 + len) & this._capacityMask];
}
this._list[i] = void 0;
this._tail = (this._tail - 1 + len) & this._capacityMask;
}
return item;
};
/**
* Remove number of items from the specified index from the list.
* Returns array of removed items.
* Returns undefined if the list is empty.
* @param index
* @param count
* @returns {array}
*/
Denque.prototype.remove = function remove(index, count) {
var i = index;
var removed;
var del_count = count;
// expect a number or return undefined
if ((i !== (i | 0))) {
return void 0;
}
if (this._head === this._tail) return void 0;
var size = this.size();
var len = this._list.length;
if (i >= size || i < -size || count < 1) return void 0;
if (i < 0) i += size;
if (count === 1 || !count) {
removed = new Array(1);
removed[0] = this.removeOne(i);
return removed;
}
if (i === 0 && i + count >= size) {
removed = this.toArray();
this.clear();
return removed;
}
if (i + count > size) count = size - i;
var k;
removed = new Array(count);
for (k = 0; k < count; k++) {
removed[k] = this._list[(this._head + i + k) & this._capacityMask];
}
i = (this._head + i) & this._capacityMask;
if (index + count === size) {
this._tail = (this._tail - count + len) & this._capacityMask;
for (k = count; k > 0; k--) {
this._list[i = (i + 1 + len) & this._capacityMask] = void 0;
}
return removed;
}
if (index === 0) {
this._head = (this._head + count + len) & this._capacityMask;
for (k = count - 1; k > 0; k--) {
this._list[i = (i + 1 + len) & this._capacityMask] = void 0;
}
return removed;
}
if (i < size / 2) {
this._head = (this._head + index + count + len) & this._capacityMask;
for (k = index; k > 0; k--) {
this.unshift(this._list[i = (i - 1 + len) & this._capacityMask]);
}
i = (this._head - 1 + len) & this._capacityMask;
while (del_count > 0) {
this._list[i = (i - 1 + len) & this._capacityMask] = void 0;
del_count--;
}
if (index < 0) this._tail = i;
} else {
this._tail = i;
i = (i + count + len) & this._capacityMask;
for (k = size - (count + index); k > 0; k--) {
this.push(this._list[i++]);
}
i = this._tail;
while (del_count > 0) {
this._list[i = (i + 1 + len) & this._capacityMask] = void 0;
del_count--;
}
}
if (this._head < 2 && this._tail > 10000 && this._tail <= len >>> 2) this._shrinkArray();
return removed;
};
/**
* Native splice implementation.
* Remove number of items from the specified index from the list and/or add new elements.
* Returns array of removed items or empty array if count == 0.
* Returns undefined if the list is empty.
*
* @param index
* @param count
* @param {...*} [elements]
* @returns {array}
*/
Denque.prototype.splice = function splice(index, count) {
var i = index;
// expect a number or return undefined
if ((i !== (i | 0))) {
return void 0;
}
var size = this.size();
if (i < 0) i += size;
if (i > size) return void 0;
if (arguments.length > 2) {
var k;
var temp;
var removed;
var arg_len = arguments.length;
var len = this._list.length;
var arguments_index = 2;
if (!size || i < size / 2) {
temp = new Array(i);
for (k = 0; k < i; k++) {
temp[k] = this._list[(this._head + k) & this._capacityMask];
}
if (count === 0) {
removed = [];
if (i > 0) {
this._head = (this._head + i + len) & this._capacityMask;
}
} else {
removed = this.remove(i, count);
this._head = (this._head + i + len) & this._capacityMask;
}
while (arg_len > arguments_index) {
this.unshift(arguments[--arg_len]);
}
for (k = i; k > 0; k--) {
this.unshift(temp[k - 1]);
}
} else {
temp = new Array(size - (i + count));
var leng = temp.length;
for (k = 0; k < leng; k++) {
temp[k] = this._list[(this._head + i + count + k) & this._capacityMask];
}
if (count === 0) {
removed = [];
if (i != size) {
this._tail = (this._head + i + len) & this._capacityMask;
}
} else {
removed = this.remove(i, count);
this._tail = (this._tail - leng + len) & this._capacityMask;
}
while (arguments_index < arg_len) {
this.push(arguments[arguments_index++]);
}
for (k = 0; k < leng; k++) {
this.push(temp[k]);
}
}
return removed;
} else {
return this.remove(i, count);
}
};
/**
* Soft clear - does not reset capacity.
*/
Denque.prototype.clear = function clear() {
this._head = 0;
this._tail = 0;
};
/**
* Returns true or false whether the list is empty.
* @returns {boolean}
*/
Denque.prototype.isEmpty = function isEmpty() {
return this._head === this._tail;
};
/**
* Returns an array of all queue items.
* @returns {Array}
*/
Denque.prototype.toArray = function toArray() {
return this._copyArray(false);
};
/**
* -------------
* INTERNALS
* -------------
*/
/**
* Fills the queue with items from an array
* For use in the constructor
* @param array
* @private
*/
Denque.prototype._fromArray = function _fromArray(array) {
for (var i = 0; i < array.length; i++) this.push(array[i]);
};
/**
*
* @param fullCopy
* @returns {Array}
* @private
*/
Denque.prototype._copyArray = function _copyArray(fullCopy) {
var newArray = [];
var list = this._list;
var len = list.length;
var i;
if (fullCopy || this._head > this._tail) {
for (i = this._head; i < len; i++) newArray.push(list[i]);
for (i = 0; i < this._tail; i++) newArray.push(list[i]);
} else {
for (i = this._head; i < this._tail; i++) newArray.push(list[i]);
}
return newArray;
};
/**
* Grows the internal list array.
* @private
*/
Denque.prototype._growArray = function _growArray() {
if (this._head) {
// copy existing data, head to end, then beginning to tail.
this._list = this._copyArray(true);
this._head = 0;
}
// head is at 0 and array is now full, safe to extend
this._tail = this._list.length;
this._list.length <<= 1;
this._capacityMask = (this._capacityMask << 1) | 1;
};
/**
* Shrinks the internal list array.
* @private
*/
Denque.prototype._shrinkArray = function _shrinkArray() {
this._list.length >>>= 1;
this._capacityMask >>>= 1;
};
var denque = Denque;
var DeliveryRecordStatus;
(function (DeliveryRecordStatus) {
/**
* we don't know (yet) if the message is valid
*/
DeliveryRecordStatus[DeliveryRecordStatus["unknown"] = 0] = "unknown";
/**
* we know the message is valid
*/
DeliveryRecordStatus[DeliveryRecordStatus["valid"] = 1] = "valid";
/**
* we know the message is invalid
*/
DeliveryRecordStatus[DeliveryRecordStatus["invalid"] = 2] = "invalid";
/**
* we were instructed by the validator to ignore the message
*/
DeliveryRecordStatus[DeliveryRecordStatus["ignored"] = 3] = "ignored";
})(DeliveryRecordStatus || (DeliveryRecordStatus = {}));
/**
* Map of canonical message ID to DeliveryRecord
*
* Maintains an internal queue for efficient gc of old messages
*/
class MessageDeliveries {
constructor() {
this.records = new Map();
this.queue = new denque();
}
ensureRecord(msgIdStr) {
let drec = this.records.get(msgIdStr);
if (drec) {
return drec;
}
// record doesn't exist yet
// create record
drec = {
status: DeliveryRecordStatus.unknown,
firstSeen: Date.now(),
validated: 0,
peers: new Set()
};
this.records.set(msgIdStr, drec);
// and add msgId to the queue
const entry = {
msgId: msgIdStr,
expire: Date.now() + TimeCacheDuration
};
this.queue.push(entry);
return drec;
}
gc() {
const now = Date.now();
// queue is sorted by expiry time
// remove expired messages, remove from queue until first un-expired message found
let head = this.queue.peekFront();
while (head && head.expire < now) {
this.records.delete(head.msgId);
this.queue.shift();
head = this.queue.peekFront();
}
}
clear() {
this.records.clear();
this.queue.clear();
}
}
function isStartable(obj) {
return obj != null && typeof obj.start === 'function' && typeof obj.stop === 'function';
}
function isInitializable(obj) {
return obj != null && typeof obj.init === 'function';
}
class Components {
constructor(init = {}) {
this.started = false;
if (init.peerId != null) {
this.setPeerId(init.peerId);
}
if (init.addressManager != null) {
this.setAddressManager(init.addressManager);
}
if (init.peerStore != null) {
this.setPeerStore(init.peerStore);
}
if (init.upgrader != null) {
this.setUpgrader(init.upgrader);
}
if (init.metrics != null) {
this.setMetrics(init.metrics);
}
if (init.registrar != null) {
this.setRegistrar(init.registrar);
}
if (init.connectionManager != null) {
this.setConnectionManager(init.connectionManager);
}
if (init.transportManager != null) {
this.setTransportManager(init.transportManager);
}
if (init.connectionGater != null) {
this.setConnectionGater(init.connectionGater);
}
if (init.contentRouting != null) {
this.setContentRouting(init.contentRouting);
}
if (init.peerRouting != null) {
this.setPeerRouting(init.peerRouting);
}
if (init.datastore != null) {
this.setDatastore(init.datastore);
}
if (init.connectionProtector != null) {
this.setConnectionProtector(init.connectionProtector);
}
if (init.dht != null) {
this.setDHT(init.dht);
}
if (init.pubsub != null) {
this.setPubSub(init.pubsub);
}
}
isStarted() {
return this.started;
}
async beforeStart() {
await Promise.all(Object.values(this).filter(obj => isStartable(obj)).map(async (startable) => {
if (startable.beforeStart != null) {
await startable.beforeStart();
}
}));
}
async start() {
await Promise.all(Object.values(this).filter(obj => isStartable(obj)).map(async (startable) => {
await startable.start();
}));
this.started = true;
}
async afterStart() {
await Promise.all(Object.values(this).filter(obj => isStartable(obj)).map(async (startable) => {
if (startable.afterStart != null) {
await startable.afterStart();
}
}));
}
async beforeStop() {
await Promise.all(Object.values(this).filter(obj => isStartable(obj)).map(async (startable) => {
if (startable.beforeStop != null) {
await startable.beforeStop();
}
}));
}
async stop() {
await Promise.all(Object.values(this).filter(obj => isStartable(obj)).map(async (startable) => {
await startable.stop();
}));
this.started = false;
}
async afterStop() {
await Promise.all(Object.values(this).filter(obj => isStartable(obj)).map(async (startable) => {
if (startable.afterStop != null) {
await startable.afterStop();
}
}));
}
setPeerId(peerId) {
this.peerId = peerId;
return peerId;
}
getPeerId() {
if (this.peerId == null) {
throw errCode(new Error('peerId not set'), 'ERR_SERVICE_MISSING');
}
return this.peerId;
}
setMetrics(metrics) {
this.metrics = metrics;
if (isInitializable(metrics)) {
metrics.init(this);
}
return metrics;
}
getMetrics() {
return this.metrics;
}
setAddressManager(addressManager) {
this.addressManager = addressManager;
if (isInitializable(addressManager)) {
addressManager.init(this);
}
return addressManager;
}
getAddressManager() {
if (this.addressManager == null) {
throw errCode(new Error('addressManager not set'), 'ERR_SERVICE_MISSING');
}
return this.addressManager;
}
setPeerStore(peerStore) {
this.peerStore = peerStore;
if (isInitializable(peerStore)) {
peerStore.init(this);
}
return peerStore;
}
getPeerStore() {
if (this.peerStore == null) {
throw errCode(new Error('peerStore not set'), 'ERR_SERVICE_MISSING');
}
return this.peerStore;
}
setUpgrader(upgrader) {
this.upgrader = upgrader;
if (isInitializable(upgrader)) {
upgrader.init(this);
}
return upgrader;
}
getUpgrader() {
if (this.upgrader == null) {
throw errCode(new Error('upgrader not set'), 'ERR_SERVICE_MISSING');
}
return this.upgrader;
}
setRegistrar(registrar) {
this.registrar = registrar;
if (isInitializable(registrar)) {
registrar.init(this);
}
return registrar;
}
getRegistrar() {
if (this.registrar == null) {
throw errCode(new Error('registrar not set'), 'ERR_SERVICE_MISSING');
}
return this.registrar;
}
setConnectionManager(connectionManager) {
this.connectionManager = connectionManager;
if (isInitializable(connectionManager)) {
connectionManager.init(this);
}
return connectionManager;
}
getConnectionManager() {
if (this.connectionManager == null) {
throw errCode(new Error('connectionManager not set'), 'ERR_SERVICE_MISSING');
}
return this.connectionManager;
}
setTransportManager(transportManager) {
this.transportManager = transportManager;
if (isInitializable(transportManager)) {
transportManager.init(this);
}
return transportManager;
}
getTransportManager() {
if (this.transportManager == null) {
throw errCode(new Error('transportManager not set'), 'ERR_SERVICE_MISSING');
}
return this.transportManager;
}
setConnectionGater(connectionGater) {
this.connectionGater = connectionGater;
if (isInitializable(connectionGater)) {
connectionGater.init(this);
}
return connectionGater;
}
getConnectionGater() {
if (this.connectionGater == null) {
throw errCode(new Error('connectionGater not set'), 'ERR_SERVICE_MISSING');
}
return this.connectionGater;
}
setContentRouting(contentRouting) {
this.contentRouting = contentRouting;
if (isInitializable(contentRouting)) {
contentRouting.init(this);
}
return contentRouting;
}
getContentRouting() {
if (this.contentRouting == null) {
throw errCode(new Error('contentRouting not set'), 'ERR_SERVICE_MISSING');
}
return this.contentRouting;
}
setPeerRouting(peerRouting) {
this.peerRouting = peerRouting;
if (isInitializable(peerRouting)) {
peerRouting.init(this);
}
return peerRouting;
}
getPeerRouting() {
if (this.peerRouting == null) {
throw errCode(new Error('peerRouting not set'), 'ERR_SERVICE_MISSING');
}
return this.peerRouting;
}
setDatastore(datastore) {
this.datastore = datastore;
if (isInitializable(datastore)) {
datastore.init(this);
}
return datastore;
}
getDatastore() {
if (this.datastore == null) {
throw errCode(new Error('datastore not set'), 'ERR_SERVICE_MISSING');
}
return this.datastore;
}
setConnectionProtector(connectionProtector) {
this.connectionProtector = connectionProtector;
if (isInitializable(connectionProtector)) {
connectionProtector.init(this);
}
return connectionProtector;
}
getConnectionProtector() {
return this.connectionProtector;
}
setDHT(dht) {
this.dht = dht;
if (isInitializable(dht)) {
dht.init(this);
}
return dht;
}
getDHT() {
if (this.dht == null) {
throw errCode(new Error('dht not set'), 'ERR_SERVICE_MISSING');
}
return this.dht;
}
setPubSub(pubsub) {
this.pubsub = pubsub;
if (isInitializable(pubsub)) {
pubsub.init(this);
}
return pubsub;
}
getPubSub() {
if (this.pubsub == null) {
throw errCode(new Error('pubsub not set'), 'ERR_SERVICE_MISSING');
}
return this.pubsub;
}
setDialer(dialer) {
this.dialer = dialer;
if (isInitializable(dialer)) {
dialer.init(this);
}
return dialer;
}
getDialer() {
if (this.dialer == null) {
throw errCode(new Error('dialer not set'), 'ERR_SERVICE_MISSING');
}
return this.dialer;
}
}
const log$4 = logger('libp2p:gossipsub:score');
class PeerScore {
constructor(params, metrics, opts) {
this.params = params;
this.metrics = metrics;
/**
* Per-peer stats for score calculation
*/
this.peerStats = new Map();
/**
* IP colocation tracking; maps IP => set of peers.
*/
this.peerIPs = new Map();
/**
* Cache score up to decayInterval if topic stats are unchanged.
*/
this.scoreCache = new Map();
/**
* Recent message delivery timing/participants
*/
this.deliveryRecords = new MessageDeliveries();
this.components = new Components();
validatePeerScoreParams(params);
this.scoreCacheValidityMs = opts.scoreCacheValidityMs;
this.computeScore = opts.computeScore ?? computeScore;
}
init(components) {
this.components = components;
}
get size() {
return this.peerStats.size;
}
/**
* Start PeerScore instance
*/
start() {
if (this._backgroundInterval) {
log$4('Peer score already running');
return;
}
this._backgroundInterval = setInterval(() => this.background(), this.params.decayInterval);
log$4('started');
}
/**
* Stop PeerScore instance
*/
stop() {
if (!this._backgroundInterval) {
log$4('Peer score already stopped');
return;
}
clearInterval(this._backgroundInterval);
delete this._backgroundInterval;
this.peerIPs.clear();
this.peerStats.clear();
this.deliveryRecords.clear();
log$4('stopped');
}
/**
* Periodic maintenance
*/
background() {
this.refreshScores();
this.updateIPs();
this.deliveryRecords.gc();
}
dumpPeerScoreStats() {
return Object.fromEntries(Array.from(this.peerStats.entries()).map(([peer, stats]) => [peer, stats]));
}
/**
* Decays scores, and purges score records for disconnected peers once their expiry has elapsed.
*/
refreshScores() {
const now = Date.now();
const decayToZero = this.params.decayToZero;
this.peerStats.forEach((pstats, id) => {
if (!pstats.connected) {
// has the retention period expired?
if (now > pstats.expire) {
// yes, throw it away (but clean up the IP tracking first)
this.removeIPs(id, pstats.ips);
this.peerStats.delete(id);
this.scoreCache.delete(id);
}
// we don't decay retained scores, as the peer is not active.
// this way the peer cannot reset a negative score by simply disconnecting and reconnecting,
// unless the retention period has elapsed.
// similarly, a well behaved peer does not lose its score by getting disconnected.
return;
}
Object.entries(pstats.topics).forEach(([topic, tstats]) => {
const tparams = this.params.topics[topic];
if (tparams === undefined) {
// we are not scoring this topic
// should be unreachable, we only add scored topics to pstats
return;
}
// decay counters
tstats.firstMessageDeliveries *= tparams.firstMessageDeliveriesDecay;
if (tstats.firstMessageDeliveries < decayToZero) {
tstats.firstMessageDeliveries = 0;
}
tstats.meshMessageDeliveries *= tparams.meshMessageDeliveriesDecay;
if (tstats.meshMessageDeliveries < decayToZero) {
tstats.meshMessageDeliveries = 0;
}
tstats.meshFailurePenalty *= tparams.meshFailurePenaltyDecay;
if (tstats.meshFailurePenalty < decayToZero) {
tstats.meshFailurePenalty = 0;
}
tstats.invalidMessageDeliveries *= tparams.invalidMessageDeliveriesDecay;
if (tstats.invalidMessageDeliveries < decayToZero) {
tstats.invalidMessageDeliveries = 0;
}
// update mesh time and activate mesh message delivery parameter if need be
if (tstats.inMesh) {
tstats.meshTime = now - tstats.graftTime;
if (tstats.meshTime > tparams.meshMessageDeliveriesActivation) {
tstats.meshMessageDeliveriesActive = true;
}
}
});
// decay P7 counter
pstats.behaviourPenalty *= this.params.behaviourPenaltyDecay;
if (pstats.behaviourPenalty < decayToZero) {
pstats.behaviourPenalty = 0;
}
});
}
/**
* Return the score for a peer
*/
score(id) {
this.metrics?.scoreFnCalls.inc();
const pstats = this.peerStats.get(id);
if (!pstats) {
return 0;
}
const now = Date.now();
const cacheEntry = this.scoreCache.get(id);
// Found cached score within validity period
if (cacheEntry && cacheEntry.cacheUntil > now) {
return cacheEntry.score;
}
this.metrics?.scoreFnRuns.inc();
const score = this.computeScore(id, pstats, this.params, this.peerIPs);
const cacheUntil = now + this.scoreCacheValidityMs;
if (cacheEntry) {
this.metrics?.scoreCachedDelta.observe(Math.abs(score - cacheEntry.score));
cacheEntry.score = score;
cacheEntry.cacheUntil = cacheUntil;
}
else {
this.scoreCache.set(id, { score, cacheUntil });
}
return score;
}
/**
* Apply a behavioural penalty to a peer
*/
addPenalty(id, penalty, penaltyLabel) {
const pstats = this.peerStats.get(id);
if (pstats) {
pstats.behaviourPenalty += penalty;
this.metrics?.onScorePenalty(penaltyLabel);
}
}
addPeer(id) {
// create peer stats (not including topic stats for each topic to be scored)
// topic stats will be added as needed
const pstats = {
connected: true,
expire: 0,
topics: {},
ips: [],
behaviourPenalty: 0
};
this.peerStats.set(id, pstats);
// get + update peer IPs
const ips = this.getIPs(id);
this.setIPs(id, ips, pstats.ips);
pstats.ips = ips;
}
removePeer(id) {
const pstats = this.peerStats.get(id);
if (!pstats) {
return;
}
// decide whether to retain the score; this currently only retains non-positive scores
// to dissuade attacks on the score function.
if (this.score(id) > 0) {
this.removeIPs(id, pstats.ips);
this.peerStats.delete(id);
return;
}
// furthermore, when we decide to retain the score, the firstMessageDelivery counters are
// reset to 0 and mesh delivery penalties applied.
Object.entries(pstats.topics).forEach(([topic, tstats]) => {
tstats.firstMessageDeliveries = 0;
const threshold = this.params.topics[topic].meshMessageDeliveriesThreshold;
if (tstats.inMesh && tstats.meshMessageDeliveriesActive && tstats.meshMessageDeliveries < threshold) {
const deficit = threshold - tstats.meshMessageDeliveries;
tstats.meshFailurePenalty += deficit * deficit;
}
tstats.inMesh = false;
tstats.meshMessageDeliveriesActive = false;
});
pstats.connected = false;
pstats.expire = Date.now() + this.params.retainScore;
}
/** Handles scoring functionality as a peer GRAFTs to a topic. */
graft(id, topic) {
const pstats = this.peerStats.get(id);
if (pstats) {
const tstats = this.getPtopicStats(pstats, topic);
if (tstats) {
// if we are scoring the topic, update the mesh status.
tstats.inMesh = true;
tstats.graftTime = Date.now();
tstats.meshTime = 0;
tstats.meshMessageDeliveriesActive = false;
}
}
}
/** Handles scoring functionality as a peer PRUNEs from a topic. */
prune(id, topic) {
const pstats = this.peerStats.get(id);
if (pstats) {
const tstats = this.getPtopicStats(pstats, topic);
if (tstats) {
// sticky mesh delivery rate failure penalty
const threshold = this.params.topics[topic].meshMessageDeliveriesThreshold;
if (tstats.meshMessageDeliveriesActive && tstats.meshMessageDeliveries < threshold) {
const deficit = threshold - tstats.meshMessageDeliveries;
tstats.meshFailurePenalty += deficit * deficit;
}
tstats.meshMessageDeliveriesActive = false;
tstats.inMesh = false;
// TODO: Consider clearing score cache on important penalties
// this.scoreCache.delete(id)
}
}
}
validateMessage(msgIdStr) {
this.deliveryRecords.ensureRecord(msgIdStr);
}
deliverMessage(from, msgIdStr, topic) {
this.markFirstMessageDelivery(from, topic);
const drec = this.deliveryRecords.ensureRecord(msgIdStr);
const now = Date.now();
// defensive check that this is the first delivery trace -- delivery status should be unknown
if (drec.status !== DeliveryRecordStatus.unknown) {
log$4('unexpected delivery: message from %s was first seen %s ago and has delivery status %s', from, now - drec.firstSeen, DeliveryRecordStatus[drec.status]);
return;
}
// mark the message as valid and reward mesh peers that have already forwarded it to us
drec.status = DeliveryRecordStatus.valid;
drec.validated = now;
drec.peers.forEach((p) => {
// this check is to make sure a peer can't send us a message twice and get a double count
// if it is a first delivery.
if (p !== from.toString()) {
this.markDuplicateMessageDelivery(p, topic);
}
});
}
/**
* Similar to `rejectMessage` except does not require the message id or reason for an invalid message.
*/
rejectInvalidMessage(from, topic) {
this.markInvalidMessageDelivery(from, topic);
}
rejectMessage(from, msgIdStr, topic, reason) {
switch (reason) {
// these messages are not tracked, but the peer is penalized as they are invalid
case RejectReason.Error:
this.markInvalidMessageDelivery(from, topic);
return;
// we ignore those messages, so do nothing.
case RejectReason.Blacklisted:
return;
// the rest are handled after record creation
}
const drec = this.deliveryRecords.ensureRecord(msgIdStr);
// defensive check that this is the first rejection -- delivery status should be unknown
if (drec.status !== DeliveryRecordStatus.unknown) {
log$4('unexpected rejection: message from %s was first seen %s ago and has delivery status %d', from, Date.now() - drec.firstSeen, DeliveryRecordStatus[drec.status]);
return;
}
if (reason === RejectReason.Ignore) {
// we were explicitly instructed by the validator to ignore the message but not penalize the peer
drec.status = DeliveryRecordStatus.ignored;
drec.peers.clear();
return;
}
// mark the message as invalid and penalize peers that have already forwarded it.
drec.status = DeliveryRecordStatus.invalid;
this.markInvalidMessageDelivery(from, topic);
drec.peers.forEach((p) => {
this.markInvalidMessageDelivery(p, topic);
});
// release the delivery time tracking map to free some memory early
drec.peers.clear();
}
duplicateMessage(from, msgIdStr, topic) {
const drec = this.deliveryRecords.ensureRecord(msgIdStr);
if (drec.peers.has(from)) {
// we have already seen this duplicate
return;
}
switch (drec.status) {
case DeliveryRecordStatus.unknown:
// the message is being validated; track the peer delivery and wait for
// the Deliver/Reject/Ignore notification.
drec.peers.add(from);
break;
case DeliveryRecordStatus.valid:
// mark the peer delivery time to only count a duplicate delivery once.
drec.peers.add(from);
this.markDuplicateMessageDelivery(from, topic, drec.validated);
break;
case DeliveryRecordStatus.invalid:
// we no longer track delivery time
this.markInvalidMessageDelivery(from, topic);
break;
case DeliveryRecordStatus.ignored:
// the message was ignored; do nothing (we don't know if it was valid)
break;
}
}
/**
* Increments the "invalid message deliveries" counter for all scored topics the message is published in.
*/
markInvalidMessageDelivery(from, topic) {
const pstats = this.peerStats.get(from);
if (pstats) {
const tstats = this.getPtopicStats(pstats, topic);
if (tstats) {
tstats.invalidMessageDeliveries += 1;
}
}
}
/**
* Increments the "first message deliveries" counter for all scored topics the message is published in,
* as well as the "mesh message deliveries" counter, if the peer is in the mesh for the topic.
* Messages already known (with the seenCache) are counted with markDuplicateMessageDelivery()
*/
markFirstMessageDelivery(from, topic) {
const pstats = this.peerStats.get(from);
if (pstats) {
const tstats = this.getPtopicStats(pstats, topic);
if (tstats) {
let cap = this.params.topics[topic].firstMessageDeliveriesCap;
tstats.firstMessageDeliveries = Math.min(cap, tstats.firstMessageDeliveries + 1);
if (tstats.inMesh) {
cap = this.params.topics[topic].meshMessageDeliveriesCap;
tstats.meshMessageDeliveries = Math.min(cap, tstats.meshMessageDeliveries + 1);
}
}
}
}
/**
* Increments the "mesh message deliveries" counter for messages we've seen before,
* as long the message was received within the P3 window.
*/
markDuplicateMessageDelivery(from, topic, validatedTime) {
const pstats = this.peerStats.get(from);
if (pstats) {
const now = validatedTime !== undefined ? Date.now() : 0;
const tstats = this.getPtopicStats(pstats, topic);
if (tstats && tstats.inMesh) {
const tparams = this.params.topics[topic];
// check against the mesh delivery window -- if the validated time is passed as 0, then
// the message was received before we finished validation and thus falls within the mesh
// delivery window.
if (validatedTime !== undefined) {
const deliveryDelayMs = now - validatedTime;
const isLateDelivery = deliveryDelayMs > tparams.meshMessageDeliveriesWindow;
this.metrics?.onDuplicateMsgDelivery(topic, deliveryDelayMs, isLateDelivery);
if (isLateDelivery) {
return;
}
}
const cap = tparams.meshMessageDeliveriesCap;
tstats.meshMessageDeliveries = Math.min(cap, tstats.meshMessageDeliveries + 1);
}
}
}
/**
* Gets the current IPs for a peer.
*/
getIPs(id) {
return this.components
.getConnectionManager()
.getConnections(peerIdFromString(id))
.map((c) => c.remoteAddr.toOptions().host);
}
/**
* Adds tracking for the new IPs in the list, and removes tracking from the obsolete IPs.
*/
setIPs(id, newIPs, oldIPs) {
// add the new IPs to the tracking
// eslint-disable-next-line no-labels
addNewIPs: for (const ip of newIPs) {
// check if it is in the old ips list
for (const xip of oldIPs) {
if (ip === xip) {
// eslint-disable-next-line no-labels
continue addNewIPs;
}
}
// no, it's a new one -- add it to the tracker
let peers = this.peerIPs.get(ip);
if (!peers) {
peers = new Set();
this.peerIPs.set(ip, peers);
}
peers.add(id);
}
// remove the obsolete old IPs from the tracking
// eslint-disable-next-line no-labels
removeOldIPs: for (const ip of oldIPs) {
// check if it is in the new ips list
for (const xip of newIPs) {
if (ip === xip) {
// eslint-disable-next-line no-labels
continue removeOldIPs;
}
}
// no, its obselete -- remove it from the tracker
const peers = this.peerIPs.get(ip);
if (!peers) {
continue;
}
peers.delete(id);
if (!peers.size) {
this.peerIPs.delete(ip);
}
}
}
/**
* Removes an IP list from the tracking list for a peer.
*/
removeIPs(id, ips) {
ips.forEach((ip) => {
const peers = this.peerIPs.get(ip);
if (!peers) {
return;
}
peers.delete(id);
if (!peers.size) {
this.peerIPs.delete(ip);
}
});
}
/**
* Update all peer IPs to currently open connections
*/
updateIPs() {
this.peerStats.forEach((pstats, id) => {
const newIPs = this.getIPs(id);
this.setIPs(id, newIPs, pstats.ips);
pstats.ips = newIPs;
});
}
/**
* Returns topic stats if they exist, otherwise if the supplied parameters score the
* topic, inserts the default stats and returns a reference to those. If neither apply, returns None.
*/
getPtopicStats(pstats, topic) {
let topicStats = pstats.topics[topic];
if (topicStats !== undefined) {
return topicStats;
}
if (this.params.topics[topic] !== undefined) {
topicStats = {
inMesh: false,
graftTime: 0,
meshTime: 0,
firstMessageDeliveries: 0,
meshMessageDeliveries: 0,
meshMessageDeliveriesActive: false,
meshFailurePenalty: 0,
invalidMessageDeliveries: 0
};
pstats.topics[topic] = topicStats;
return topicStats;
}
return null;
}
}
/**
* IWantTracer is an internal tracer that tracks IWANT requests in order to penalize
* peers who don't follow up on IWANT requests after an IHAVE advertisement.
* The tracking of promises is probabilistic to avoid using too much memory.
*
* Note: Do not confuse these 'promises' with JS Promise objects.
* These 'promises' are merely expectations of a peer's behavior.
*/
class IWantTracer {
constructor(gossipsubIWantFollowupMs, msgIdToStrFn, metrics) {
this.gossipsubIWantFollowupMs = gossipsubIWantFollowupMs;
this.msgIdToStrFn = msgIdToStrFn;
this.metrics = metrics;
/**
* Promises to deliver a message
* Map per message id, per peer, promise expiration time
*/
this.promises = new Map();
/**
* First request time by msgId. Used for metrics to track expire times.
* Necessary to know if peers are actually breaking promises or simply sending them a bit later
*/
this.requestMsByMsg = new Map();
this.requestMsByMsgExpire = 10 * gossipsubIWantFollowupMs;
}
get size() {
return this.promises.size;
}
get requestMsByMsgSize() {
return this.requestMsByMsg.size;
}
/**
* Track a promise to deliver a message from a list of msgIds we are requesting
*/
addPromise(from, msgIds) {
// pick msgId randomly from the list
const ix = Math.floor(Math.random() * msgIds.length);
const msgId = msgIds[ix];
const msgIdStr = this.msgIdToStrFn(msgId);
let expireByPeer = this.promises.get(msgIdStr);
if (!expireByPeer) {
expireByPeer = new Map();
this.promises.set(msgIdStr, expireByPeer);
}
const now = Date.now();
// If a promise for this message id and peer already exists we don't update the expiry
if (!expireByPeer.has(from)) {
expireByPeer.set(from, now + this.gossipsubIWantFollowupMs);
if (this.metrics) {
this.metrics.iwantPromiseStarted.inc(1);
if (!this.requestMsByMsg.has(msgIdStr)) {
this.requestMsByMsg.set(msgIdStr, now);
}
}
}
}
/**
* Returns the number of broken promises for each peer who didn't follow up on an IWANT request.
*
* This should be called not too often relative to the expire times, since it iterates over the whole data.
*/
getBrokenPromises() {
const now = Date.now();
const result = new Map();
let brokenPromises = 0;
this.promises.forEach((expireByPeer, msgId) => {
expireByPeer.forEach((expire, p) => {
// the promise has been broken
if (expire < now) {
// add 1 to result
result.set(p, (result.get(p) ?? 0) + 1);
// delete from tracked promises
expireByPeer.delete(p);
// for metrics
brokenPromises++;
}
});
// clean up empty promises for a msgId
if (!expireByPeer.size) {
this.promises.delete(msgId);
}
});
this.metrics?.iwantPromiseBroken.inc(brokenPromises);
return result;
}
/**
* Someone delivered a message, stop tracking promises for it
*/
deliverMessage(msgIdStr) {
this.trackMessage(msgIdStr);
const expireByPeer = this.promises.get(msgIdStr);
// Expired promise, check requestMsByMsg
if (expireByPeer) {
this.promises.delete(msgIdStr);
if (this.metrics) {
this.metrics.iwantPromiseResolved.inc(1);
this.metrics.iwantPromiseResolvedPeers.inc(expireByPeer.size);
}
}
}
/**
* A message got rejected, so we can stop tracking promises and let the score penalty apply from invalid message delivery,
* unless its an obviously invalid message.
*/
rejectMessage(msgIdStr, reason) {
this.trackMessage(msgIdStr);
// A message got rejected, so we can stop tracking promises and let the score penalty apply.
// With the expection of obvious invalid messages
switch (reason) {
case RejectReason.Error:
return;
}
this.promises.delete(msgIdStr);
}
clear() {
this.promises.clear();
}
prune() {
const maxMs = Date.now() - this.requestMsByMsgExpire;
for (const [k, v] of this.requestMsByMsg.entries()) {
if (v < maxMs) {
// messages that stay too long in the requestMsByMsg map, delete
this.requestMsByMsg.delete(k);
}
else {
// recent messages, keep them
// sort by insertion order
break;
}
}
}
trackMessage(msgIdStr) {
if (this.metrics) {
const requestMs = this.requestMsByMsg.get(msgIdStr);
if (requestMs !== undefined) {
this.metrics.iwantPromiseDeliveryTime.observe((Date.now() - requestMs) / 1000);
this.requestMsByMsg.delete(msgIdStr);
}
}
}
}
/**
* This is similar to https://github.com/daviddias/time-cache/blob/master/src/index.js
* for our own need, we don't use lodash throttle to improve performance.
* This gives 4x - 5x performance gain compared to npm TimeCache
*/
class SimpleTimeCache {
constructor(opts) {
this.entries = new Map();
this.validityMs = opts.validityMs;
// allow negative validityMs so that this does not cache anything, spec test compliance.spec.js
// sends duplicate messages and expect peer to receive all. Application likely uses positive validityMs
}
get size() {
return this.entries.size;
}
put(key, value) {
this.entries.set(key, { value, validUntilMs: Date.now() + this.validityMs });
}
prune() {
const now = Date.now();
for (const [k, v] of this.entries.entries()) {
if (v.validUntilMs < now) {
this.entries.delete(k);
}
else {
// sort by insertion order
break;
}
}
}
has(key) {
return this.entries.has(key);
}
get(key) {
const value = this.entries.get(key);
return value && value.validUntilMs >= Date.now() ? value.value : undefined;
}
clear() {
this.entries.clear();
}
}
var MessageSource;
(function (MessageSource) {
MessageSource["forward"] = "forward";
MessageSource["publish"] = "publish";
})(MessageSource || (MessageSource = {}));
var InclusionReason;
(function (InclusionReason) {
/** Peer was a fanaout peer. */
InclusionReason["Fanout"] = "fanout";
/** Included from random selection. */
InclusionReason["Random"] = "random";
/** Peer subscribed. */
InclusionReason["Subscribed"] = "subscribed";
/** On heartbeat, peer was included to fill the outbound quota. */
InclusionReason["Outbound"] = "outbound";
/** On heartbeat, not enough peers in mesh */
InclusionReason["NotEnough"] = "not_enough";
/** On heartbeat opportunistic grafting due to low mesh score */
InclusionReason["Opportunistic"] = "opportunistic";
})(InclusionReason || (InclusionReason = {}));
/// Reasons why a peer was removed from the mesh.
var ChurnReason;
(function (ChurnReason) {
/// Peer disconnected.
ChurnReason["Dc"] = "disconnected";
/// Peer had a bad score.
ChurnReason["BadScore"] = "bad_score";
/// Peer sent a PRUNE.
ChurnReason["Prune"] = "prune";
/// Peer unsubscribed.
ChurnReason["Unsub"] = "unsubscribed";
/// Too many peers.
ChurnReason["Excess"] = "excess";
})(ChurnReason || (ChurnReason = {}));
/// Kinds of reasons a peer's score has been penalized
var ScorePenalty;
(function (ScorePenalty) {
/// A peer grafted before waiting the back-off time.
ScorePenalty["GraftBackoff"] = "graft_backoff";
/// A Peer did not respond to an IWANT request in time.
ScorePenalty["BrokenPromise"] = "broken_promise";
/// A Peer did not send enough messages as expected.
ScorePenalty["MessageDeficit"] = "message_deficit";
/// Too many peers under one IP address.
ScorePenalty["IPColocation"] = "IP_colocation";
})(ScorePenalty || (ScorePenalty = {}));
var IHaveIgnoreReason;
(function (IHaveIgnoreReason) {
IHaveIgnoreReason["LowScore"] = "low_score";
IHaveIgnoreReason["MaxIhave"] = "max_ihave";
IHaveIgnoreReason["MaxIasked"] = "max_iasked";
})(IHaveIgnoreReason || (IHaveIgnoreReason = {}));
var ScoreThreshold;
(function (ScoreThreshold) {
ScoreThreshold["graylist"] = "graylist";
ScoreThreshold["publish"] = "publish";
ScoreThreshold["gossip"] = "gossip";
ScoreThreshold["mesh"] = "mesh";
})(ScoreThreshold || (ScoreThreshold = {}));
/**
* A collection of metrics used throughout the Gossipsub behaviour.
*/
// eslint-disable-next-line @typescript-eslint/explicit-module-boundary-types
function getMetrics(register, topicStrToLabel, opts) {
// Using function style instead of class to prevent having to re-declare all MetricsPrometheus types.
return {
/* Metrics for static config */
protocolsEnabled: register.gauge({
name: 'gossipsub_protocol',
help: 'Status of enabled protocols',
labelNames: ['protocol']
}),
/* Metrics per known topic */
/** Status of our subscription to this topic. This metric allows analyzing other topic metrics
* filtered by our current subscription status.
* = rust-libp2p `topic_subscription_status` */
topicSubscriptionStatus: register.gauge({
name: 'gossipsub_topic_subscription_status',
help: 'Status of our subscription to this topic',
labelNames: ['topicStr']
}),
/** Number of peers subscribed to each topic. This allows us to analyze a topic's behaviour
* regardless of our subscription status. */
topicPeersCount: register.gauge({
name: 'gossipsub_topic_peer_count',
help: 'Number of peers subscribed to each topic',
labelNames: ['topicStr']
}),
/* Metrics regarding mesh state */
/** Number of peers in our mesh. This metric should be updated with the count of peers for a
* topic in the mesh regardless of inclusion and churn events.
* = rust-libp2p `mesh_peer_counts` */
meshPeerCounts: register.gauge({
name: 'gossipsub_mesh_peer_count',
help: 'Number of peers in our mesh',
labelNames: ['topicStr']
}),
/** Number of times we include peers in a topic mesh for different reasons.
* = rust-libp2p `mesh_peer_inclusion_events` */
meshPeerInclusionEvents: register.gauge({
name: 'gossipsub_mesh_peer_inclusion_events_total',
help: 'Number of times we include peers in a topic mesh for different reasons',
labelNames: ['topic', 'reason']
}),
/** Number of times we remove peers in a topic mesh for different reasons.
* = rust-libp2p `mesh_peer_churn_events` */
meshPeerChurnEvents: register.gauge({
name: 'gossipsub_peer_churn_events_total',
help: 'Number of times we remove peers in a topic mesh for different reasons',
labelNames: ['topic', 'reason']
}),
/* General Metrics */
/** Gossipsub supports floodsub, gossipsub v1.0 and gossipsub v1.1. Peers are classified based
* on which protocol they support. This metric keeps track of the number of peers that are
* connected of each type. */
peersPerProtocol: register.gauge({
name: 'gossipsub_peers_per_protocol_count',
help: 'Peers connected for each topic',
labelNames: ['protocol']
}),
/** The time it takes to complete one iteration of the heartbeat. */
heartbeatDuration: register.histogram({
name: 'gossipsub_heartbeat_duration_seconds',
help: 'The time it takes to complete one iteration of the heartbeat',
// Should take <10ms, over 1s it's a huge issue that needs debugging, since a heartbeat will be cancelled
buckets: [0.01, 0.1, 1]
}),
/** Heartbeat run took longer than heartbeat interval so next is skipped */
heartbeatSkipped: register.gauge({
name: 'gossipsub_heartbeat_skipped',
help: 'Heartbeat run took longer than heartbeat interval so next is skipped'
}),
/** Message validation results for each topic.
* Invalid == Reject?
* = rust-libp2p `invalid_messages`, `accepted_messages`, `ignored_messages`, `rejected_messages` */
asyncValidationResult: register.gauge({
name: 'gossipsub_async_validation_result_total',
help: 'Message validation result for each topic',
labelNames: ['topic', 'acceptance']
}),
/** When the user validates a message, it tries to re propagate it to its mesh peers. If the
* message expires from the memcache before it can be validated, we count this a cache miss
* and it is an indicator that the memcache size should be increased.
* = rust-libp2p `mcache_misses` */
asyncValidationMcacheHit: register.gauge({
name: 'gossipsub_async_validation_mcache_hit_total',
help: 'Async validation result reported by the user layer',
labelNames: ['hit']
}),
// RPC outgoing. Track byte length + data structure sizes
rpcRecvBytes: register.gauge({ name: 'gossipsub_rpc_recv_bytes_total', help: 'RPC recv' }),
rpcRecvCount: register.gauge({ name: 'gossipsub_rpc_recv_count_total', help: 'RPC recv' }),
rpcRecvSubscription: register.gauge({ name: 'gossipsub_rpc_recv_subscription_total', help: 'RPC recv' }),
rpcRecvMessage: register.gauge({ name: 'gossipsub_rpc_recv_message_total', help: 'RPC recv' }),
rpcRecvControl: register.gauge({ name: 'gossipsub_rpc_recv_control_total', help: 'RPC recv' }),
rpcRecvIHave: register.gauge({ name: 'gossipsub_rpc_recv_ihave_total', help: 'RPC recv' }),
rpcRecvIWant: register.gauge({ name: 'gossipsub_rpc_recv_iwant_total', help: 'RPC recv' }),
rpcRecvGraft: register.gauge({ name: 'gossipsub_rpc_recv_graft_total', help: 'RPC recv' }),
rpcRecvPrune: register.gauge({ name: 'gossipsub_rpc_recv_prune_total', help: 'RPC recv' }),
/** Total count of RPC dropped because acceptFrom() == false */
rpcRecvNotAccepted: register.gauge({
name: 'gossipsub_rpc_rcv_not_accepted_total',
help: 'Total count of RPC dropped because acceptFrom() == false'
}),
// RPC incoming. Track byte length + data structure sizes
rpcSentBytes: register.gauge({ name: 'gossipsub_rpc_sent_bytes_total', help: 'RPC sent' }),
rpcSentCount: register.gauge({ name: 'gossipsub_rpc_sent_count_total', help: 'RPC sent' }),
rpcSentSubscription: register.gauge({ name: 'gossipsub_rpc_sent_subscription_total', help: 'RPC sent' }),
rpcSentMessage: register.gauge({ name: 'gossipsub_rpc_sent_message_total', help: 'RPC sent' }),
rpcSentControl: register.gauge({ name: 'gossipsub_rpc_sent_control_total', help: 'RPC sent' }),
rpcSentIHave: register.gauge({ name: 'gossipsub_rpc_sent_ihave_total', help: 'RPC sent' }),
rpcSentIWant: register.gauge({ name: 'gossipsub_rpc_sent_iwant_total', help: 'RPC sent' }),
rpcSentGraft: register.gauge({ name: 'gossipsub_rpc_sent_graft_total', help: 'RPC sent' }),
rpcSentPrune: register.gauge({ name: 'gossipsub_rpc_sent_prune_total', help: 'RPC sent' }),
// publish message. Track peers sent to and bytes
/** Total count of msg published by topic */
msgPublishCount: register.gauge({
name: 'gossipsub_msg_publish_count_total',
help: 'Total count of msg published by topic',
labelNames: ['topic']
}),
/** Total count of peers that we publish a msg to */
msgPublishPeers: register.gauge({
name: 'gossipsub_msg_publish_peers_total',
help: 'Total count of peers that we publish a msg to',
labelNames: ['topic']
}),
/** Total count of peers (by group) that we publish a msg to */
// NOTE: Do not use 'group' label since it's a generic already used by Prometheus to group instances
msgPublishPeersByGroup: register.gauge({
name: 'gossipsub_msg_publish_peers_by_group',
help: 'Total count of peers (by group) that we publish a msg to',
labelNames: ['topic', 'peerGroup']
}),
/** Total count of msg publish data.length bytes */
msgPublishBytes: register.gauge({
name: 'gossipsub_msg_publish_bytes_total',
help: 'Total count of msg publish data.length bytes',
labelNames: ['topic']
}),
/** Total count of msg forwarded by topic */
msgForwardCount: register.gauge({
name: 'gossipsub_msg_forward_count_total',
help: 'Total count of msg forwarded by topic',
labelNames: ['topic']
}),
/** Total count of peers that we forward a msg to */
msgForwardPeers: register.gauge({
name: 'gossipsub_msg_forward_peers_total',
help: 'Total count of peers that we forward a msg to',
labelNames: ['topic']
}),
/** Total count of recv msgs before any validation */
msgReceivedPreValidation: register.gauge({
name: 'gossipsub_msg_received_prevalidation_total',
help: 'Total count of recv msgs before any validation',
labelNames: ['topic']
}),
/** Tracks distribution of recv msgs by duplicate, invalid, valid */
msgReceivedStatus: register.gauge({
name: 'gossipsub_msg_received_status_total',
help: 'Tracks distribution of recv msgs by duplicate, invalid, valid',
labelNames: ['topic', 'status']
}),
/** Tracks specific reason of invalid */
msgReceivedInvalid: register.gauge({
name: 'gossipsub_msg_received_invalid_total',
help: 'Tracks specific reason of invalid',
labelNames: ['topic', 'error']
}),
/** Track duplicate message delivery time */
duplicateMsgDeliveryDelay: register.histogram({
name: 'gossisub_duplicate_msg_delivery_delay_seconds',
help: 'Time since the 1st duplicated message validated',
labelNames: ['topic'],
buckets: [
0.25 * opts.maxMeshMessageDeliveriesWindowSec,
0.5 * opts.maxMeshMessageDeliveriesWindowSec,
1 * opts.maxMeshMessageDeliveriesWindowSec,
2 * opts.maxMeshMessageDeliveriesWindowSec,
4 * opts.maxMeshMessageDeliveriesWindowSec
]
}),
/** Total count of late msg delivery total by topic */
duplicateMsgLateDelivery: register.gauge({
name: 'gossisub_duplicate_msg_late_delivery_total',
help: 'Total count of late duplicate message delivery by topic, which triggers P3 penalty',
labelNames: ['topic']
}),
/* Metrics related to scoring */
/** Total times score() is called */
scoreFnCalls: register.gauge({
name: 'gossipsub_score_fn_calls_total',
help: 'Total times score() is called'
}),
/** Total times score() call actually computed computeScore(), no cache */
scoreFnRuns: register.gauge({
name: 'gossipsub_score_fn_runs_total',
help: 'Total times score() call actually computed computeScore(), no cache'
}),
scoreCachedDelta: register.histogram({
name: 'gossipsub_score_cache_delta',
help: 'Delta of score between cached values that expired',
buckets: [10, 100, 1000]
}),
/** Current count of peers by score threshold */
peersByScoreThreshold: register.gauge({
name: 'gossipsub_peers_by_score_threshold_count',
help: 'Current count of peers by score threshold',
labelNames: ['threshold']
}),
score: register.avgMinMax({
name: 'gossipsub_score',
help: 'Avg min max of gossip scores',
labelNames: ['topic', 'p']
}),
/** Separate score weights */
scoreWeights: register.avgMinMax({
name: 'gossipsub_score_weights',
help: 'Separate score weights',
labelNames: ['topic', 'p']
}),
/** Histogram of the scores for each mesh topic. */
// TODO: Not implemented
scorePerMesh: register.avgMinMax({
name: 'gossipsub_score_per_mesh',
help: 'Histogram of the scores for each mesh topic',
labelNames: ['topic']
}),
/** A counter of the kind of penalties being applied to peers. */
// TODO: Not fully implemented
scoringPenalties: register.gauge({
name: 'gossipsub_scoring_penalties_total',
help: 'A counter of the kind of penalties being applied to peers',
labelNames: ['penalty']
}),
behaviourPenalty: register.histogram({
name: 'gossipsub_peer_stat_behaviour_penalty',
help: 'Current peer stat behaviour_penalty at each scrape',
buckets: [
0.25 * opts.behaviourPenaltyThreshold,
0.5 * opts.behaviourPenaltyThreshold,
1 * opts.behaviourPenaltyThreshold,
2 * opts.behaviourPenaltyThreshold,
4 * opts.behaviourPenaltyThreshold
]
}),
// TODO:
// - iasked per peer (on heartbeat)
// - when promise is resolved, track messages from promises
/** Total received IHAVE messages that we ignore for some reason */
ihaveRcvIgnored: register.gauge({
name: 'gossipsub_ihave_rcv_ignored_total',
help: 'Total received IHAVE messages that we ignore for some reason',
labelNames: ['reason']
}),
/** Total received IHAVE messages by topic */
ihaveRcvMsgids: register.gauge({
name: 'gossipsub_ihave_rcv_msgids_total',
help: 'Total received IHAVE messages by topic',
labelNames: ['topic']
}),
/** Total messages per topic we don't have. Not actual requests.
* The number of times we have decided that an IWANT control message is required for this
* topic. A very high metric might indicate an underperforming network.
* = rust-libp2p `topic_iwant_msgs` */
ihaveRcvNotSeenMsgids: register.gauge({
name: 'gossipsub_ihave_rcv_not_seen_msgids_total',
help: 'Total messages per topic we do not have, not actual requests',
labelNames: ['topic']
}),
/** Total received IWANT messages by topic */
iwantRcvMsgids: register.gauge({
name: 'gossipsub_iwant_rcv_msgids_total',
help: 'Total received IWANT messages by topic',
labelNames: ['topic']
}),
/** Total requested messageIDs that we don't have */
iwantRcvDonthaveMsgids: register.gauge({
name: 'gossipsub_iwant_rcv_dont_have_msgids_total',
help: 'Total requested messageIDs that we do not have'
}),
iwantPromiseStarted: register.gauge({
name: 'gossipsub_iwant_promise_sent_total',
help: 'Total count of started IWANT promises'
}),
/** Total count of resolved IWANT promises */
iwantPromiseResolved: register.gauge({
name: 'gossipsub_iwant_promise_resolved_total',
help: 'Total count of resolved IWANT promises'
}),
/** Total count of peers we have asked IWANT promises that are resolved */
iwantPromiseResolvedPeers: register.gauge({
name: 'gossipsub_iwant_promise_resolved_peers',
help: 'Total count of peers we have asked IWANT promises that are resolved'
}),
iwantPromiseBroken: register.gauge({
name: 'gossipsub_iwant_promise_broken',
help: 'Total count of broken IWANT promises'
}),
/** Histogram of delivery time of resolved IWANT promises */
iwantPromiseDeliveryTime: register.histogram({
name: 'gossipsub_iwant_promise_delivery_seconds',
help: 'Histogram of delivery time of resolved IWANT promises',
buckets: [
0.5 * opts.gossipPromiseExpireSec,
1 * opts.gossipPromiseExpireSec,
2 * opts.gossipPromiseExpireSec,
4 * opts.gossipPromiseExpireSec
]
}),
/* Data structure sizes */
/** Unbounded cache sizes */
cacheSize: register.gauge({
name: 'gossipsub_cache_size',
help: 'Unbounded cache sizes',
labelNames: ['cache']
}),
/** Current mcache msg count */
mcacheSize: register.gauge({
name: 'gossipsub_mcache_size',
help: 'Current mcache msg count'
}),
topicStrToLabel: topicStrToLabel,
toTopic(topicStr) {
return this.topicStrToLabel.get(topicStr) ?? topicStr;
},
/** We joined a topic */
onJoin(topicStr) {
this.topicSubscriptionStatus.set({ topicStr }, 1);
this.meshPeerCounts.set({ topicStr }, 0); // Reset count
},
/** We left a topic */
onLeave(topicStr) {
this.topicSubscriptionStatus.set({ topicStr }, 0);
this.meshPeerCounts.set({ topicStr }, 0); // Reset count
},
/** Register the inclusion of peers in our mesh due to some reason. */
onAddToMesh(topicStr, reason, count) {
const topic = this.toTopic(topicStr);
this.meshPeerInclusionEvents.inc({ topic, reason }, count);
},
/** Register the removal of peers in our mesh due to some reason */
// - remove_peer_from_mesh()
// - heartbeat() Churn::BadScore
// - heartbeat() Churn::Excess
// - on_disconnect() Churn::Ds
onRemoveFromMesh(topicStr, reason, count) {
const topic = this.toTopic(topicStr);
this.meshPeerChurnEvents.inc({ topic, reason }, count);
},
onReportValidationMcacheHit(hit) {
this.asyncValidationMcacheHit.inc({ hit: hit ? 'hit' : 'miss' });
},
onReportValidation(topicStr, acceptance) {
const topic = this.toTopic(topicStr);
this.asyncValidationResult.inc({ topic: topic, acceptance });
},
/**
* - in handle_graft() Penalty::GraftBackoff
* - in apply_iwant_penalties() Penalty::BrokenPromise
* - in metric_score() P3 Penalty::MessageDeficit
* - in metric_score() P6 Penalty::IPColocation
*/
onScorePenalty(penalty) {
// Can this be labeled by topic too?
this.scoringPenalties.inc({ penalty }, 1);
},
onIhaveRcv(topicStr, ihave, idonthave) {
const topic = this.toTopic(topicStr);
this.ihaveRcvMsgids.inc({ topic }, ihave);
this.ihaveRcvNotSeenMsgids.inc({ topic }, idonthave);
},
onIwantRcv(iwantByTopic, iwantDonthave) {
for (const [topicStr, iwant] of iwantByTopic) {
const topic = this.toTopic(topicStr);
this.iwantRcvMsgids.inc({ topic }, iwant);
}
this.iwantRcvDonthaveMsgids.inc(iwantDonthave);
},
onForwardMsg(topicStr, tosendCount) {
const topic = this.toTopic(topicStr);
this.msgForwardCount.inc({ topic }, 1);
this.msgForwardPeers.inc({ topic }, tosendCount);
},
onPublishMsg(topicStr, tosendGroupCount, tosendCount, dataLen) {
const topic = this.toTopic(topicStr);
this.msgPublishCount.inc({ topic }, 1);
this.msgPublishBytes.inc({ topic }, tosendCount * dataLen);
this.msgPublishPeers.inc({ topic }, tosendCount);
this.msgPublishPeersByGroup.inc({ topic, peerGroup: 'direct' }, tosendGroupCount.direct);
this.msgPublishPeersByGroup.inc({ topic, peerGroup: 'floodsub' }, tosendGroupCount.floodsub);
this.msgPublishPeersByGroup.inc({ topic, peerGroup: 'mesh' }, tosendGroupCount.mesh);
this.msgPublishPeersByGroup.inc({ topic, peerGroup: 'fanout' }, tosendGroupCount.fanout);
},
onMsgRecvPreValidation(topicStr) {
const topic = this.toTopic(topicStr);
this.msgReceivedPreValidation.inc({ topic }, 1);
},
onMsgRecvResult(topicStr, status) {
const topic = this.toTopic(topicStr);
this.msgReceivedStatus.inc({ topic, status });
},
onMsgRecvInvalid(topicStr, reason) {
const topic = this.toTopic(topicStr);
const error = reason.reason === RejectReason.Error ? reason.error : reason.reason;
this.msgReceivedInvalid.inc({ topic, error }, 1);
},
onDuplicateMsgDelivery(topicStr, deliveryDelayMs, isLateDelivery) {
this.duplicateMsgDeliveryDelay.observe(deliveryDelayMs / 1000);
if (isLateDelivery) {
const topic = this.toTopic(topicStr);
this.duplicateMsgLateDelivery.inc({ topic }, 1);
}
},
onRpcRecv(rpc, rpcBytes) {
this.rpcRecvBytes.inc(rpcBytes);
this.rpcRecvCount.inc(1);
if (rpc.subscriptions)
this.rpcRecvSubscription.inc(rpc.subscriptions.length);
if (rpc.messages)
this.rpcRecvMessage.inc(rpc.messages.length);
if (rpc.control) {
this.rpcRecvControl.inc(1);
if (rpc.control.ihave)
this.rpcRecvIHave.inc(rpc.control.ihave.length);
if (rpc.control.iwant)
this.rpcRecvIWant.inc(rpc.control.iwant.length);
if (rpc.control.graft)
this.rpcRecvGraft.inc(rpc.control.graft.length);
if (rpc.control.prune)
this.rpcRecvPrune.inc(rpc.control.prune.length);
}
},
onRpcSent(rpc, rpcBytes) {
this.rpcSentBytes.inc(rpcBytes);
this.rpcSentCount.inc(1);
if (rpc.subscriptions)
this.rpcSentSubscription.inc(rpc.subscriptions.length);
if (rpc.messages)
this.rpcSentMessage.inc(rpc.messages.length);
if (rpc.control) {
const ihave = rpc.control.ihave?.length ?? 0;
const iwant = rpc.control.iwant?.length ?? 0;
const graft = rpc.control.graft?.length ?? 0;
const prune = rpc.control.prune?.length ?? 0;
if (ihave > 0)
this.rpcSentIHave.inc(ihave);
if (iwant > 0)
this.rpcSentIWant.inc(iwant);
if (graft > 0)
this.rpcSentGraft.inc(graft);
if (prune > 0)
this.rpcSentPrune.inc(prune);
if (ihave > 0 || iwant > 0 || graft > 0 || prune > 0)
this.rpcSentControl.inc(1);
}
},
registerScores(scores, scoreThresholds) {
let graylist = 0;
let publish = 0;
let gossip = 0;
let mesh = 0;
for (const score of scores) {
if (score >= scoreThresholds.graylistThreshold)
graylist++;
if (score >= scoreThresholds.publishThreshold)
publish++;
if (score >= scoreThresholds.gossipThreshold)
gossip++;
if (score >= 0)
mesh++;
}
this.peersByScoreThreshold.set({ threshold: ScoreThreshold.graylist }, graylist);
this.peersByScoreThreshold.set({ threshold: ScoreThreshold.publish }, publish);
this.peersByScoreThreshold.set({ threshold: ScoreThreshold.gossip }, gossip);
this.peersByScoreThreshold.set({ threshold: ScoreThreshold.mesh }, mesh);
// Register full score too
this.score.set(scores);
},
registerScoreWeights(sw) {
for (const [topic, wsTopic] of sw.byTopic) {
this.scoreWeights.set({ topic, p: 'p1' }, wsTopic.p1w);
this.scoreWeights.set({ topic, p: 'p2' }, wsTopic.p2w);
this.scoreWeights.set({ topic, p: 'p3' }, wsTopic.p3w);
this.scoreWeights.set({ topic, p: 'p3b' }, wsTopic.p3bw);
this.scoreWeights.set({ topic, p: 'p4' }, wsTopic.p4w);
}
this.scoreWeights.set({ p: 'p5' }, sw.p5w);
this.scoreWeights.set({ p: 'p6' }, sw.p6w);
this.scoreWeights.set({ p: 'p7' }, sw.p7w);
},
registerScorePerMesh(mesh, scoreByPeer) {
const peersPerTopicLabel = new Map();
mesh.forEach((peers, topicStr) => {
// Aggregate by known topicLabel or throw to 'unknown'. This prevent too high cardinality
const topicLabel = this.topicStrToLabel.get(topicStr) ?? 'unknown';
let peersInMesh = peersPerTopicLabel.get(topicLabel);
if (!peersInMesh) {
peersInMesh = new Set();
peersPerTopicLabel.set(topicLabel, peersInMesh);
}
peers.forEach((p) => peersInMesh?.add(p));
});
for (const [topic, peers] of peersPerTopicLabel) {
const meshScores = [];
peers.forEach((peer) => {
meshScores.push(scoreByPeer.get(peer) ?? 0);
});
this.scorePerMesh.set({ topic }, meshScores);
}
}
};
}
const SignPrefix = fromString$1('libp2p-pubsub:');
async function buildRawMessage(publishConfig, topic, originalData, transformedData) {
switch (publishConfig.type) {
case PublishConfigType.Signing: {
const rpcMsg = {
from: publishConfig.author.toBytes(),
data: transformedData,
seqno: randomBytes(8),
topic,
signature: undefined,
key: undefined // Exclude key field for signing
};
// Get the message in bytes, and prepend with the pubsub prefix
// the signature is over the bytes "libp2p-pubsub:<protobuf-message>"
const bytes = concat([SignPrefix, RPC.Message.encode(rpcMsg).finish()]);
rpcMsg.signature = await publishConfig.privateKey.sign(bytes);
rpcMsg.key = publishConfig.key;
const msg = {
type: 'signed',
from: publishConfig.author,
data: originalData,
sequenceNumber: BigInt(`0x${toString$3(rpcMsg.seqno, 'base16')}`),
topic,
signature: rpcMsg.signature,
key: rpcMsg.key
};
return {
raw: rpcMsg,
msg: msg
};
}
case PublishConfigType.Anonymous: {
return {
raw: {
from: undefined,
data: transformedData,
seqno: undefined,
topic,
signature: undefined,
key: undefined
},
msg: {
type: 'unsigned',
data: originalData,
topic
}
};
}
}
}
async function validateToRawMessage(signaturePolicy, msg) {
// If strict-sign, verify all
// If anonymous (no-sign), ensure no preven
switch (signaturePolicy) {
case StrictNoSign:
if (msg.signature != null)
return { valid: false, error: ValidateError.SignaturePresent };
if (msg.seqno != null)
return { valid: false, error: ValidateError.SeqnoPresent };
if (msg.key != null)
return { valid: false, error: ValidateError.FromPresent };
return { valid: true, message: { type: 'unsigned', topic: msg.topic, data: msg.data ?? new Uint8Array(0) } };
case StrictSign: {
// Verify seqno
if (msg.seqno == null)
return { valid: false, error: ValidateError.InvalidSeqno };
if (msg.seqno.length !== 8) {
return { valid: false, error: ValidateError.InvalidSeqno };
}
if (msg.signature == null)
return { valid: false, error: ValidateError.InvalidSignature };
if (msg.from == null)
return { valid: false, error: ValidateError.InvalidPeerId };
let fromPeerId;
try {
// TODO: Fix PeerId types
fromPeerId = peerIdFromBytes(msg.from);
}
catch (e) {
return { valid: false, error: ValidateError.InvalidPeerId };
}
// - check from defined
// - transform source to PeerId
// - parse signature
// - get .key, else from source
// - check key == source if present
// - verify sig
let publicKey;
if (msg.key) {
publicKey = unmarshalPublicKey(msg.key);
// TODO: Should `fromPeerId.pubKey` be optional?
if (fromPeerId.publicKey !== undefined && !equals(publicKey.bytes, fromPeerId.publicKey)) {
return { valid: false, error: ValidateError.InvalidPeerId };
}
}
else {
if (fromPeerId.publicKey == null) {
return { valid: false, error: ValidateError.InvalidPeerId };
}
publicKey = unmarshalPublicKey(fromPeerId.publicKey);
}
const rpcMsgPreSign = {
from: msg.from,
data: msg.data,
seqno: msg.seqno,
topic: msg.topic,
signature: undefined,
key: undefined // Exclude key field for signing
};
// Get the message in bytes, and prepend with the pubsub prefix
// the signature is over the bytes "libp2p-pubsub:<protobuf-message>"
const bytes = concat([SignPrefix, RPC.Message.encode(rpcMsgPreSign).finish()]);
if (!(await publicKey.verify(bytes, msg.signature))) {
return { valid: false, error: ValidateError.InvalidSignature };
}
return {
valid: true,
message: {
type: 'signed',
from: fromPeerId,
data: msg.data ?? new Uint8Array(0),
sequenceNumber: BigInt(`0x${toString$3(msg.seqno, 'base16')}`),
topic: msg.topic,
signature: msg.signature,
key: msg.key ?? marshalPublicKey(publicKey)
}
};
}
}
}
/**
* Generate a message id, based on the `key` and `seqno`
*/
const msgId = (key, seqno) => {
const seqnoBytes = fromString$1(seqno.toString(16).padStart(16, '0'), 'base16');
const msgId = new Uint8Array(key.length + seqnoBytes.length);
msgId.set(key, 0);
msgId.set(seqnoBytes, key.length);
return msgId;
};
/**
* Generate a message id, based on the `key` and `seqno`
*/
function msgIdFnStrictSign(msg) {
if (msg.type !== 'signed') {
throw new Error('expected signed message type');
}
// Should never happen
if (msg.sequenceNumber == null)
throw Error('missing seqno field');
// TODO: Should use .from here or key?
return msgId(msg.from.toBytes(), msg.sequenceNumber);
}
/**
* Generate a message id, based on message `data`
*/
async function msgIdFnStrictNoSign(msg) {
return await sha256$1.encode(msg.data);
}
function computeScoreWeights(peer, pstats, params, peerIPs, topicStrToLabel) {
let score = 0;
const byTopic = new Map();
// topic stores
Object.entries(pstats.topics).forEach(([topic, tstats]) => {
// the topic parameters
// Aggregate by known topicLabel or throw to 'unknown'. This prevent too high cardinality
const topicLabel = topicStrToLabel.get(topic) ?? 'unknown';
const topicParams = params.topics[topic];
if (topicParams === undefined) {
// we are not scoring this topic
return;
}
let topicScores = byTopic.get(topicLabel);
if (!topicScores) {
topicScores = {
p1w: 0,
p2w: 0,
p3w: 0,
p3bw: 0,
p4w: 0
};
byTopic.set(topicLabel, topicScores);
}
let p1w = 0;
let p2w = 0;
let p3w = 0;
let p3bw = 0;
let p4w = 0;
// P1: time in Mesh
if (tstats.inMesh) {
const p1 = Math.max(tstats.meshTime / topicParams.timeInMeshQuantum, topicParams.timeInMeshCap);
p1w += p1 * topicParams.timeInMeshWeight;
}
// P2: first message deliveries
let p2 = tstats.firstMessageDeliveries;
if (p2 > topicParams.firstMessageDeliveriesCap) {
p2 = topicParams.firstMessageDeliveriesCap;
}
p2w += p2 * topicParams.firstMessageDeliveriesWeight;
// P3: mesh message deliveries
if (tstats.meshMessageDeliveriesActive &&
tstats.meshMessageDeliveries < topicParams.meshMessageDeliveriesThreshold) {
const deficit = topicParams.meshMessageDeliveriesThreshold - tstats.meshMessageDeliveries;
const p3 = deficit * deficit;
p3w += p3 * topicParams.meshMessageDeliveriesWeight;
}
// P3b:
// NOTE: the weight of P3b is negative (validated in validateTopicScoreParams) so this detracts
const p3b = tstats.meshFailurePenalty;
p3bw += p3b * topicParams.meshFailurePenaltyWeight;
// P4: invalid messages
// NOTE: the weight of P4 is negative (validated in validateTopicScoreParams) so this detracts
const p4 = tstats.invalidMessageDeliveries * tstats.invalidMessageDeliveries;
p4w += p4 * topicParams.invalidMessageDeliveriesWeight;
// update score, mixing with topic weight
score += (p1w + p2w + p3w + p3bw + p4w) * topicParams.topicWeight;
topicScores.p1w += p1w;
topicScores.p2w += p2w;
topicScores.p3w += p3w;
topicScores.p3bw += p3bw;
topicScores.p4w += p4w;
});
// apply the topic score cap, if any
if (params.topicScoreCap > 0 && score > params.topicScoreCap) {
score = params.topicScoreCap;
// Proportionally apply cap to all individual contributions
const capF = params.topicScoreCap / score;
for (const ws of byTopic.values()) {
ws.p1w *= capF;
ws.p2w *= capF;
ws.p3w *= capF;
ws.p3bw *= capF;
ws.p4w *= capF;
}
}
let p5w = 0;
let p6w = 0;
let p7w = 0;
// P5: application-specific score
const p5 = params.appSpecificScore(peer);
p5w += p5 * params.appSpecificWeight;
// P6: IP colocation factor
pstats.ips.forEach((ip) => {
if (params.IPColocationFactorWhitelist.has(ip)) {
return;
}
// P6 has a cliff (IPColocationFactorThreshold)
// It's only applied if at least that many peers are connected to us from that source IP addr.
// It is quadratic, and the weight is negative (validated in validatePeerScoreParams)
const peersInIP = peerIPs.get(ip);
const numPeersInIP = peersInIP ? peersInIP.size : 0;
if (numPeersInIP > params.IPColocationFactorThreshold) {
const surplus = numPeersInIP - params.IPColocationFactorThreshold;
const p6 = surplus * surplus;
p6w += p6 * params.IPColocationFactorWeight;
}
});
// P7: behavioural pattern penalty
const p7 = pstats.behaviourPenalty * pstats.behaviourPenalty;
p7w += p7 * params.behaviourPenaltyWeight;
score += p5w + p6w + p7w;
return {
byTopic,
p5w,
p6w,
p7w,
score
};
}
function computeAllPeersScoreWeights(peerIdStrs, peerStats, params, peerIPs, topicStrToLabel) {
const sw = {
byTopic: new Map(),
p5w: [],
p6w: [],
p7w: [],
score: []
};
for (const peerIdStr of peerIdStrs) {
const pstats = peerStats.get(peerIdStr);
if (pstats) {
const swPeer = computeScoreWeights(peerIdStr, pstats, params, peerIPs, topicStrToLabel);
for (const [topic, swPeerTopic] of swPeer.byTopic) {
let swTopic = sw.byTopic.get(topic);
if (!swTopic) {
swTopic = {
p1w: [],
p2w: [],
p3w: [],
p3bw: [],
p4w: []
};
sw.byTopic.set(topic, swTopic);
}
swTopic.p1w.push(swPeerTopic.p1w);
swTopic.p2w.push(swPeerTopic.p2w);
swTopic.p3w.push(swPeerTopic.p3w);
swTopic.p3bw.push(swPeerTopic.p3bw);
swTopic.p4w.push(swPeerTopic.p4w);
}
sw.p5w.push(swPeer.p5w);
sw.p6w.push(swPeer.p6w);
sw.p7w.push(swPeer.p7w);
sw.score.push(swPeer.score);
}
else {
sw.p5w.push(0);
sw.p6w.push(0);
sw.p7w.push(0);
sw.score.push(0);
}
}
return sw;
}
/**
* Exclude up to `ineed` items from a set if item meets condition `cond`
*/
function removeItemsFromSet(superSet, ineed, cond = () => true) {
const subset = new Set();
if (ineed <= 0)
return subset;
for (const id of superSet) {
if (subset.size >= ineed)
break;
if (cond(id)) {
subset.add(id);
superSet.delete(id);
}
}
return subset;
}
/**
* Exclude up to `ineed` items from a set
*/
function removeFirstNItemsFromSet(superSet, ineed) {
return removeItemsFromSet(superSet, ineed, () => true);
}
class AbortError extends Error {
constructor(message, code) {
super(message ?? 'The operation was aborted');
this.type = 'aborted';
this.code = code ?? 'ABORT_ERR';
}
}
function getIterator(obj) {
if (obj != null) {
if (typeof obj[Symbol.iterator] === 'function') {
return obj[Symbol.iterator]();
}
if (typeof obj[Symbol.asyncIterator] === 'function') {
return obj[Symbol.asyncIterator]();
}
if (typeof obj.next === 'function') {
return obj; // probably an iterator
}
}
throw new Error('argument is not an iterator or iterable');
}
// Wrap an iterator to make it abortable, allow cleanup when aborted via onAbort
function abortableSource(source, signal, options) {
const opts = options ?? {};
const iterator = getIterator(source);
async function* abortable() {
let nextAbortHandler;
const abortHandler = () => {
if (nextAbortHandler != null)
nextAbortHandler();
};
signal.addEventListener('abort', abortHandler);
while (true) {
let result;
try {
if (signal.aborted) {
const { abortMessage, abortCode } = opts;
throw new AbortError(abortMessage, abortCode);
}
const abort = new Promise((resolve, reject) => {
nextAbortHandler = () => {
const { abortMessage, abortCode } = opts;
reject(new AbortError(abortMessage, abortCode));
};
});
// Race the iterator and the abort signals
result = await Promise.race([abort, iterator.next()]);
nextAbortHandler = null;
}
catch (err) {
signal.removeEventListener('abort', abortHandler);
// Might not have been aborted by a known signal
const isKnownAborter = err.type === 'aborted' && signal.aborted;
if (isKnownAborter && (opts.onAbort != null)) {
// Do any custom abort handling for the iterator
await opts.onAbort(source);
}
// End the iterator if it is a generator
if (typeof iterator.return === 'function') {
try {
const p = iterator.return();
if (p instanceof Promise) { // eslint-disable-line max-depth
p.catch(err => {
if (opts.onReturnError != null) {
opts.onReturnError(err);
}
});
}
}
catch (err) {
if (opts.onReturnError != null) { // eslint-disable-line max-depth
opts.onReturnError(err);
}
}
}
if (isKnownAborter && opts.returnOnAbort === true) {
return;
}
throw err;
}
if (result.done === true) {
break;
}
yield result.value;
}
signal.removeEventListener('abort', abortHandler);
}
return abortable();
}
class OutboundStream {
constructor(rawStream, errCallback, opts) {
this.rawStream = rawStream;
this.pushable = pushable$1({ objectMode: false });
this.closeController = new AbortController();
this.maxBufferSize = opts.maxBufferSize ?? Infinity;
pipe(abortableSource(this.pushable, this.closeController.signal, { returnOnAbort: true }), encode(), this.rawStream).catch(errCallback);
}
get protocol() {
// TODO remove this non-nullish assertion after https://github.com/libp2p/js-libp2p-interfaces/pull/265 is incorporated
return this.rawStream.stat.protocol;
}
push(data) {
if (this.pushable.readableLength > this.maxBufferSize) {
throw Error(`OutboundStream buffer full, size > ${this.maxBufferSize}`);
}
this.pushable.push(data);
}
close() {
this.closeController.abort();
// similar to pushable.end() but clear the internal buffer
this.pushable.return();
this.rawStream.close();
}
}
class InboundStream {
constructor(rawStream) {
this.rawStream = rawStream;
this.closeController = new AbortController();
this.source = abortableSource(pipe(this.rawStream, decode()), this.closeController.signal, { returnOnAbort: true });
}
close() {
this.closeController.abort();
this.rawStream.close();
}
}
var GossipStatusCode;
(function (GossipStatusCode) {
GossipStatusCode[GossipStatusCode["started"] = 0] = "started";
GossipStatusCode[GossipStatusCode["stopped"] = 1] = "stopped";
})(GossipStatusCode || (GossipStatusCode = {}));
class GossipSub extends EventEmitter {
constructor(options = {}) {
super();
this.multicodecs = [GossipsubIDv11, GossipsubIDv10];
// State
this.peers = new Set();
this.streamsInbound = new Map();
this.streamsOutbound = new Map();
/** Ensures outbound streams are created sequentially */
this.outboundInflightQueue = pushable$1({ objectMode: true });
/** Direct peers */
this.direct = new Set();
/** Floodsub peers */
this.floodsubPeers = new Set();
/**
* Map of peer id and AcceptRequestWhileListEntry
*/
this.acceptFromWhitelist = new Map();
/**
* Map of topics to which peers are subscribed to
*/
this.topics = new Map();
/**
* List of our subscriptions
*/
this.subscriptions = new Set();
/**
* Map of topic meshes
* topic => peer id set
*/
this.mesh = new Map();
/**
* Map of topics to set of peers. These mesh peers are the ones to which we are publishing without a topic membership
* topic => peer id set
*/
this.fanout = new Map();
/**
* Map of last publish time for fanout topics
* topic => last publish time
*/
this.fanoutLastpub = new Map();
/**
* Map of pending messages to gossip
* peer id => control messages
*/
this.gossip = new Map();
/**
* Map of control messages
* peer id => control message
*/
this.control = new Map();
/**
* Number of IHAVEs received from peer in the last heartbeat
*/
this.peerhave = new Map();
/** Number of messages we have asked from peer in the last heartbeat */
this.iasked = new Map();
/** Prune backoff map */
this.backoff = new Map();
/**
* Connection direction cache, marks peers with outbound connections
* peer id => direction
*/
this.outbound = new Map();
this.topicValidators = new Map();
/**
* Number of heartbeats since the beginning of time
* This allows us to amortize some resource cleanup -- eg: backoff cleanup
*/
this.heartbeatTicks = 0;
this.components = new Components();
this.directPeerInitial = null;
this.status = { code: GossipStatusCode.stopped };
this.heartbeatTimer = null;
this.runHeartbeat = () => {
const timer = this.metrics?.heartbeatDuration.startTimer();
this.heartbeat()
.catch((err) => {
this.log('Error running heartbeat', err);
})
.finally(() => {
if (timer != null) {
timer();
}
// Schedule the next run if still in started status
if (this.status.code === GossipStatusCode.started) {
// Clear previous timeout before overwriting `status.heartbeatTimeout`, it should be completed tho.
clearTimeout(this.status.heartbeatTimeout);
// NodeJS setInterval function is innexact, calls drift by a few miliseconds on each call.
// To run the heartbeat precisely setTimeout() must be used recomputing the delay on every loop.
let msToNextHeartbeat = this.opts.heartbeatInterval - ((Date.now() - this.status.hearbeatStartMs) % this.opts.heartbeatInterval);
// If too close to next heartbeat, skip one
if (msToNextHeartbeat < this.opts.heartbeatInterval * 0.25) {
msToNextHeartbeat += this.opts.heartbeatInterval;
this.metrics?.heartbeatSkipped.inc();
}
this.status.heartbeatTimeout = setTimeout(this.runHeartbeat, msToNextHeartbeat);
}
});
};
const opts = {
fallbackToFloodsub: true,
floodPublish: true,
doPX: false,
directPeers: [],
D: GossipsubD,
Dlo: GossipsubDlo,
Dhi: GossipsubDhi,
Dscore: GossipsubDscore,
Dout: GossipsubDout,
Dlazy: GossipsubDlazy,
heartbeatInterval: GossipsubHeartbeatInterval,
fanoutTTL: GossipsubFanoutTTL,
mcacheLength: GossipsubHistoryLength,
mcacheGossip: GossipsubHistoryGossip,
seenTTL: GossipsubSeenTTL,
gossipsubIWantFollowupMs: GossipsubIWantFollowupTime,
prunePeers: GossipsubPrunePeers,
pruneBackoff: GossipsubPruneBackoff,
graftFloodThreshold: GossipsubGraftFloodThreshold,
opportunisticGraftPeers: GossipsubOpportunisticGraftPeers,
opportunisticGraftTicks: GossipsubOpportunisticGraftTicks,
directConnectTicks: GossipsubDirectConnectTicks,
...options,
scoreParams: createPeerScoreParams(options.scoreParams),
scoreThresholds: createPeerScoreThresholds(options.scoreThresholds)
};
this.globalSignaturePolicy = opts.globalSignaturePolicy ?? StrictSign;
// Also wants to get notified of peers connected using floodsub
if (opts.fallbackToFloodsub) {
this.multicodecs.push(FloodsubID);
}
// From pubsub
this.log = logger(opts.debugName ?? 'libp2p:gossipsub');
// Gossipsub
this.opts = opts;
this.direct = new Set(opts.directPeers.map((p) => p.id.toString()));
this.seenCache = new SimpleTimeCache({ validityMs: opts.seenTTL });
this.publishedMessageIds = new SimpleTimeCache({ validityMs: opts.seenTTL });
if (options.msgIdFn) {
// Use custom function
this.msgIdFn = options.msgIdFn;
}
else {
switch (this.globalSignaturePolicy) {
case StrictSign:
this.msgIdFn = msgIdFnStrictSign;
break;
case StrictNoSign:
this.msgIdFn = msgIdFnStrictNoSign;
break;
}
}
if (options.fastMsgIdFn) {
this.fastMsgIdFn = options.fastMsgIdFn;
this.fastMsgIdCache = new SimpleTimeCache({ validityMs: opts.seenTTL });
}
// By default, gossipsub only provide a browser friendly function to convert Uint8Array message id to string.
this.msgIdToStrFn = options.msgIdToStrFn ?? messageIdToString;
this.mcache = options.messageCache || new MessageCache(opts.mcacheGossip, opts.mcacheLength, this.msgIdToStrFn);
if (options.dataTransform) {
this.dataTransform = options.dataTransform;
}
if (options.metricsRegister) {
if (!options.metricsTopicStrToLabel) {
throw Error('Must set metricsTopicStrToLabel with metrics');
}
// in theory, each topic has its own meshMessageDeliveriesWindow param
// however in lodestar, we configure it mostly the same so just pick the max of positive ones
// (some topics have meshMessageDeliveriesWindow as 0)
const maxMeshMessageDeliveriesWindowMs = Math.max(...Object.values(opts.scoreParams.topics).map((topicParam) => topicParam.meshMessageDeliveriesWindow), DEFAULT_METRIC_MESH_MESSAGE_DELIVERIES_WINDOWS);
const metrics = getMetrics(options.metricsRegister, options.metricsTopicStrToLabel, {
gossipPromiseExpireSec: this.opts.gossipsubIWantFollowupMs / 1000,
behaviourPenaltyThreshold: opts.scoreParams.behaviourPenaltyThreshold,
maxMeshMessageDeliveriesWindowSec: maxMeshMessageDeliveriesWindowMs / 1000
});
metrics.mcacheSize.addCollect(() => this.onScrapeMetrics(metrics));
for (const protocol of this.multicodecs) {
metrics.protocolsEnabled.set({ protocol }, 1);
}
this.metrics = metrics;
}
else {
this.metrics = null;
}
this.gossipTracer = new IWantTracer(this.opts.gossipsubIWantFollowupMs, this.msgIdToStrFn, this.metrics);
/**
* libp2p
*/
this.score = new PeerScore(this.opts.scoreParams, this.metrics, {
scoreCacheValidityMs: opts.heartbeatInterval
});
this.maxInboundStreams = options.maxInboundStreams;
this.maxOutboundStreams = options.maxOutboundStreams;
}
getPeers() {
return [...this.peers.keys()].map((str) => peerIdFromString(str));
}
isStarted() {
return this.status.code === GossipStatusCode.started;
}
// LIFECYCLE METHODS
/**
* Pass libp2p components to interested system components
*/
async init(components) {
this.components = components;
this.score.init(components);
}
/**
* Mounts the gossipsub protocol onto the libp2p node and sends our
* our subscriptions to every peer connected
*/
async start() {
// From pubsub
if (this.isStarted()) {
return;
}
this.log('starting');
this.publishConfig = await getPublishConfigFromPeerId(this.globalSignaturePolicy, this.components.getPeerId());
// Create the outbound inflight queue
// This ensures that outbound stream creation happens sequentially
this.outboundInflightQueue = pushable$1({ objectMode: true });
pipe(this.outboundInflightQueue, async (source) => {
for await (const { peerId, connection } of source) {
await this.createOutboundStream(peerId, connection);
}
}).catch((e) => this.log.error('outbound inflight queue error', e));
// set direct peer addresses in the address book
await Promise.all(this.opts.directPeers.map(async (p) => {
await this.components.getPeerStore().addressBook.add(p.id, p.addrs);
}));
const registrar = this.components.getRegistrar();
// Incoming streams
// Called after a peer dials us
await Promise.all(this.multicodecs.map((multicodec) => registrar.handle(multicodec, this.onIncomingStream.bind(this), {
maxInboundStreams: this.maxInboundStreams,
maxOutboundStreams: this.maxOutboundStreams
})));
// # How does Gossipsub interact with libp2p? Rough guide from Mar 2022
//
// ## Setup:
// Gossipsub requests libp2p to callback, TBD
//
// `this.libp2p.handle()` registers a handler for `/meshsub/1.1.0` and other Gossipsub protocols
// The handler callback is registered in libp2p Upgrader.protocols map.
//
// Upgrader receives an inbound connection from some transport and (`Upgrader.upgradeInbound`):
// - Adds encryption (NOISE in our case)
// - Multiplex stream
// - Create a muxer and register that for each new stream call Upgrader.protocols handler
//
// ## Topology
// - new instance of Topology (unlinked to libp2p) with handlers
// - registar.register(topology)
// register protocol with topology
// Topology callbacks called on connection manager changes
const topology = createTopology({
onConnect: this.onPeerConnected.bind(this),
onDisconnect: this.onPeerDisconnected.bind(this)
});
const registrarTopologyIds = await Promise.all(this.multicodecs.map((multicodec) => registrar.register(multicodec, topology)));
// Schedule to start heartbeat after `GossipsubHeartbeatInitialDelay`
const heartbeatTimeout = setTimeout(this.runHeartbeat, GossipsubHeartbeatInitialDelay);
// Then, run heartbeat every `heartbeatInterval` offset by `GossipsubHeartbeatInitialDelay`
this.status = {
code: GossipStatusCode.started,
registrarTopologyIds,
heartbeatTimeout: heartbeatTimeout,
hearbeatStartMs: Date.now() + GossipsubHeartbeatInitialDelay
};
this.score.start();
// connect to direct peers
this.directPeerInitial = setTimeout(() => {
Promise.resolve()
.then(async () => {
await Promise.all(Array.from(this.direct).map(async (id) => await this.connect(id)));
})
.catch((err) => {
this.log(err);
});
}, GossipsubDirectConnectInitialDelay);
this.log('started');
}
/**
* Unmounts the gossipsub protocol and shuts down every connection
*/
async stop() {
this.log('stopping');
// From pubsub
if (this.status.code !== GossipStatusCode.started) {
return;
}
const { registrarTopologyIds } = this.status;
this.status = { code: GossipStatusCode.stopped };
// unregister protocol and handlers
const registrar = this.components.getRegistrar();
registrarTopologyIds.forEach((id) => registrar.unregister(id));
this.outboundInflightQueue.end();
for (const outboundStream of this.streamsOutbound.values()) {
outboundStream.close();
}
this.streamsOutbound.clear();
for (const inboundStream of this.streamsInbound.values()) {
inboundStream.close();
}
this.streamsInbound.clear();
this.peers.clear();
this.subscriptions.clear();
// Gossipsub
if (this.heartbeatTimer) {
this.heartbeatTimer.cancel();
this.heartbeatTimer = null;
}
this.score.stop();
this.mesh.clear();
this.fanout.clear();
this.fanoutLastpub.clear();
this.gossip.clear();
this.control.clear();
this.peerhave.clear();
this.iasked.clear();
this.backoff.clear();
this.outbound.clear();
this.gossipTracer.clear();
this.seenCache.clear();
if (this.fastMsgIdCache)
this.fastMsgIdCache.clear();
if (this.directPeerInitial)
clearTimeout(this.directPeerInitial);
this.log('stopped');
}
/** FOR DEBUG ONLY - Dump peer stats for all peers. Data is cloned, safe to mutate */
dumpPeerScoreStats() {
return this.score.dumpPeerScoreStats();
}
/**
* On an inbound stream opened
*/
onIncomingStream({ stream, connection }) {
if (!this.isStarted()) {
return;
}
const peerId = connection.remotePeer;
// add peer to router
this.addPeer(peerId, connection.stat.direction);
// create inbound stream
this.createInboundStream(peerId, stream);
// attempt to create outbound stream
this.outboundInflightQueue.push({ peerId, connection });
}
/**
* Registrar notifies an established connection with pubsub protocol
*/
onPeerConnected(peerId, connection) {
if (!this.isStarted()) {
return;
}
this.addPeer(peerId, connection.stat.direction);
this.outboundInflightQueue.push({ peerId, connection });
}
/**
* Registrar notifies a closing connection with pubsub protocol
*/
onPeerDisconnected(peerId) {
this.log('connection ended %p', peerId);
this.removePeer(peerId);
}
async createOutboundStream(peerId, connection) {
if (!this.isStarted()) {
return;
}
const id = peerId.toString();
if (!this.peers.has(id)) {
return;
}
// TODO make this behavior more robust
// This behavior is different than for inbound streams
// If an outbound stream already exists, don't create a new stream
if (this.streamsOutbound.has(id)) {
return;
}
try {
const stream = new OutboundStream(await connection.newStream(this.multicodecs), (e) => this.log.error('outbound pipe error', e), { maxBufferSize: this.opts.maxOutboundBufferSize });
this.log('create outbound stream %p', peerId);
this.streamsOutbound.set(id, stream);
const protocol = stream.protocol;
if (protocol === FloodsubID) {
this.floodsubPeers.add(id);
}
this.metrics?.peersPerProtocol.inc({ protocol }, 1);
// Immediately send own subscriptions via the newly attached stream
if (this.subscriptions.size > 0) {
this.log('send subscriptions to', id);
this.sendSubscriptions(id, Array.from(this.subscriptions), true);
}
}
catch (e) {
this.log.error('createOutboundStream error', e);
}
}
async createInboundStream(peerId, stream) {
if (!this.isStarted()) {
return;
}
const id = peerId.toString();
if (!this.peers.has(id)) {
return;
}
// TODO make this behavior more robust
// This behavior is different than for outbound streams
// If a peer initiates a new inbound connection
// we assume that one is the new canonical inbound stream
const priorInboundStream = this.streamsInbound.get(id);
if (priorInboundStream !== undefined) {
this.log('replacing existing inbound steam %s', id);
priorInboundStream.close();
}
this.log('create inbound stream %s', id);
const inboundStream = new InboundStream(stream);
this.streamsInbound.set(id, inboundStream);
this.pipePeerReadStream(peerId, inboundStream.source).catch((err) => this.log(err));
}
/**
* Add a peer to the router
*/
addPeer(peerId, direction) {
const id = peerId.toString();
if (!this.peers.has(id)) {
this.log('new peer %p', peerId);
this.peers.add(id);
// Add to peer scoring
this.score.addPeer(id);
// track the connection direction. Don't allow to unset outbound
if (!this.outbound.has(id)) {
this.outbound.set(id, direction === 'outbound');
}
}
}
/**
* Removes a peer from the router
*/
removePeer(peerId) {
const id = peerId.toString();
if (!this.peers.has(id)) {
return;
}
// delete peer
this.log('delete peer %p', peerId);
this.peers.delete(id);
const outboundStream = this.streamsOutbound.get(id);
const inboundStream = this.streamsInbound.get(id);
if (outboundStream) {
this.metrics?.peersPerProtocol.inc({ protocol: outboundStream.protocol }, -1);
}
// close streams
outboundStream?.close();
inboundStream?.close();
// remove streams
this.streamsOutbound.delete(id);
this.streamsInbound.delete(id);
// remove peer from topics map
for (const peers of this.topics.values()) {
peers.delete(id);
}
// Remove this peer from the mesh
for (const [topicStr, peers] of this.mesh) {
if (peers.delete(id) === true) {
this.metrics?.onRemoveFromMesh(topicStr, ChurnReason.Dc, 1);
}
}
// Remove this peer from the fanout
for (const peers of this.fanout.values()) {
peers.delete(id);
}
// Remove from floodsubPeers
this.floodsubPeers.delete(id);
// Remove from gossip mapping
this.gossip.delete(id);
// Remove from control mapping
this.control.delete(id);
// Remove from backoff mapping
this.outbound.delete(id);
// Remove from peer scoring
this.score.removePeer(id);
this.acceptFromWhitelist.delete(id);
}
// API METHODS
get started() {
return this.status.code === GossipStatusCode.started;
}
/**
* Get a the peer-ids in a topic mesh
*/
getMeshPeers(topic) {
const peersInTopic = this.mesh.get(topic);
return peersInTopic ? Array.from(peersInTopic) : [];
}
/**
* Get a list of the peer-ids that are subscribed to one topic.
*/
getSubscribers(topic) {
const peersInTopic = this.topics.get(topic);
return (peersInTopic ? Array.from(peersInTopic) : []).map((str) => peerIdFromString(str));
}
/**
* Get the list of topics which the peer is subscribed to.
*/
getTopics() {
return Array.from(this.subscriptions);
}
// TODO: Reviewing Pubsub API
// MESSAGE METHODS
/**
* Responsible for processing each RPC message received by other peers.
*/
async pipePeerReadStream(peerId, stream) {
try {
await pipe(stream, async (source) => {
for await (const data of source) {
try {
// TODO: Check max gossip message size, before decodeRpc()
const rpcBytes = data.subarray();
// Note: This function may throw, it must be wrapped in a try {} catch {} to prevent closing the stream.
// TODO: What should we do if the entire RPC is invalid?
const rpc = RPC.decode(rpcBytes);
this.metrics?.onRpcRecv(rpc, rpcBytes.length);
// Since processRpc may be overridden entirely in unsafe ways,
// the simplest/safest option here is to wrap in a function and capture all errors
// to prevent a top-level unhandled exception
// This processing of rpc messages should happen without awaiting full validation/execution of prior messages
if (this.opts.awaitRpcHandler) {
await this.handleReceivedRpc(peerId, rpc);
}
else {
this.handleReceivedRpc(peerId, rpc).catch((err) => this.log(err));
}
}
catch (e) {
this.log(e);
}
}
});
}
catch (err) {
this.log.error(err);
this.onPeerDisconnected(peerId);
}
}
/**
* Handles an rpc request from a peer
*/
async handleReceivedRpc(from, rpc) {
// Check if peer is graylisted in which case we ignore the event
if (!this.acceptFrom(from.toString())) {
this.log('received message from unacceptable peer %p', from);
this.metrics?.rpcRecvNotAccepted.inc();
return;
}
this.log('rpc from %p', from);
// Handle received subscriptions
if (rpc.subscriptions && rpc.subscriptions.length > 0) {
// update peer subscriptions
rpc.subscriptions.forEach((subOpt) => {
this.handleReceivedSubscription(from, subOpt);
});
this.dispatchEvent(new CustomEvent('subscription-change', {
detail: {
peerId: from,
subscriptions: rpc.subscriptions
.filter((sub) => sub.topic !== null)
.map((sub) => {
return {
topic: sub.topic ?? '',
subscribe: Boolean(sub.subscribe)
};
})
}
}));
}
// Handle messages
// TODO: (up to limit)
if (rpc.messages) {
for (const message of rpc.messages) {
const handleReceivedMessagePromise = this.handleReceivedMessage(from, message)
// Should never throw, but handle just in case
.catch((err) => this.log(err));
if (this.opts.awaitRpcMessageHandler) {
await handleReceivedMessagePromise;
}
}
}
// Handle control messages
if (rpc.control) {
await this.handleControlMessage(from.toString(), rpc.control);
}
}
/**
* Handles a subscription change from a peer
*/
handleReceivedSubscription(from, subOpt) {
if (subOpt.topic == null) {
return;
}
this.log('subscription update from %p topic %s', from, subOpt.topic);
let topicSet = this.topics.get(subOpt.topic);
if (topicSet == null) {
topicSet = new Set();
this.topics.set(subOpt.topic, topicSet);
}
if (subOpt.subscribe) {
// subscribe peer to new topic
topicSet.add(from.toString());
}
else {
// unsubscribe from existing topic
topicSet.delete(from.toString());
}
// TODO: rust-libp2p has A LOT more logic here
}
/**
* Handles a newly received message from an RPC.
* May forward to all peers in the mesh.
*/
async handleReceivedMessage(from, rpcMsg) {
this.metrics?.onMsgRecvPreValidation(rpcMsg.topic);
const validationResult = await this.validateReceivedMessage(from, rpcMsg);
this.metrics?.onMsgRecvResult(rpcMsg.topic, validationResult.code);
switch (validationResult.code) {
case MessageStatus.duplicate:
// Report the duplicate
this.score.duplicateMessage(from.toString(), validationResult.msgIdStr, rpcMsg.topic);
this.mcache.observeDuplicate(validationResult.msgIdStr, from.toString());
return;
case MessageStatus.invalid:
// invalid messages received
// metrics.register_invalid_message(&raw_message.topic)
// Tell peer_score about reject
// Reject the original source, and any duplicates we've seen from other peers.
if (validationResult.msgIdStr) {
const msgIdStr = validationResult.msgIdStr;
this.score.rejectMessage(from.toString(), msgIdStr, rpcMsg.topic, validationResult.reason);
this.gossipTracer.rejectMessage(msgIdStr, validationResult.reason);
}
else {
this.score.rejectInvalidMessage(from.toString(), rpcMsg.topic);
}
this.metrics?.onMsgRecvInvalid(rpcMsg.topic, validationResult);
return;
case MessageStatus.valid:
// Tells score that message arrived (but is maybe not fully validated yet).
// Consider the message as delivered for gossip promises.
this.score.validateMessage(validationResult.messageId.msgIdStr);
this.gossipTracer.deliverMessage(validationResult.messageId.msgIdStr);
// Add the message to our memcache
// if no validation is required, mark the message as validated
this.mcache.put(validationResult.messageId, rpcMsg, !this.opts.asyncValidation);
// Dispatch the message to the user if we are subscribed to the topic
if (this.subscriptions.has(rpcMsg.topic)) {
const isFromSelf = this.components.getPeerId().equals(from);
if (!isFromSelf || this.opts.emitSelf) {
super.dispatchEvent(new CustomEvent('gossipsub:message', {
detail: {
propagationSource: from,
msgId: validationResult.messageId.msgIdStr,
msg: validationResult.msg
}
}));
// TODO: Add option to switch between emit per topic or all messages in one
super.dispatchEvent(new CustomEvent('message', { detail: validationResult.msg }));
}
}
// Forward the message to mesh peers, if no validation is required
// If asyncValidation is ON, expect the app layer to call reportMessageValidationResult(), then forward
if (!this.opts.asyncValidation) {
// TODO: in rust-libp2p
// .forward_msg(&msg_id, raw_message, Some(propagation_source))
this.forwardMessage(validationResult.messageId.msgIdStr, rpcMsg, from.toString());
}
}
}
/**
* Handles a newly received message from an RPC.
* May forward to all peers in the mesh.
*/
async validateReceivedMessage(propagationSource, rpcMsg) {
// Fast message ID stuff
const fastMsgIdStr = this.fastMsgIdFn?.(rpcMsg);
const msgIdCached = fastMsgIdStr ? this.fastMsgIdCache?.get(fastMsgIdStr) : undefined;
if (msgIdCached) {
// This message has been seen previously. Ignore it
return { code: MessageStatus.duplicate, msgIdStr: msgIdCached };
}
// Perform basic validation on message and convert to RawGossipsubMessage for fastMsgIdFn()
const validationResult = await validateToRawMessage(this.globalSignaturePolicy, rpcMsg);
if (!validationResult.valid) {
return { code: MessageStatus.invalid, reason: RejectReason.Error, error: validationResult.error };
}
const msg = validationResult.message;
// Try and perform the data transform to the message. If it fails, consider it invalid.
try {
if (this.dataTransform) {
msg.data = this.dataTransform.inboundTransform(rpcMsg.topic, msg.data);
}
}
catch (e) {
this.log('Invalid message, transform failed', e);
return { code: MessageStatus.invalid, reason: RejectReason.Error, error: ValidateError.TransformFailed };
}
// TODO: Check if message is from a blacklisted source or propagation origin
// - Reject any message from a blacklisted peer
// - Also reject any message that originated from a blacklisted peer
// - reject messages claiming to be from ourselves but not locally published
// Calculate the message id on the transformed data.
const msgId = await this.msgIdFn(msg);
const msgIdStr = this.msgIdToStrFn(msgId);
const messageId = { msgId, msgIdStr };
// Add the message to the duplicate caches
if (fastMsgIdStr)
this.fastMsgIdCache?.put(fastMsgIdStr, msgIdStr);
if (this.seenCache.has(msgIdStr)) {
return { code: MessageStatus.duplicate, msgIdStr };
}
else {
this.seenCache.put(msgIdStr);
}
// (Optional) Provide custom validation here with dynamic validators per topic
// NOTE: This custom topicValidator() must resolve fast (< 100ms) to allow scores
// to not penalize peers for long validation times.
const topicValidator = this.topicValidators.get(rpcMsg.topic);
if (topicValidator != null) {
let acceptance;
// Use try {} catch {} in case topicValidator() is synchronous
try {
acceptance = await topicValidator(msg.topic, msg, propagationSource);
}
catch (e) {
const errCode = e.code;
if (errCode === ERR_TOPIC_VALIDATOR_IGNORE)
acceptance = MessageAcceptance.Ignore;
if (errCode === ERR_TOPIC_VALIDATOR_REJECT)
acceptance = MessageAcceptance.Reject;
else
acceptance = MessageAcceptance.Ignore;
}
if (acceptance !== MessageAcceptance.Accept) {
return { code: MessageStatus.invalid, reason: rejectReasonFromAcceptance(acceptance), msgIdStr };
}
}
return { code: MessageStatus.valid, messageId, msg };
}
/**
* Return score of a peer.
*/
getScore(peerId) {
return this.score.score(peerId);
}
/**
* Send an rpc object to a peer with subscriptions
*/
sendSubscriptions(toPeer, topics, subscribe) {
this.sendRpc(toPeer, {
subscriptions: topics.map((topic) => ({ topic, subscribe })),
messages: []
});
}
/**
* Handles an rpc control message from a peer
*/
async handleControlMessage(id, controlMsg) {
if (controlMsg === undefined) {
return;
}
const iwant = controlMsg.ihave ? this.handleIHave(id, controlMsg.ihave) : [];
const ihave = controlMsg.iwant ? this.handleIWant(id, controlMsg.iwant) : [];
const prune = controlMsg.graft ? await this.handleGraft(id, controlMsg.graft) : [];
controlMsg.prune && (await this.handlePrune(id, controlMsg.prune));
if (!iwant.length && !ihave.length && !prune.length) {
return;
}
this.sendRpc(id, createGossipRpc(ihave, { iwant, prune }));
}
/**
* Whether to accept a message from a peer
*/
acceptFrom(id) {
if (this.direct.has(id)) {
return true;
}
const now = Date.now();
const entry = this.acceptFromWhitelist.get(id);
if (entry && entry.messagesAccepted < ACCEPT_FROM_WHITELIST_MAX_MESSAGES && entry.acceptUntil >= now) {
entry.messagesAccepted += 1;
return true;
}
const score = this.score.score(id);
if (score >= ACCEPT_FROM_WHITELIST_THRESHOLD_SCORE) {
// peer is unlikely to be able to drop its score to `graylistThreshold`
// after 128 messages or 1s
this.acceptFromWhitelist.set(id, {
messagesAccepted: 0,
acceptUntil: now + ACCEPT_FROM_WHITELIST_DURATION_MS
});
}
else {
this.acceptFromWhitelist.delete(id);
}
return score >= this.opts.scoreThresholds.graylistThreshold;
}
/**
* Handles IHAVE messages
*/
handleIHave(id, ihave) {
if (!ihave.length) {
return [];
}
// we ignore IHAVE gossip from any peer whose score is below the gossips threshold
const score = this.score.score(id);
if (score < this.opts.scoreThresholds.gossipThreshold) {
this.log('IHAVE: ignoring peer %s with score below threshold [ score = %d ]', id, score);
this.metrics?.ihaveRcvIgnored.inc({ reason: IHaveIgnoreReason.LowScore });
return [];
}
// IHAVE flood protection
const peerhave = (this.peerhave.get(id) ?? 0) + 1;
this.peerhave.set(id, peerhave);
if (peerhave > GossipsubMaxIHaveMessages) {
this.log('IHAVE: peer %s has advertised too many times (%d) within this heartbeat interval; ignoring', id, peerhave);
this.metrics?.ihaveRcvIgnored.inc({ reason: IHaveIgnoreReason.MaxIhave });
return [];
}
const iasked = this.iasked.get(id) ?? 0;
if (iasked >= GossipsubMaxIHaveLength) {
this.log('IHAVE: peer %s has already advertised too many messages (%d); ignoring', id, iasked);
this.metrics?.ihaveRcvIgnored.inc({ reason: IHaveIgnoreReason.MaxIasked });
return [];
}
// string msgId => msgId
const iwant = new Map();
ihave.forEach(({ topicID, messageIDs }) => {
if (!topicID || !messageIDs || !this.mesh.has(topicID)) {
return;
}
let idonthave = 0;
messageIDs.forEach((msgId) => {
const msgIdStr = this.msgIdToStrFn(msgId);
if (!this.seenCache.has(msgIdStr)) {
iwant.set(msgIdStr, msgId);
idonthave++;
}
});
this.metrics?.onIhaveRcv(topicID, messageIDs.length, idonthave);
});
if (!iwant.size) {
return [];
}
let iask = iwant.size;
if (iask + iasked > GossipsubMaxIHaveLength) {
iask = GossipsubMaxIHaveLength - iasked;
}
this.log('IHAVE: Asking for %d out of %d messages from %s', iask, iwant.size, id);
let iwantList = Array.from(iwant.values());
// ask in random order
shuffle(iwantList);
// truncate to the messages we are actually asking for and update the iasked counter
iwantList = iwantList.slice(0, iask);
this.iasked.set(id, iasked + iask);
this.gossipTracer.addPromise(id, iwantList);
return [
{
messageIDs: iwantList
}
];
}
/**
* Handles IWANT messages
* Returns messages to send back to peer
*/
handleIWant(id, iwant) {
if (!iwant.length) {
return [];
}
// we don't respond to IWANT requests from any per whose score is below the gossip threshold
const score = this.score.score(id);
if (score < this.opts.scoreThresholds.gossipThreshold) {
this.log('IWANT: ignoring peer %s with score below threshold [score = %d]', id, score);
return [];
}
const ihave = new Map();
const iwantByTopic = new Map();
let iwantDonthave = 0;
iwant.forEach(({ messageIDs }) => {
messageIDs &&
messageIDs.forEach((msgId) => {
const msgIdStr = this.msgIdToStrFn(msgId);
const entry = this.mcache.getWithIWantCount(msgIdStr, id);
if (entry == null) {
iwantDonthave++;
return;
}
iwantByTopic.set(entry.msg.topic, 1 + (iwantByTopic.get(entry.msg.topic) ?? 0));
if (entry.count > GossipsubGossipRetransmission) {
this.log('IWANT: Peer %s has asked for message %s too many times: ignoring request', id, msgId);
return;
}
ihave.set(msgIdStr, entry.msg);
});
});
this.metrics?.onIwantRcv(iwantByTopic, iwantDonthave);
if (!ihave.size) {
this.log('IWANT: Could not provide any wanted messages to %s', id);
return [];
}
this.log('IWANT: Sending %d messages to %s', ihave.size, id);
return Array.from(ihave.values());
}
/**
* Handles Graft messages
*/
async handleGraft(id, graft) {
const prune = [];
const score = this.score.score(id);
const now = Date.now();
let doPX = this.opts.doPX;
graft.forEach(({ topicID }) => {
if (!topicID) {
return;
}
const peersInMesh = this.mesh.get(topicID);
if (!peersInMesh) {
// don't do PX when there is an unknown topic to avoid leaking our peers
doPX = false;
// spam hardening: ignore GRAFTs for unknown topics
return;
}
// check if peer is already in the mesh; if so do nothing
if (peersInMesh.has(id)) {
return;
}
// we don't GRAFT to/from direct peers; complain loudly if this happens
if (this.direct.has(id)) {
this.log('GRAFT: ignoring request from direct peer %s', id);
// this is possibly a bug from a non-reciprical configuration; send a PRUNE
prune.push(topicID);
// but don't px
doPX = false;
return;
}
// make sure we are not backing off that peer
const expire = this.backoff.get(topicID)?.get(id);
if (typeof expire === 'number' && now < expire) {
this.log('GRAFT: ignoring backed off peer %s', id);
// add behavioral penalty
this.score.addPenalty(id, 1, ScorePenalty.GraftBackoff);
// no PX
doPX = false;
// check the flood cutoff -- is the GRAFT coming too fast?
const floodCutoff = expire + this.opts.graftFloodThreshold - this.opts.pruneBackoff;
if (now < floodCutoff) {
// extra penalty
this.score.addPenalty(id, 1, ScorePenalty.GraftBackoff);
}
// refresh the backoff
this.addBackoff(id, topicID);
prune.push(topicID);
return;
}
// check the score
if (score < 0) {
// we don't GRAFT peers with negative score
this.log('GRAFT: ignoring peer %s with negative score: score=%d, topic=%s', id, score, topicID);
// we do send them PRUNE however, because it's a matter of protocol correctness
prune.push(topicID);
// but we won't PX to them
doPX = false;
// add/refresh backoff so that we don't reGRAFT too early even if the score decays
this.addBackoff(id, topicID);
return;
}
// check the number of mesh peers; if it is at (or over) Dhi, we only accept grafts
// from peers with outbound connections; this is a defensive check to restrict potential
// mesh takeover attacks combined with love bombing
if (peersInMesh.size >= this.opts.Dhi && !this.outbound.get(id)) {
prune.push(topicID);
this.addBackoff(id, topicID);
return;
}
this.log('GRAFT: Add mesh link from %s in %s', id, topicID);
this.score.graft(id, topicID);
peersInMesh.add(id);
this.metrics?.onAddToMesh(topicID, InclusionReason.Subscribed, 1);
});
if (!prune.length) {
return [];
}
return await Promise.all(prune.map((topic) => this.makePrune(id, topic, doPX)));
}
/**
* Handles Prune messages
*/
async handlePrune(id, prune) {
const score = this.score.score(id);
for (const { topicID, backoff, peers } of prune) {
if (topicID == null) {
continue;
}
const peersInMesh = this.mesh.get(topicID);
if (!peersInMesh) {
return;
}
this.log('PRUNE: Remove mesh link to %s in %s', id, topicID);
this.score.prune(id, topicID);
if (peersInMesh.has(id)) {
peersInMesh.delete(id);
this.metrics?.onRemoveFromMesh(topicID, ChurnReason.Unsub, 1);
}
// is there a backoff specified by the peer? if so obey it
if (typeof backoff === 'number' && backoff > 0) {
this.doAddBackoff(id, topicID, backoff * 1000);
}
else {
this.addBackoff(id, topicID);
}
// PX
if (peers && peers.length) {
// we ignore PX from peers with insufficient scores
if (score < this.opts.scoreThresholds.acceptPXThreshold) {
this.log('PRUNE: ignoring PX from peer %s with insufficient score [score = %d, topic = %s]', id, score, topicID);
continue;
}
await this.pxConnect(peers);
}
}
}
/**
* Add standard backoff log for a peer in a topic
*/
addBackoff(id, topic) {
this.doAddBackoff(id, topic, this.opts.pruneBackoff);
}
/**
* Add backoff expiry interval for a peer in a topic
*
* @param id
* @param topic
* @param interval - backoff duration in milliseconds
*/
doAddBackoff(id, topic, interval) {
let backoff = this.backoff.get(topic);
if (!backoff) {
backoff = new Map();
this.backoff.set(topic, backoff);
}
const expire = Date.now() + interval;
const existingExpire = backoff.get(id) ?? 0;
if (existingExpire < expire) {
backoff.set(id, expire);
}
}
/**
* Apply penalties from broken IHAVE/IWANT promises
*/
applyIwantPenalties() {
this.gossipTracer.getBrokenPromises().forEach((count, p) => {
this.log("peer %s didn't follow up in %d IWANT requests; adding penalty", p, count);
this.score.addPenalty(p, count, ScorePenalty.BrokenPromise);
});
}
/**
* Clear expired backoff expiries
*/
clearBackoff() {
// we only clear once every GossipsubPruneBackoffTicks ticks to avoid iterating over the maps too much
if (this.heartbeatTicks % GossipsubPruneBackoffTicks !== 0) {
return;
}
const now = Date.now();
this.backoff.forEach((backoff, topic) => {
backoff.forEach((expire, id) => {
if (expire < now) {
backoff.delete(id);
}
});
if (backoff.size === 0) {
this.backoff.delete(topic);
}
});
}
/**
* Maybe reconnect to direct peers
*/
async directConnect() {
const toconnect = [];
this.direct.forEach((id) => {
if (!this.streamsOutbound.has(id)) {
toconnect.push(id);
}
});
await Promise.all(toconnect.map(async (id) => await this.connect(id)));
}
/**
* Maybe attempt connection given signed peer records
*/
async pxConnect(peers) {
if (peers.length > this.opts.prunePeers) {
shuffle(peers);
peers = peers.slice(0, this.opts.prunePeers);
}
const toconnect = [];
await Promise.all(peers.map(async (pi) => {
if (!pi.peerID) {
return;
}
const p = peerIdFromBytes(pi.peerID).toString();
if (this.peers.has(p)) {
return;
}
if (!pi.signedPeerRecord) {
toconnect.push(p);
return;
}
// The peer sent us a signed record
// This is not a record from the peer who sent the record, but another peer who is connected with it
// Ensure that it is valid
try {
const envelope = await RecordEnvelope.openAndCertify(pi.signedPeerRecord, 'libp2p-peer-record');
const eid = envelope.peerId;
if (!envelope.peerId.equals(p)) {
this.log("bogus peer record obtained through px: peer ID %p doesn't match expected peer %p", eid, p);
return;
}
if (!(await this.components.getPeerStore().addressBook.consumePeerRecord(envelope))) {
this.log('bogus peer record obtained through px: could not add peer record to address book');
return;
}
toconnect.push(p);
}
catch (e) {
this.log('bogus peer record obtained through px: invalid signature or not a peer record');
}
}));
if (!toconnect.length) {
return;
}
await Promise.all(toconnect.map(async (id) => await this.connect(id)));
}
/**
* Connect to a peer using the gossipsub protocol
*/
async connect(id) {
this.log('Initiating connection with %s', id);
const peerId = peerIdFromString(id);
const connection = await this.components.getConnectionManager().openConnection(peerId);
for (const multicodec of this.multicodecs) {
for (const topology of this.components.getRegistrar().getTopologies(multicodec)) {
topology.onConnect(peerId, connection);
}
}
}
/**
* Subscribes to a topic
*/
subscribe(topic) {
if (this.status.code !== GossipStatusCode.started) {
throw new Error('Pubsub has not started');
}
if (!this.subscriptions.has(topic)) {
this.subscriptions.add(topic);
for (const peerId of this.peers.keys()) {
this.sendSubscriptions(peerId, [topic], true);
}
}
this.join(topic);
}
/**
* Unsubscribe to a topic
*/
unsubscribe(topic) {
if (this.status.code !== GossipStatusCode.started) {
throw new Error('Pubsub is not started');
}
const wasSubscribed = this.subscriptions.delete(topic);
this.log('unsubscribe from %s - am subscribed %s', topic, wasSubscribed);
if (wasSubscribed) {
for (const peerId of this.peers.keys()) {
this.sendSubscriptions(peerId, [topic], false);
}
}
this.leave(topic).catch((err) => {
this.log(err);
});
}
/**
* Join topic
*/
join(topic) {
if (this.status.code !== GossipStatusCode.started) {
throw new Error('Gossipsub has not started');
}
// if we are already in the mesh, return
if (this.mesh.has(topic)) {
return;
}
this.log('JOIN %s', topic);
this.metrics?.onJoin(topic);
const toAdd = new Set();
// check if we have mesh_n peers in fanout[topic] and add them to the mesh if we do,
// removing the fanout entry.
const fanoutPeers = this.fanout.get(topic);
if (fanoutPeers) {
// Remove fanout entry and the last published time
this.fanout.delete(topic);
this.fanoutLastpub.delete(topic);
// remove explicit peers, peers with negative scores, and backoffed peers
fanoutPeers.forEach((id) => {
// TODO:rust-libp2p checks `self.backoffs.is_backoff_with_slack()`
if (!this.direct.has(id) && this.score.score(id) >= 0) {
toAdd.add(id);
}
});
this.metrics?.onAddToMesh(topic, InclusionReason.Fanout, toAdd.size);
}
// check if we need to get more peers, which we randomly select
if (toAdd.size < this.opts.D) {
const fanoutCount = toAdd.size;
const newPeers = this.getRandomGossipPeers(topic, this.opts.D, (id) =>
// filter direct peers and peers with negative score
!toAdd.has(id) && !this.direct.has(id) && this.score.score(id) >= 0);
newPeers.forEach((peer) => {
toAdd.add(peer);
});
this.metrics?.onAddToMesh(topic, InclusionReason.Random, toAdd.size - fanoutCount);
}
this.mesh.set(topic, toAdd);
toAdd.forEach((id) => {
this.log('JOIN: Add mesh link to %s in %s', id, topic);
this.sendGraft(id, topic);
// rust-libp2p
// - peer_score.graft()
// - Self::control_pool_add()
// - peer_added_to_mesh()
});
}
/**
* Leave topic
*/
async leave(topic) {
if (this.status.code !== GossipStatusCode.started) {
throw new Error('Gossipsub has not started');
}
this.log('LEAVE %s', topic);
this.metrics?.onLeave(topic);
// Send PRUNE to mesh peers
const meshPeers = this.mesh.get(topic);
if (meshPeers) {
await Promise.all(Array.from(meshPeers).map(async (id) => {
this.log('LEAVE: Remove mesh link to %s in %s', id, topic);
return await this.sendPrune(id, topic);
}));
this.mesh.delete(topic);
}
}
selectPeersToForward(topic, propagationSource, excludePeers) {
const tosend = new Set();
// Add explicit peers
const peersInTopic = this.topics.get(topic);
if (peersInTopic) {
this.direct.forEach((peer) => {
if (peersInTopic.has(peer) && propagationSource !== peer && !excludePeers?.has(peer)) {
tosend.add(peer);
}
});
// As of Mar 2022, spec + golang-libp2p include this while rust-libp2p does not
// rust-libp2p: https://github.com/libp2p/rust-libp2p/blob/6cc3b4ec52c922bfcf562a29b5805c3150e37c75/protocols/gossipsub/src/behaviour.rs#L2693
// spec: https://github.com/libp2p/specs/blob/10712c55ab309086a52eec7d25f294df4fa96528/pubsub/gossipsub/gossipsub-v1.0.md?plain=1#L361
this.floodsubPeers.forEach((peer) => {
if (peersInTopic.has(peer) &&
propagationSource !== peer &&
!excludePeers?.has(peer) &&
this.score.score(peer) >= this.opts.scoreThresholds.publishThreshold) {
tosend.add(peer);
}
});
}
// add mesh peers
const meshPeers = this.mesh.get(topic);
if (meshPeers && meshPeers.size > 0) {
meshPeers.forEach((peer) => {
if (propagationSource !== peer && !excludePeers?.has(peer)) {
tosend.add(peer);
}
});
}
return tosend;
}
selectPeersToPublish(topic) {
const tosend = new Set();
const tosendCount = {
direct: 0,
floodsub: 0,
mesh: 0,
fanout: 0
};
const peersInTopic = this.topics.get(topic);
if (peersInTopic) {
// flood-publish behavior
// send to direct peers and _all_ peers meeting the publishThreshold
if (this.opts.floodPublish) {
peersInTopic.forEach((id) => {
if (this.direct.has(id)) {
tosend.add(id);
tosendCount.direct++;
}
else if (this.score.score(id) >= this.opts.scoreThresholds.publishThreshold) {
tosend.add(id);
tosendCount.floodsub++;
}
});
}
else {
// non-flood-publish behavior
// send to direct peers, subscribed floodsub peers
// and some mesh peers above publishThreshold
// direct peers (if subscribed)
this.direct.forEach((id) => {
if (peersInTopic.has(id)) {
tosend.add(id);
tosendCount.direct++;
}
});
// floodsub peers
// Note: if there are no floodsub peers, we save a loop through peersInTopic Map
this.floodsubPeers.forEach((id) => {
if (peersInTopic.has(id) && this.score.score(id) >= this.opts.scoreThresholds.publishThreshold) {
tosend.add(id);
tosendCount.floodsub++;
}
});
// Gossipsub peers handling
const meshPeers = this.mesh.get(topic);
if (meshPeers && meshPeers.size > 0) {
meshPeers.forEach((peer) => {
tosend.add(peer);
tosendCount.mesh++;
});
}
// We are not in the mesh for topic, use fanout peers
else {
const fanoutPeers = this.fanout.get(topic);
if (fanoutPeers && fanoutPeers.size > 0) {
fanoutPeers.forEach((peer) => {
tosend.add(peer);
tosendCount.fanout++;
});
}
// We have no fanout peers, select mesh_n of them and add them to the fanout
else {
// If we are not in the fanout, then pick peers in topic above the publishThreshold
const newFanoutPeers = this.getRandomGossipPeers(topic, this.opts.D, (id) => {
return this.score.score(id) >= this.opts.scoreThresholds.publishThreshold;
});
if (newFanoutPeers.size > 0) {
// eslint-disable-line max-depth
this.fanout.set(topic, newFanoutPeers);
newFanoutPeers.forEach((peer) => {
// eslint-disable-line max-depth
tosend.add(peer);
tosendCount.fanout++;
});
}
}
// We are publishing to fanout peers - update the time we published
this.fanoutLastpub.set(topic, Date.now());
}
}
}
return { tosend, tosendCount };
}
/**
* Forwards a message from our peers.
*
* For messages published by us (the app layer), this class uses `publish`
*/
forwardMessage(msgIdStr, rawMsg, propagationSource, excludePeers) {
// message is fully validated inform peer_score
if (propagationSource) {
this.score.deliverMessage(propagationSource, msgIdStr, rawMsg.topic);
}
const tosend = this.selectPeersToForward(rawMsg.topic, propagationSource, excludePeers);
// Note: Don't throw if tosend is empty, we can have a mesh with a single peer
// forward the message to peers
const rpc = createGossipRpc([rawMsg]);
tosend.forEach((id) => {
// self.send_message(*peer_id, event.clone())?;
this.sendRpc(id, rpc);
});
this.metrics?.onForwardMsg(rawMsg.topic, tosend.size);
}
/**
* App layer publishes a message to peers, return number of peers this message is published to
* Note: `async` due to crypto only if `StrictSign`, otherwise it's a sync fn.
*
* For messages not from us, this class uses `forwardMessage`.
*/
async publish(topic, data) {
const transformedData = this.dataTransform ? this.dataTransform.outboundTransform(topic, data) : data;
if (this.publishConfig == null) {
throw Error('PublishError.Uninitialized');
}
// Prepare raw message with user's publishConfig
const { raw: rawMsg, msg } = await buildRawMessage(this.publishConfig, topic, data, transformedData);
// calculate the message id from the un-transformed data
const msgId = await this.msgIdFn(msg);
const msgIdStr = this.msgIdToStrFn(msgId);
if (this.seenCache.has(msgIdStr)) {
// This message has already been seen. We don't re-publish messages that have already
// been published on the network.
throw Error('PublishError.Duplicate');
}
const { tosend, tosendCount } = this.selectPeersToPublish(topic);
const willSendToSelf = this.opts.emitSelf === true && this.subscriptions.has(topic);
if (tosend.size === 0 && !this.opts.allowPublishToZeroPeers && !willSendToSelf) {
throw Error('PublishError.InsufficientPeers');
}
// If the message isn't a duplicate and we have sent it to some peers add it to the
// duplicate cache and memcache.
this.seenCache.put(msgIdStr);
// all published messages are valid
this.mcache.put({ msgId, msgIdStr }, rawMsg, true);
// If the message is anonymous or has a random author add it to the published message ids cache.
this.publishedMessageIds.put(msgIdStr);
// Send to set of peers aggregated from direct, mesh, fanout
const rpc = createGossipRpc([rawMsg]);
for (const id of tosend) {
// self.send_message(*peer_id, event.clone())?;
const sent = this.sendRpc(id, rpc);
// did not actually send the message
if (!sent) {
tosend.delete(id);
}
}
this.metrics?.onPublishMsg(topic, tosendCount, tosend.size, rawMsg.data != null ? rawMsg.data.length : 0);
// Dispatch the message to the user if we are subscribed to the topic
if (willSendToSelf) {
tosend.add(this.components.getPeerId().toString());
super.dispatchEvent(new CustomEvent('gossipsub:message', {
detail: {
propagationSource: this.components.getPeerId(),
msgId: msgIdStr,
msg
}
}));
// TODO: Add option to switch between emit per topic or all messages in one
super.dispatchEvent(new CustomEvent('message', { detail: msg }));
}
return {
recipients: Array.from(tosend.values()).map((str) => peerIdFromString(str))
};
}
/**
* This function should be called when `asyncValidation` is `true` after
* the message got validated by the caller. Messages are stored in the `mcache` and
* validation is expected to be fast enough that the messages should still exist in the cache.
* There are three possible validation outcomes and the outcome is given in acceptance.
*
* If acceptance = `MessageAcceptance.Accept` the message will get propagated to the
* network. The `propagation_source` parameter indicates who the message was received by and
* will not be forwarded back to that peer.
*
* If acceptance = `MessageAcceptance.Reject` the message will be deleted from the memcache
* and the P₄ penalty will be applied to the `propagationSource`.
*
* If acceptance = `MessageAcceptance.Ignore` the message will be deleted from the memcache
* but no P₄ penalty will be applied.
*
* This function will return true if the message was found in the cache and false if was not
* in the cache anymore.
*
* This should only be called once per message.
*/
reportMessageValidationResult(msgId, propagationSource, acceptance) {
if (acceptance === MessageAcceptance.Accept) {
const cacheEntry = this.mcache.validate(msgId);
this.metrics?.onReportValidationMcacheHit(cacheEntry !== null);
if (cacheEntry != null) {
const { message: rawMsg, originatingPeers } = cacheEntry;
// message is fully validated inform peer_score
this.score.deliverMessage(propagationSource.toString(), msgId, rawMsg.topic);
this.forwardMessage(msgId, cacheEntry.message, propagationSource.toString(), originatingPeers);
this.metrics?.onReportValidation(rawMsg.topic, acceptance);
}
// else, Message not in cache. Ignoring forwarding
}
// Not valid
else {
const cacheEntry = this.mcache.remove(msgId);
this.metrics?.onReportValidationMcacheHit(cacheEntry !== null);
if (cacheEntry) {
const rejectReason = rejectReasonFromAcceptance(acceptance);
const { message: rawMsg, originatingPeers } = cacheEntry;
// Tell peer_score about reject
// Reject the original source, and any duplicates we've seen from other peers.
this.score.rejectMessage(propagationSource.toString(), msgId, rawMsg.topic, rejectReason);
for (const peer of originatingPeers) {
this.score.rejectMessage(peer, msgId, rawMsg.topic, rejectReason);
}
this.metrics?.onReportValidation(rawMsg.topic, acceptance);
}
// else, Message not in cache. Ignoring forwarding
}
}
/**
* Sends a GRAFT message to a peer
*/
sendGraft(id, topic) {
const graft = [
{
topicID: topic
}
];
const out = createGossipRpc([], { graft });
this.sendRpc(id, out);
}
/**
* Sends a PRUNE message to a peer
*/
async sendPrune(id, topic) {
const prune = [await this.makePrune(id, topic, this.opts.doPX)];
const out = createGossipRpc([], { prune });
this.sendRpc(id, out);
}
/**
* Send an rpc object to a peer
*/
sendRpc(id, rpc) {
const outboundStream = this.streamsOutbound.get(id);
if (!outboundStream) {
this.log(`Cannot send RPC to ${id} as there is no open stream to it available`);
return false;
}
// piggyback control message retries
const ctrl = this.control.get(id);
if (ctrl) {
this.piggybackControl(id, rpc, ctrl);
this.control.delete(id);
}
// piggyback gossip
const ihave = this.gossip.get(id);
if (ihave) {
this.piggybackGossip(id, rpc, ihave);
this.gossip.delete(id);
}
const rpcBytes = RPC.encode(rpc).finish();
try {
outboundStream.push(rpcBytes);
}
catch (e) {
this.log.error(`Cannot send rpc to ${id}`, e);
// if the peer had control messages or gossip, re-attach
if (ctrl) {
this.control.set(id, ctrl);
}
if (ihave) {
this.gossip.set(id, ihave);
}
return false;
}
this.metrics?.onRpcSent(rpc, rpcBytes.length);
return true;
}
piggybackControl(id, outRpc, ctrl) {
const tograft = (ctrl.graft || []).filter(({ topicID }) => ((topicID && this.mesh.get(topicID)) || new Set()).has(id));
const toprune = (ctrl.prune || []).filter(({ topicID }) => !((topicID && this.mesh.get(topicID)) || new Set()).has(id));
if (!tograft.length && !toprune.length) {
return;
}
if (outRpc.control) {
outRpc.control.graft = outRpc.control.graft && outRpc.control.graft.concat(tograft);
outRpc.control.prune = outRpc.control.prune && outRpc.control.prune.concat(toprune);
}
else {
outRpc.control = { graft: tograft, prune: toprune, ihave: [], iwant: [] };
}
}
piggybackGossip(id, outRpc, ihave) {
if (!outRpc.control) {
outRpc.control = { ihave: [], iwant: [], graft: [], prune: [] };
}
outRpc.control.ihave = ihave;
}
/**
* Send graft and prune messages
*
* @param tograft - peer id => topic[]
* @param toprune - peer id => topic[]
*/
async sendGraftPrune(tograft, toprune, noPX) {
const doPX = this.opts.doPX;
for (const [id, topics] of tograft) {
const graft = topics.map((topicID) => ({ topicID }));
let prune = [];
// If a peer also has prunes, process them now
const pruning = toprune.get(id);
if (pruning) {
prune = await Promise.all(pruning.map(async (topicID) => await this.makePrune(id, topicID, doPX && !(noPX.get(id) ?? false))));
toprune.delete(id);
}
const outRpc = createGossipRpc([], { graft, prune });
this.sendRpc(id, outRpc);
}
for (const [id, topics] of toprune) {
const prune = await Promise.all(topics.map(async (topicID) => await this.makePrune(id, topicID, doPX && !(noPX.get(id) ?? false))));
const outRpc = createGossipRpc([], { prune });
this.sendRpc(id, outRpc);
}
}
/**
* Emits gossip - Send IHAVE messages to a random set of gossip peers
*/
emitGossip(peersToGossipByTopic) {
const gossipIDsByTopic = this.mcache.getGossipIDs(new Set(peersToGossipByTopic.keys()));
for (const [topic, peersToGossip] of peersToGossipByTopic) {
this.doEmitGossip(topic, peersToGossip, gossipIDsByTopic.get(topic) ?? []);
}
}
/**
* Send gossip messages to GossipFactor peers above threshold with a minimum of D_lazy
* Peers are randomly selected from the heartbeat which exclude mesh + fanout peers
* We also exclude direct peers, as there is no reason to emit gossip to them
* @param topic
* @param candidateToGossip - peers to gossip
* @param messageIDs - message ids to gossip
*/
doEmitGossip(topic, candidateToGossip, messageIDs) {
if (!messageIDs.length) {
return;
}
// shuffle to emit in random order
shuffle(messageIDs);
// if we are emitting more than GossipsubMaxIHaveLength ids, truncate the list
if (messageIDs.length > GossipsubMaxIHaveLength) {
// we do the truncation (with shuffling) per peer below
this.log('too many messages for gossip; will truncate IHAVE list (%d messages)', messageIDs.length);
}
if (!candidateToGossip.size)
return;
let target = this.opts.Dlazy;
const factor = GossipsubGossipFactor * candidateToGossip.size;
let peersToGossip = candidateToGossip;
if (factor > target) {
target = factor;
}
if (target > peersToGossip.size) {
target = peersToGossip.size;
}
else {
// only shuffle if needed
peersToGossip = shuffle(Array.from(peersToGossip)).slice(0, target);
}
// Emit the IHAVE gossip to the selected peers up to the target
peersToGossip.forEach((id) => {
let peerMessageIDs = messageIDs;
if (messageIDs.length > GossipsubMaxIHaveLength) {
// shuffle and slice message IDs per peer so that we emit a different set for each peer
// we have enough reduncancy in the system that this will significantly increase the message
// coverage when we do truncate
peerMessageIDs = shuffle(peerMessageIDs.slice()).slice(0, GossipsubMaxIHaveLength);
}
this.pushGossip(id, {
topicID: topic,
messageIDs: peerMessageIDs
});
});
}
/**
* Flush gossip and control messages
*/
flush() {
// send gossip first, which will also piggyback control
for (const [peer, ihave] of this.gossip.entries()) {
this.gossip.delete(peer);
this.sendRpc(peer, createGossipRpc([], { ihave }));
}
// send the remaining control messages
for (const [peer, control] of this.control.entries()) {
this.control.delete(peer);
this.sendRpc(peer, createGossipRpc([], { graft: control.graft, prune: control.prune }));
}
}
/**
* Adds new IHAVE messages to pending gossip
*/
pushGossip(id, controlIHaveMsgs) {
this.log('Add gossip to %s', id);
const gossip = this.gossip.get(id) || [];
this.gossip.set(id, gossip.concat(controlIHaveMsgs));
}
/**
* Make a PRUNE control message for a peer in a topic
*/
async makePrune(id, topic, doPX) {
this.score.prune(id, topic);
if (this.streamsOutbound.get(id).protocol === GossipsubIDv10) {
// Gossipsub v1.0 -- no backoff, the peer won't be able to parse it anyway
return {
topicID: topic,
peers: []
};
}
// backoff is measured in seconds
// GossipsubPruneBackoff is measured in milliseconds
// The protobuf has it as a uint64
const backoff = this.opts.pruneBackoff / 1000;
if (!doPX) {
return {
topicID: topic,
peers: [],
backoff: backoff
};
}
// select peers for Peer eXchange
const peers = this.getRandomGossipPeers(topic, this.opts.prunePeers, (xid) => {
return xid !== id && this.score.score(xid) >= 0;
});
const px = await Promise.all(Array.from(peers).map(async (peerId) => {
// see if we have a signed record to send back; if we don't, just send
// the peer ID and let the pruned peer find them in the DHT -- we can't trust
// unsigned address records through PX anyways
// Finding signed records in the DHT is not supported at the time of writing in js-libp2p
const id = peerIdFromString(peerId);
return {
peerID: id.toBytes(),
signedPeerRecord: await this.components.getPeerStore().addressBook.getRawEnvelope(id)
};
}));
return {
topicID: topic,
peers: px,
backoff: backoff
};
}
/**
* Maintains the mesh and fanout maps in gossipsub.
*/
async heartbeat() {
const { D, Dlo, Dhi, Dscore, Dout, fanoutTTL } = this.opts;
this.heartbeatTicks++;
// cache scores throught the heartbeat
const scores = new Map();
const getScore = (id) => {
let s = scores.get(id);
if (s === undefined) {
s = this.score.score(id);
scores.set(id, s);
}
return s;
};
// peer id => topic[]
const tograft = new Map();
// peer id => topic[]
const toprune = new Map();
// peer id => don't px
const noPX = new Map();
// clean up expired backoffs
this.clearBackoff();
// clean up peerhave/iasked counters
this.peerhave.clear();
this.metrics?.cacheSize.set({ cache: 'iasked' }, this.iasked.size);
this.iasked.clear();
// apply IWANT request penalties
this.applyIwantPenalties();
// ensure direct peers are connected
if (this.heartbeatTicks % this.opts.directConnectTicks === 0) {
// we only do this every few ticks to allow pending connections to complete and account for restarts/downtime
await this.directConnect();
}
// EXTRA: Prune caches
this.fastMsgIdCache?.prune();
this.seenCache.prune();
this.gossipTracer.prune();
this.publishedMessageIds.prune();
/**
* Instead of calling getRandomGossipPeers multiple times to:
* + get more mesh peers
* + more outbound peers
* + oppportunistic grafting
* + emitGossip
*
* We want to loop through the topic peers only a single time and prepare gossip peers for all topics to improve the performance
*/
const peersToGossipByTopic = new Map();
// maintain the mesh for topics we have joined
this.mesh.forEach((peers, topic) => {
const peersInTopic = this.topics.get(topic);
const candidateMeshPeers = new Set();
const peersToGossip = new Set();
peersToGossipByTopic.set(topic, peersToGossip);
if (peersInTopic) {
const shuffledPeers = shuffle(Array.from(peersInTopic));
const backoff = this.backoff.get(topic);
for (const id of shuffledPeers) {
const peerStreams = this.streamsOutbound.get(id);
if (peerStreams &&
this.multicodecs.includes(peerStreams.protocol) &&
!peers.has(id) &&
!this.direct.has(id)) {
const score = getScore(id);
if ((!backoff || !backoff.has(id)) && score >= 0)
candidateMeshPeers.add(id);
// instead of having to find gossip peers after heartbeat which require another loop
// we prepare peers to gossip in a topic within heartbeat to improve performance
if (score >= this.opts.scoreThresholds.gossipThreshold)
peersToGossip.add(id);
}
}
}
// prune/graft helper functions (defined per topic)
const prunePeer = (id, reason) => {
this.log('HEARTBEAT: Remove mesh link to %s in %s', id, topic);
// no need to update peer score here as we do it in makePrune
// add prune backoff record
this.addBackoff(id, topic);
// remove peer from mesh
peers.delete(id);
// after pruning a peer from mesh, we want to gossip topic to it if its score meet the gossip threshold
if (getScore(id) >= this.opts.scoreThresholds.gossipThreshold)
peersToGossip.add(id);
this.metrics?.onRemoveFromMesh(topic, reason, 1);
// add to toprune
const topics = toprune.get(id);
if (!topics) {
toprune.set(id, [topic]);
}
else {
topics.push(topic);
}
};
const graftPeer = (id, reason) => {
this.log('HEARTBEAT: Add mesh link to %s in %s', id, topic);
// update peer score
this.score.graft(id, topic);
// add peer to mesh
peers.add(id);
// when we add a new mesh peer, we don't want to gossip messages to it
peersToGossip.delete(id);
this.metrics?.onAddToMesh(topic, reason, 1);
// add to tograft
const topics = tograft.get(id);
if (!topics) {
tograft.set(id, [topic]);
}
else {
topics.push(topic);
}
};
// drop all peers with negative score, without PX
peers.forEach((id) => {
const score = getScore(id);
// Record the score
if (score < 0) {
this.log('HEARTBEAT: Prune peer %s with negative score: score=%d, topic=%s', id, score, topic);
prunePeer(id, ChurnReason.BadScore);
noPX.set(id, true);
}
});
// do we have enough peers?
if (peers.size < Dlo) {
const ineed = D - peers.size;
// slice up to first `ineed` items and remove them from candidateMeshPeers
// same to `const newMeshPeers = candidateMeshPeers.slice(0, ineed)`
const newMeshPeers = removeFirstNItemsFromSet(candidateMeshPeers, ineed);
newMeshPeers.forEach((p) => {
graftPeer(p, InclusionReason.NotEnough);
});
}
// do we have to many peers?
if (peers.size > Dhi) {
let peersArray = Array.from(peers);
// sort by score
peersArray.sort((a, b) => getScore(b) - getScore(a));
// We keep the first D_score peers by score and the remaining up to D randomly
// under the constraint that we keep D_out peers in the mesh (if we have that many)
peersArray = peersArray.slice(0, Dscore).concat(shuffle(peersArray.slice(Dscore)));
// count the outbound peers we are keeping
let outbound = 0;
peersArray.slice(0, D).forEach((p) => {
if (this.outbound.get(p)) {
outbound++;
}
});
// if it's less than D_out, bubble up some outbound peers from the random selection
if (outbound < Dout) {
const rotate = (i) => {
// rotate the peersArray to the right and put the ith peer in the front
const p = peersArray[i];
for (let j = i; j > 0; j--) {
peersArray[j] = peersArray[j - 1];
}
peersArray[0] = p;
};
// first bubble up all outbound peers already in the selection to the front
if (outbound > 0) {
let ihave = outbound;
for (let i = 1; i < D && ihave > 0; i++) {
if (this.outbound.get(peersArray[i])) {
rotate(i);
ihave--;
}
}
}
// now bubble up enough outbound peers outside the selection to the front
let ineed = D - outbound;
for (let i = D; i < peersArray.length && ineed > 0; i++) {
if (this.outbound.get(peersArray[i])) {
rotate(i);
ineed--;
}
}
}
// prune the excess peers
peersArray.slice(D).forEach((p) => {
prunePeer(p, ChurnReason.Excess);
});
}
// do we have enough outbound peers?
if (peers.size >= Dlo) {
// count the outbound peers we have
let outbound = 0;
peers.forEach((p) => {
if (this.outbound.get(p)) {
outbound++;
}
});
// if it's less than D_out, select some peers with outbound connections and graft them
if (outbound < Dout) {
const ineed = Dout - outbound;
const newMeshPeers = removeItemsFromSet(candidateMeshPeers, ineed, (id) => this.outbound.get(id) === true);
newMeshPeers.forEach((p) => {
graftPeer(p, InclusionReason.Outbound);
});
}
}
// should we try to improve the mesh with opportunistic grafting?
if (this.heartbeatTicks % this.opts.opportunisticGraftTicks === 0 && peers.size > 1) {
// Opportunistic grafting works as follows: we check the median score of peers in the
// mesh; if this score is below the opportunisticGraftThreshold, we select a few peers at
// random with score over the median.
// The intention is to (slowly) improve an underperforming mesh by introducing good
// scoring peers that may have been gossiping at us. This allows us to get out of sticky
// situations where we are stuck with poor peers and also recover from churn of good peers.
// now compute the median peer score in the mesh
const peersList = Array.from(peers).sort((a, b) => getScore(a) - getScore(b));
const medianIndex = Math.floor(peers.size / 2);
const medianScore = getScore(peersList[medianIndex]);
// if the median score is below the threshold, select a better peer (if any) and GRAFT
if (medianScore < this.opts.scoreThresholds.opportunisticGraftThreshold) {
const ineed = this.opts.opportunisticGraftPeers;
const newMeshPeers = removeItemsFromSet(candidateMeshPeers, ineed, (id) => getScore(id) > medianScore);
for (const id of newMeshPeers) {
this.log('HEARTBEAT: Opportunistically graft peer %s on topic %s', id, topic);
graftPeer(id, InclusionReason.Opportunistic);
}
}
}
});
// expire fanout for topics we haven't published to in a while
const now = Date.now();
this.fanoutLastpub.forEach((lastpb, topic) => {
if (lastpb + fanoutTTL < now) {
this.fanout.delete(topic);
this.fanoutLastpub.delete(topic);
}
});
// maintain our fanout for topics we are publishing but we have not joined
this.fanout.forEach((fanoutPeers, topic) => {
// checks whether our peers are still in the topic and have a score above the publish threshold
const topicPeers = this.topics.get(topic);
fanoutPeers.forEach((id) => {
if (!topicPeers.has(id) || getScore(id) < this.opts.scoreThresholds.publishThreshold) {
fanoutPeers.delete(id);
}
});
const peersInTopic = this.topics.get(topic);
const candidateFanoutPeers = [];
// the fanout map contains topics to which we are not subscribed.
const peersToGossip = new Set();
peersToGossipByTopic.set(topic, peersToGossip);
if (peersInTopic) {
const shuffledPeers = shuffle(Array.from(peersInTopic));
for (const id of shuffledPeers) {
const peerStreams = this.streamsOutbound.get(id);
if (peerStreams &&
this.multicodecs.includes(peerStreams.protocol) &&
!fanoutPeers.has(id) &&
!this.direct.has(id)) {
const score = getScore(id);
if (score >= this.opts.scoreThresholds.publishThreshold)
candidateFanoutPeers.push(id);
// instead of having to find gossip peers after heartbeat which require another loop
// we prepare peers to gossip in a topic within heartbeat to improve performance
if (score >= this.opts.scoreThresholds.gossipThreshold)
peersToGossip.add(id);
}
}
}
// do we need more peers?
if (fanoutPeers.size < D) {
const ineed = D - fanoutPeers.size;
candidateFanoutPeers.slice(0, ineed).forEach((id) => {
fanoutPeers.add(id);
peersToGossip?.delete(id);
});
}
});
this.emitGossip(peersToGossipByTopic);
// send coalesced GRAFT/PRUNE messages (will piggyback gossip)
await this.sendGraftPrune(tograft, toprune, noPX);
// flush pending gossip that wasn't piggybacked above
this.flush();
// advance the message history window
this.mcache.shift();
this.dispatchEvent(new CustomEvent('gossipsub:heartbeat'));
}
/**
* Given a topic, returns up to count peers subscribed to that topic
* that pass an optional filter function
*
* @param topic
* @param count
* @param filter - a function to filter acceptable peers
*/
getRandomGossipPeers(topic, count, filter = () => true) {
const peersInTopic = this.topics.get(topic);
if (!peersInTopic) {
return new Set();
}
// Adds all peers using our protocol
// that also pass the filter function
let peers = [];
peersInTopic.forEach((id) => {
const peerStreams = this.streamsOutbound.get(id);
if (!peerStreams) {
return;
}
if (this.multicodecs.includes(peerStreams.protocol) && filter(id)) {
peers.push(id);
}
});
// Pseudo-randomly shuffles peers
peers = shuffle(peers);
if (count > 0 && peers.length > count) {
peers = peers.slice(0, count);
}
return new Set(peers);
}
onScrapeMetrics(metrics) {
/* Data structure sizes */
metrics.mcacheSize.set(this.mcache.size);
// Arbitrary size
metrics.cacheSize.set({ cache: 'direct' }, this.direct.size);
metrics.cacheSize.set({ cache: 'seenCache' }, this.seenCache.size);
metrics.cacheSize.set({ cache: 'fastMsgIdCache' }, this.fastMsgIdCache?.size ?? 0);
metrics.cacheSize.set({ cache: 'publishedMessageIds' }, this.publishedMessageIds.size);
metrics.cacheSize.set({ cache: 'mcache' }, this.mcache.size);
metrics.cacheSize.set({ cache: 'score' }, this.score.size);
metrics.cacheSize.set({ cache: 'gossipTracer.promises' }, this.gossipTracer.size);
metrics.cacheSize.set({ cache: 'gossipTracer.requests' }, this.gossipTracer.requestMsByMsgSize);
// Bounded by topic
metrics.cacheSize.set({ cache: 'topics' }, this.topics.size);
metrics.cacheSize.set({ cache: 'subscriptions' }, this.subscriptions.size);
metrics.cacheSize.set({ cache: 'mesh' }, this.mesh.size);
metrics.cacheSize.set({ cache: 'fanout' }, this.fanout.size);
// Bounded by peer
metrics.cacheSize.set({ cache: 'peers' }, this.peers.size);
metrics.cacheSize.set({ cache: 'streamsOutbound' }, this.streamsOutbound.size);
metrics.cacheSize.set({ cache: 'streamsInbound' }, this.streamsInbound.size);
metrics.cacheSize.set({ cache: 'acceptFromWhitelist' }, this.acceptFromWhitelist.size);
metrics.cacheSize.set({ cache: 'gossip' }, this.gossip.size);
metrics.cacheSize.set({ cache: 'control' }, this.control.size);
metrics.cacheSize.set({ cache: 'peerhave' }, this.peerhave.size);
metrics.cacheSize.set({ cache: 'outbound' }, this.outbound.size);
// 2D nested data structure
let backoffSize = 0;
for (const backoff of this.backoff.values()) {
backoffSize += backoff.size;
}
metrics.cacheSize.set({ cache: 'backoff' }, backoffSize);
// Peer counts
for (const [topicStr, peers] of this.topics) {
metrics.topicPeersCount.set({ topicStr }, peers.size);
}
for (const [topicStr, peers] of this.mesh) {
metrics.meshPeerCounts.set({ topicStr }, peers.size);
}
// Peer scores
const scores = [];
const scoreByPeer = new Map();
metrics.behaviourPenalty.reset();
for (const peerIdStr of this.peers.keys()) {
const score = this.score.score(peerIdStr);
scores.push(score);
scoreByPeer.set(peerIdStr, score);
metrics.behaviourPenalty.observe(this.score.peerStats.get(peerIdStr)?.behaviourPenalty ?? 0);
}
metrics.registerScores(scores, this.opts.scoreThresholds);
// Breakdown score per mesh topicLabel
metrics.registerScorePerMesh(this.mesh, scoreByPeer);
// Breakdown on each score weight
const sw = computeAllPeersScoreWeights(this.peers.keys(), this.score.peerStats, this.score.params, this.score.peerIPs, metrics.topicStrToLabel);
metrics.registerScoreWeights(sw);
}
}
GossipSub.multicodec = GossipsubIDv11;
function pushOrInitMapSet(map, key, newValue) {
let arr = map.get(key);
if (typeof arr === "undefined") {
map.set(key, new Set());
arr = map.get(key);
}
arr.add(newValue);
}
const log$3 = debug("waku:message:topic-only");
class TopicOnlyMessage {
constructor(proto) {
this.proto = proto;
}
get contentTopic() {
return this.proto.contentTopic ?? "";
}
}
class TopicOnlyDecoder {
constructor() {
this.contentTopic = "";
}
fromWireToProtoObj(bytes) {
const protoMessage = TopicOnlyMessage$1.decode(bytes);
log$3("Message decoded", protoMessage);
return Promise.resolve({
contentTopic: protoMessage.contentTopic,
payload: undefined,
rateLimitProof: undefined,
timestamp: undefined,
version: undefined,
});
}
async fromProtoObj(proto) {
return new TopicOnlyMessage(proto);
}
}
const log$2 = debug("waku:relay");
/**
* Implements the [Waku v2 Relay protocol](https://rfc.vac.dev/spec/11/).
* Must be passed as a `pubsub` module to a `Libp2p` instance.
*
* @implements {require('libp2p-interfaces/src/pubsub')}
*/
class WakuRelay extends GossipSub {
constructor(options) {
options = Object.assign(options ?? {}, {
// Ensure that no signature is included nor expected in the messages.
globalSignaturePolicy: SignaturePolicy.StrictNoSign,
fallbackToFloodsub: false,
});
super(options);
this.multicodecs = RelayCodecs;
this.observers = new Map();
this.pubSubTopic = options?.pubSubTopic ?? DefaultPubSubTopic;
// TODO: User might want to decide what decoder should be used (e.g. for RLN)
this.defaultDecoder = new TopicOnlyDecoder();
}
/**
* Mounts the gossipsub protocol onto the libp2p node
* and subscribes to the default topic.
*
* @override
* @returns {void}
*/
async start() {
await super.start();
this.subscribe(this.pubSubTopic);
}
/**
* Send Waku message.
*/
async send(encoder, message) {
const msg = await encoder.toWire(message);
if (!msg) {
log$2("Failed to encode message, aborting publish");
return { recipients: [] };
}
return this.publish(this.pubSubTopic, msg);
}
/**
* Add an observer and associated Decoder to process incoming messages on a given content topic.
*
* @returns Function to delete the observer
*/
addObserver(decoder, callback) {
const observer = {
decoder,
callback,
};
pushOrInitMapSet(this.observers, decoder.contentTopic, observer);
return () => {
const observers = this.observers.get(decoder.contentTopic);
if (observers) {
observers.delete(observer);
}
};
}
/**
* Subscribe to a pubsub topic and start emitting Waku messages to observers.
*
* @override
*/
subscribe(pubSubTopic) {
this.addEventListener("gossipsub:message", async (event) => {
if (event.detail.msg.topic !== pubSubTopic)
return;
log$2(`Message received on ${pubSubTopic}`);
const topicOnlyMsg = await this.defaultDecoder.fromWireToProtoObj(event.detail.msg.data);
if (!topicOnlyMsg || !topicOnlyMsg.contentTopic) {
log$2("Message does not have a content topic, skipping");
return;
}
const observers = this.observers.get(topicOnlyMsg.contentTopic);
if (!observers) {
return;
}
await Promise.all(Array.from(observers).map(async ({ decoder, callback }) => {
const protoMsg = await decoder.fromWireToProtoObj(event.detail.msg.data);
if (!protoMsg) {
log$2("Internal error: message previously decoded failed on 2nd pass.");
return;
}
const msg = await decoder.fromProtoObj(protoMsg);
if (msg) {
callback(msg);
}
else {
log$2("Failed to decode messages on", topicOnlyMsg.contentTopic);
}
}));
});
super.subscribe(pubSubTopic);
}
getMeshPeers(topic) {
return super.getMeshPeers(topic ?? this.pubSubTopic);
}
}
WakuRelay.multicodec = RelayCodecs[0];
WakuRelay.multicodec = RelayCodecs[RelayCodecs.length - 1];
const DefaultEpochUnitSeconds = 10; // the rln-relay epoch length in seconds
const log$1 = debug("waku:rln:epoch");
function dateToEpoch(timestamp, epochUnitSeconds = DefaultEpochUnitSeconds) {
const time = timestamp.getTime();
const epoch = Math.floor(time / 1000 / epochUnitSeconds);
log$1("generated epoch", epoch);
return epoch;
}
function epochIntToBytes(epoch) {
const bytes = new Uint8Array(32);
const db = new DataView(bytes.buffer);
db.setUint32(0, epoch, true);
log$1("encoded epoch", epoch, bytes);
return bytes;
}
function epochBytesToInt(bytes) {
const dv = new DataView(bytes.buffer, bytes.byteOffset, bytes.byteLength);
const epoch = dv.getUint32(0, true);
log$1("decoded epoch", epoch, bytes);
return epoch;
}
function toRLNSignal(msg) {
const contentTopicBytes = utf8ToBytes(msg.contentTopic ?? "");
return new Uint8Array([...(msg.payload ?? []), ...contentTopicBytes]);
}
class RlnMessage {
constructor(rlnInstance, msg, rateLimitProof) {
this.rlnInstance = rlnInstance;
this.msg = msg;
this.rateLimitProof = rateLimitProof;
}
verify() {
return this.rateLimitProof
? this.rlnInstance.verifyWithRoots(this.rateLimitProof, toRLNSignal(this)) // this.rlnInstance.verifyRLNProof once issue status-im/nwaku#1248 is fixed
: undefined;
}
verifyNoRoot() {
return this.rateLimitProof
? this.rlnInstance.verifyWithNoRoot(this.rateLimitProof, toRLNSignal(this)) // this.rlnInstance.verifyRLNProof once issue status-im/nwaku#1248 is fixed
: undefined;
}
get payload() {
return this.msg.payload;
}
get contentTopic() {
return this.msg.contentTopic;
}
get timestamp() {
return this.msg.timestamp;
}
get epoch() {
const bytes = this.msg.rateLimitProof?.epoch;
if (!bytes)
return;
return epochBytesToInt(bytes);
}
}
const log = debug("waku:rln:encoder");
class RLNEncoder {
constructor(encoder, rlnInstance, index, membershipKey) {
this.encoder = encoder;
this.rlnInstance = rlnInstance;
this.index = index;
if (index < 0)
throw "invalid membership index";
this.idKey = membershipKey.IDKey;
this.contentTopic = encoder.contentTopic;
}
async toWire(message) {
message.contentTopic = this.contentTopic;
message.rateLimitProof = await this.generateProof(message);
log("Proof generated", message.rateLimitProof);
return this.encoder.toWire(message);
}
async toProtoObj(message) {
message.contentTopic = this.contentTopic;
const protoMessage = await this.encoder.toProtoObj(message);
if (!protoMessage)
return;
protoMessage.rateLimitProof = await this.generateProof(message);
log("Proof generated", protoMessage.rateLimitProof);
return protoMessage;
}
async generateProof(message) {
const signal = toRLNSignal(message);
console.time("proof_gen_timer");
const proof = await this.rlnInstance.generateRLNProof(signal, this.index, message.timestamp, this.idKey);
console.timeEnd("proof_gen_timer");
return proof;
}
}
class RLNDecoder {
constructor(rlnInstance, decoder) {
this.rlnInstance = rlnInstance;
this.decoder = decoder;
}
get contentTopic() {
return this.decoder.contentTopic;
}
fromWireToProtoObj(bytes) {
const protoMessage = this.decoder.fromWireToProtoObj(bytes);
log("Message decoded", protoMessage);
return Promise.resolve(protoMessage);
}
async fromProtoObj(proto) {
const msg = await this.decoder.fromProtoObj(proto);
if (!msg)
return;
return new RlnMessage(this.rlnInstance, msg, proto.rateLimitProof);
}
}
let wasm;
const cachedTextDecoder = new TextDecoder('utf-8', { ignoreBOM: true, fatal: true });
cachedTextDecoder.decode();
let cachedUint8Memory0 = new Uint8Array();
function getUint8Memory0() {
if (cachedUint8Memory0.byteLength === 0) {
cachedUint8Memory0 = new Uint8Array(wasm.memory.buffer);
}
return cachedUint8Memory0;
}
function getStringFromWasm0(ptr, len) {
return cachedTextDecoder.decode(getUint8Memory0().subarray(ptr, ptr + len));
}
const heap = new Array(32).fill(undefined);
heap.push(undefined, null, true, false);
let heap_next = heap.length;
function addHeapObject(obj) {
if (heap_next === heap.length) heap.push(heap.length + 1);
const idx = heap_next;
heap_next = heap[idx];
heap[idx] = obj;
return idx;
}
function getObject(idx) { return heap[idx]; }
function dropObject(idx) {
if (idx < 36) return;
heap[idx] = heap_next;
heap_next = idx;
}
function takeObject(idx) {
const ret = getObject(idx);
dropObject(idx);
return ret;
}
let WASM_VECTOR_LEN = 0;
const cachedTextEncoder = new TextEncoder('utf-8');
const encodeString = (typeof cachedTextEncoder.encodeInto === 'function'
? function (arg, view) {
return cachedTextEncoder.encodeInto(arg, view);
}
: function (arg, view) {
const buf = cachedTextEncoder.encode(arg);
view.set(buf);
return {
read: arg.length,
written: buf.length
};
});
function passStringToWasm0(arg, malloc, realloc) {
if (realloc === undefined) {
const buf = cachedTextEncoder.encode(arg);
const ptr = malloc(buf.length);
getUint8Memory0().subarray(ptr, ptr + buf.length).set(buf);
WASM_VECTOR_LEN = buf.length;
return ptr;
}
let len = arg.length;
let ptr = malloc(len);
const mem = getUint8Memory0();
let offset = 0;
for (; offset < len; offset++) {
const code = arg.charCodeAt(offset);
if (code > 0x7F) break;
mem[ptr + offset] = code;
}
if (offset !== len) {
if (offset !== 0) {
arg = arg.slice(offset);
}
ptr = realloc(ptr, len, len = offset + arg.length * 3);
const view = getUint8Memory0().subarray(ptr + offset, ptr + len);
const ret = encodeString(arg, view);
offset += ret.written;
}
WASM_VECTOR_LEN = offset;
return ptr;
}
function isLikeNone(x) {
return x === undefined || x === null;
}
let cachedInt32Memory0 = new Int32Array();
function getInt32Memory0() {
if (cachedInt32Memory0.byteLength === 0) {
cachedInt32Memory0 = new Int32Array(wasm.memory.buffer);
}
return cachedInt32Memory0;
}
function debugString(val) {
// primitive types
const type = typeof val;
if (type == 'number' || type == 'boolean' || val == null) {
return `${val}`;
}
if (type == 'string') {
return `"${val}"`;
}
if (type == 'symbol') {
const description = val.description;
if (description == null) {
return 'Symbol';
} else {
return `Symbol(${description})`;
}
}
if (type == 'function') {
const name = val.name;
if (typeof name == 'string' && name.length > 0) {
return `Function(${name})`;
} else {
return 'Function';
}
}
// objects
if (Array.isArray(val)) {
const length = val.length;
let debug = '[';
if (length > 0) {
debug += debugString(val[0]);
}
for(let i = 1; i < length; i++) {
debug += ', ' + debugString(val[i]);
}
debug += ']';
return debug;
}
// Test for built-in
const builtInMatches = /\[object ([^\]]+)\]/.exec(toString.call(val));
let className;
if (builtInMatches.length > 1) {
className = builtInMatches[1];
} else {
// Failed to match the standard '[object ClassName]'
return toString.call(val);
}
if (className == 'Object') {
// we're a user defined class or Object
// JSON.stringify avoids problems with cycles, and is generally much
// easier than looping through ownProperties of `val`.
try {
return 'Object(' + JSON.stringify(val) + ')';
} catch (_) {
return 'Object';
}
}
// errors
if (val instanceof Error) {
return `${val.name}: ${val.message}\n${val.stack}`;
}
// TODO we could test for more things here, like `Set`s and `Map`s.
return className;
}
/**
*/
function init_panic_hook() {
wasm.init_panic_hook();
}
/**
* @param {number} tree_height
* @param {Uint8Array} zkey
* @param {Uint8Array} vk
* @returns {number}
*/
function newRLN(tree_height, zkey, vk) {
const ret = wasm.newRLN(tree_height, addHeapObject(zkey), addHeapObject(vk));
return ret;
}
/**
* @param {number} ctx
* @param {Uint8Array} input
* @returns {Uint8Array}
*/
function getSerializedRLNWitness(ctx, input) {
const ret = wasm.getSerializedRLNWitness(ctx, addHeapObject(input));
return takeObject(ret);
}
/**
* @param {number} ctx
* @param {Uint8Array} input
*/
function insertMember(ctx, input) {
try {
const retptr = wasm.__wbindgen_add_to_stack_pointer(-16);
wasm.insertMember(retptr, ctx, addHeapObject(input));
var r0 = getInt32Memory0()[retptr / 4 + 0];
var r1 = getInt32Memory0()[retptr / 4 + 1];
if (r1) {
throw takeObject(r0);
}
} finally {
wasm.__wbindgen_add_to_stack_pointer(16);
}
}
/**
* @param {number} ctx
* @param {Uint8Array} serialized_witness
* @returns {object}
*/
function RLNWitnessToJson(ctx, serialized_witness) {
const ret = wasm.RLNWitnessToJson(ctx, addHeapObject(serialized_witness));
return takeObject(ret);
}
let cachedUint32Memory0 = new Uint32Array();
function getUint32Memory0() {
if (cachedUint32Memory0.byteLength === 0) {
cachedUint32Memory0 = new Uint32Array(wasm.memory.buffer);
}
return cachedUint32Memory0;
}
function passArrayJsValueToWasm0(array, malloc) {
const ptr = malloc(array.length * 4);
const mem = getUint32Memory0();
for (let i = 0; i < array.length; i++) {
mem[ptr / 4 + i] = addHeapObject(array[i]);
}
WASM_VECTOR_LEN = array.length;
return ptr;
}
/**
* @param {number} ctx
* @param {(bigint)[]} calculated_witness
* @param {Uint8Array} serialized_witness
* @returns {Uint8Array}
*/
function generate_rln_proof_with_witness(ctx, calculated_witness, serialized_witness) {
try {
const retptr = wasm.__wbindgen_add_to_stack_pointer(-16);
const ptr0 = passArrayJsValueToWasm0(calculated_witness, wasm.__wbindgen_malloc);
const len0 = WASM_VECTOR_LEN;
wasm.generate_rln_proof_with_witness(retptr, ctx, ptr0, len0, addHeapObject(serialized_witness));
var r0 = getInt32Memory0()[retptr / 4 + 0];
var r1 = getInt32Memory0()[retptr / 4 + 1];
var r2 = getInt32Memory0()[retptr / 4 + 2];
if (r2) {
throw takeObject(r1);
}
return takeObject(r0);
} finally {
wasm.__wbindgen_add_to_stack_pointer(16);
}
}
/**
* @param {number} ctx
* @returns {Uint8Array}
*/
function generateMembershipKey(ctx) {
try {
const retptr = wasm.__wbindgen_add_to_stack_pointer(-16);
wasm.generateMembershipKey(retptr, ctx);
var r0 = getInt32Memory0()[retptr / 4 + 0];
var r1 = getInt32Memory0()[retptr / 4 + 1];
var r2 = getInt32Memory0()[retptr / 4 + 2];
if (r2) {
throw takeObject(r1);
}
return takeObject(r0);
} finally {
wasm.__wbindgen_add_to_stack_pointer(16);
}
}
/**
* @param {number} ctx
* @param {Uint8Array} seed
* @returns {Uint8Array}
*/
function generateSeededMembershipKey(ctx, seed) {
try {
const retptr = wasm.__wbindgen_add_to_stack_pointer(-16);
wasm.generateSeededMembershipKey(retptr, ctx, addHeapObject(seed));
var r0 = getInt32Memory0()[retptr / 4 + 0];
var r1 = getInt32Memory0()[retptr / 4 + 1];
var r2 = getInt32Memory0()[retptr / 4 + 2];
if (r2) {
throw takeObject(r1);
}
return takeObject(r0);
} finally {
wasm.__wbindgen_add_to_stack_pointer(16);
}
}
/**
* @param {number} ctx
* @param {Uint8Array} proof
* @returns {boolean}
*/
function verifyRLNProof(ctx, proof) {
try {
const retptr = wasm.__wbindgen_add_to_stack_pointer(-16);
wasm.verifyRLNProof(retptr, ctx, addHeapObject(proof));
var r0 = getInt32Memory0()[retptr / 4 + 0];
var r1 = getInt32Memory0()[retptr / 4 + 1];
var r2 = getInt32Memory0()[retptr / 4 + 2];
if (r2) {
throw takeObject(r1);
}
return r0 !== 0;
} finally {
wasm.__wbindgen_add_to_stack_pointer(16);
}
}
/**
* @param {number} ctx
* @param {Uint8Array} proof
* @param {Uint8Array} roots
* @returns {boolean}
*/
function verifyWithRoots(ctx, proof, roots) {
try {
const retptr = wasm.__wbindgen_add_to_stack_pointer(-16);
wasm.verifyWithRoots(retptr, ctx, addHeapObject(proof), addHeapObject(roots));
var r0 = getInt32Memory0()[retptr / 4 + 0];
var r1 = getInt32Memory0()[retptr / 4 + 1];
var r2 = getInt32Memory0()[retptr / 4 + 2];
if (r2) {
throw takeObject(r1);
}
return r0 !== 0;
} finally {
wasm.__wbindgen_add_to_stack_pointer(16);
}
}
/**
* @param {number} ctx
* @returns {Uint8Array}
*/
function getRoot(ctx) {
try {
const retptr = wasm.__wbindgen_add_to_stack_pointer(-16);
wasm.getRoot(retptr, ctx);
var r0 = getInt32Memory0()[retptr / 4 + 0];
var r1 = getInt32Memory0()[retptr / 4 + 1];
var r2 = getInt32Memory0()[retptr / 4 + 2];
if (r2) {
throw takeObject(r1);
}
return takeObject(r0);
} finally {
wasm.__wbindgen_add_to_stack_pointer(16);
}
}
function handleError(f, args) {
try {
return f.apply(this, args);
} catch (e) {
wasm.__wbindgen_exn_store(addHeapObject(e));
}
}
function getArrayU8FromWasm0(ptr, len) {
return getUint8Memory0().subarray(ptr / 1, ptr / 1 + len);
}
async function load(module, imports) {
if (typeof Response === 'function' && module instanceof Response) {
if (typeof WebAssembly.instantiateStreaming === 'function') {
try {
return await WebAssembly.instantiateStreaming(module, imports);
} catch (e) {
if (module.headers.get('Content-Type') != 'application/wasm') {
console.warn("`WebAssembly.instantiateStreaming` failed because your server does not serve wasm with `application/wasm` MIME type. Falling back to `WebAssembly.instantiate` which is slower. Original error:\n", e);
} else {
throw e;
}
}
}
const bytes = await module.arrayBuffer();
return await WebAssembly.instantiate(bytes, imports);
} else {
const instance = await WebAssembly.instantiate(module, imports);
if (instance instanceof WebAssembly.Instance) {
return { instance, module };
} else {
return instance;
}
}
}
function getImports() {
const imports = {};
imports.wbg = {};
imports.wbg.__wbindgen_string_new = function(arg0, arg1) {
const ret = getStringFromWasm0(arg0, arg1);
return addHeapObject(ret);
};
imports.wbg.__wbindgen_is_string = function(arg0) {
const ret = typeof(getObject(arg0)) === 'string';
return ret;
};
imports.wbg.__wbindgen_object_drop_ref = function(arg0) {
takeObject(arg0);
};
imports.wbg.__wbindgen_error_new = function(arg0, arg1) {
const ret = new Error(getStringFromWasm0(arg0, arg1));
return addHeapObject(ret);
};
imports.wbg.__wbindgen_string_get = function(arg0, arg1) {
const obj = getObject(arg1);
const ret = typeof(obj) === 'string' ? obj : undefined;
var ptr0 = isLikeNone(ret) ? 0 : passStringToWasm0(ret, wasm.__wbindgen_malloc, wasm.__wbindgen_realloc);
var len0 = WASM_VECTOR_LEN;
getInt32Memory0()[arg0 / 4 + 1] = len0;
getInt32Memory0()[arg0 / 4 + 0] = ptr0;
};
imports.wbg.__wbindgen_object_clone_ref = function(arg0) {
const ret = getObject(arg0);
return addHeapObject(ret);
};
imports.wbg.__wbg_set_20cbc34131e76824 = function(arg0, arg1, arg2) {
getObject(arg0)[takeObject(arg1)] = takeObject(arg2);
};
imports.wbg.__wbg_new_abda76e883ba8a5f = function() {
const ret = new Error();
return addHeapObject(ret);
};
imports.wbg.__wbg_stack_658279fe44541cf6 = function(arg0, arg1) {
const ret = getObject(arg1).stack;
const ptr0 = passStringToWasm0(ret, wasm.__wbindgen_malloc, wasm.__wbindgen_realloc);
const len0 = WASM_VECTOR_LEN;
getInt32Memory0()[arg0 / 4 + 1] = len0;
getInt32Memory0()[arg0 / 4 + 0] = ptr0;
};
imports.wbg.__wbg_error_f851667af71bcfc6 = function(arg0, arg1) {
try {
console.error(getStringFromWasm0(arg0, arg1));
} finally {
wasm.__wbindgen_free(arg0, arg1);
}
};
imports.wbg.__wbindgen_is_undefined = function(arg0) {
const ret = getObject(arg0) === undefined;
return ret;
};
imports.wbg.__wbg_randomFillSync_6894564c2c334c42 = function() { return handleError(function (arg0, arg1, arg2) {
getObject(arg0).randomFillSync(getArrayU8FromWasm0(arg1, arg2));
}, arguments) };
imports.wbg.__wbg_getRandomValues_805f1c3d65988a5a = function() { return handleError(function (arg0, arg1) {
getObject(arg0).getRandomValues(getObject(arg1));
}, arguments) };
imports.wbg.__wbg_crypto_e1d53a1d73fb10b8 = function(arg0) {
const ret = getObject(arg0).crypto;
return addHeapObject(ret);
};
imports.wbg.__wbindgen_is_object = function(arg0) {
const val = getObject(arg0);
const ret = typeof(val) === 'object' && val !== null;
return ret;
};
imports.wbg.__wbg_process_038c26bf42b093f8 = function(arg0) {
const ret = getObject(arg0).process;
return addHeapObject(ret);
};
imports.wbg.__wbg_versions_ab37218d2f0b24a8 = function(arg0) {
const ret = getObject(arg0).versions;
return addHeapObject(ret);
};
imports.wbg.__wbg_node_080f4b19d15bc1fe = function(arg0) {
const ret = getObject(arg0).node;
return addHeapObject(ret);
};
imports.wbg.__wbg_msCrypto_6e7d3e1f92610cbb = function(arg0) {
const ret = getObject(arg0).msCrypto;
return addHeapObject(ret);
};
imports.wbg.__wbg_require_78a3dcfbdba9cbce = function() { return handleError(function () {
const ret = module.require;
return addHeapObject(ret);
}, arguments) };
imports.wbg.__wbindgen_is_function = function(arg0) {
const ret = typeof(getObject(arg0)) === 'function';
return ret;
};
imports.wbg.__wbg_new_1d9a920c6bfc44a8 = function() {
const ret = new Array();
return addHeapObject(ret);
};
imports.wbg.__wbg_newnoargs_b5b063fc6c2f0376 = function(arg0, arg1) {
const ret = new Function(getStringFromWasm0(arg0, arg1));
return addHeapObject(ret);
};
imports.wbg.__wbg_new_268f7b7dd3430798 = function() {
const ret = new Map();
return addHeapObject(ret);
};
imports.wbg.__wbg_call_97ae9d8645dc388b = function() { return handleError(function (arg0, arg1) {
const ret = getObject(arg0).call(getObject(arg1));
return addHeapObject(ret);
}, arguments) };
imports.wbg.__wbg_new_0b9bfdd97583284e = function() {
const ret = new Object();
return addHeapObject(ret);
};
imports.wbg.__wbg_self_6d479506f72c6a71 = function() { return handleError(function () {
const ret = self.self;
return addHeapObject(ret);
}, arguments) };
imports.wbg.__wbg_window_f2557cc78490aceb = function() { return handleError(function () {
const ret = window.window;
return addHeapObject(ret);
}, arguments) };
imports.wbg.__wbg_globalThis_7f206bda628d5286 = function() { return handleError(function () {
const ret = globalThis.globalThis;
return addHeapObject(ret);
}, arguments) };
imports.wbg.__wbg_global_ba75c50d1cf384f4 = function() { return handleError(function () {
const ret = global.global;
return addHeapObject(ret);
}, arguments) };
imports.wbg.__wbg_set_a68214f35c417fa9 = function(arg0, arg1, arg2) {
getObject(arg0)[arg1 >>> 0] = takeObject(arg2);
};
imports.wbg.__wbg_toString_d9cd5f001405e8ff = function() { return handleError(function (arg0, arg1) {
const ret = getObject(arg0).toString(arg1);
return addHeapObject(ret);
}, arguments) };
imports.wbg.__wbg_call_168da88779e35f61 = function() { return handleError(function (arg0, arg1, arg2) {
const ret = getObject(arg0).call(getObject(arg1), getObject(arg2));
return addHeapObject(ret);
}, arguments) };
imports.wbg.__wbg_set_933729cf5b66ac11 = function(arg0, arg1, arg2) {
const ret = getObject(arg0).set(getObject(arg1), getObject(arg2));
return addHeapObject(ret);
};
imports.wbg.__wbg_fromEntries_7abdcb92016eb4b9 = function() { return handleError(function (arg0) {
const ret = Object.fromEntries(getObject(arg0));
return addHeapObject(ret);
}, arguments) };
imports.wbg.__wbg_buffer_3f3d764d4747d564 = function(arg0) {
const ret = getObject(arg0).buffer;
return addHeapObject(ret);
};
imports.wbg.__wbg_newwithbyteoffsetandlength_d9aa266703cb98be = function(arg0, arg1, arg2) {
const ret = new Uint8Array(getObject(arg0), arg1 >>> 0, arg2 >>> 0);
return addHeapObject(ret);
};
imports.wbg.__wbg_new_8c3f0052272a457a = function(arg0) {
const ret = new Uint8Array(getObject(arg0));
return addHeapObject(ret);
};
imports.wbg.__wbg_set_83db9690f9353e79 = function(arg0, arg1, arg2) {
getObject(arg0).set(getObject(arg1), arg2 >>> 0);
};
imports.wbg.__wbg_length_9e1ae1900cb0fbd5 = function(arg0) {
const ret = getObject(arg0).length;
return ret;
};
imports.wbg.__wbg_newwithlength_f5933855e4f48a19 = function(arg0) {
const ret = new Uint8Array(arg0 >>> 0);
return addHeapObject(ret);
};
imports.wbg.__wbg_subarray_58ad4efbb5bcb886 = function(arg0, arg1, arg2) {
const ret = getObject(arg0).subarray(arg1 >>> 0, arg2 >>> 0);
return addHeapObject(ret);
};
imports.wbg.__wbindgen_debug_string = function(arg0, arg1) {
const ret = debugString(getObject(arg1));
const ptr0 = passStringToWasm0(ret, wasm.__wbindgen_malloc, wasm.__wbindgen_realloc);
const len0 = WASM_VECTOR_LEN;
getInt32Memory0()[arg0 / 4 + 1] = len0;
getInt32Memory0()[arg0 / 4 + 0] = ptr0;
};
imports.wbg.__wbindgen_throw = function(arg0, arg1) {
throw new Error(getStringFromWasm0(arg0, arg1));
};
imports.wbg.__wbindgen_memory = function() {
const ret = wasm.memory;
return addHeapObject(ret);
};
return imports;
}
function finalizeInit(instance, module) {
wasm = instance.exports;
init.__wbindgen_wasm_module = module;
cachedInt32Memory0 = new Int32Array();
cachedUint32Memory0 = new Uint32Array();
cachedUint8Memory0 = new Uint8Array();
return wasm;
}
async function init(input) {
if (typeof input === 'undefined') {
input = new URL(new URL('assets/rln_wasm_bg-c63a69c4.wasm', import.meta.url).href, import.meta.url);
}
const imports = getImports();
if (typeof input === 'string' || (typeof Request === 'function' && input instanceof Request) || (typeof URL === 'function' && input instanceof URL)) {
input = fetch(input);
}
const { instance, module } = await load(await input, imports);
return finalizeInit(instance, module);
}
// Adapted from https://github.com/feross/buffer
function checkInt(buf, value, offset, ext, max, min) {
if (value > max || value < min)
throw new RangeError('"value" argument is out of bounds');
if (offset + ext > buf.length)
throw new RangeError("Index out of range");
}
function writeUIntLE(buf, value, offset, byteLength, noAssert) {
value = +value;
offset = offset >>> 0;
byteLength = byteLength >>> 0;
if (!noAssert) {
const maxBytes = Math.pow(2, 8 * byteLength) - 1;
checkInt(buf, value, offset, byteLength, maxBytes, 0);
}
let mul = 1;
let i = 0;
buf[offset] = value & 0xff;
while (++i < byteLength && (mul *= 0x100)) {
buf[offset + i] = (value / mul) & 0xff;
}
return buf;
}
const verificationKey = {
"protocol": "groth16",
"curve": "bn128",
"nPublic": 6,
"vk_alpha_1": [
"1805378556360488226980822394597799963030511477964155500103132920745199284516",
"11990395240534218699464972016456017378439762088320057798320175886595281336136",
"1"
],
"vk_beta_2": [
[
"11031529986141021025408838211017932346992429731488270384177563837022796743627",
"16042159910707312759082561183373181639420894978640710177581040523252926273854"
],
[
"20112698439519222240302944148895052359035104222313380895334495118294612255131",
"19441583024670359810872018179190533814486480928824742448673677460151702019379"
],
[
"1",
"0"
]
],
"vk_gamma_2": [
[
"10857046999023057135944570762232829481370756359578518086990519993285655852781",
"11559732032986387107991004021392285783925812861821192530917403151452391805634"
],
[
"8495653923123431417604973247489272438418190587263600148770280649306958101930",
"4082367875863433681332203403145435568316851327593401208105741076214120093531"
],
[
"1",
"0"
]
],
"vk_delta_2": [
[
"1948496782571164085469528023647105317580208688174386157591917599801657832035",
"20445814069256658101339037520922621162739470138213615104905368409238414511981"
],
[
"10024680869920840984813249386422727863826862577760330492647062850849851925340",
"10512156247842686783409460795717734694774542185222602679117887145206209285142"
],
[
"1",
"0"
]
],
"vk_alphabeta_12": [
[
[
"5151991366823434428398919091000210787450832786814248297320989361921939794156",
"15735191313289001022885148627913534790382722933676436876510746491415970766821"
],
[
"3387907257437913904447588318761906430938415556102110876587455322225272831272",
"1998779853452712881084781956683721603875246565720647583735935725110674288056"
],
[
"14280074182991498185075387990446437410077692353432005297922275464876153151820",
"17092408446352310039633488224969232803092763095456307462247653153107223117633"
]
],
[
[
"4359046709531668109201634396816565829237358165496082832279660960675584351266",
"4511888308846208349307186938266411423935335853916317436093178288331845821336"
],
[
"11429499807090785857812316277335883295048773373068683863667725283965356423273",
"16232274853200678548795010078253506586114563833318973594428907292096178657392"
],
[
"18068999605870933925311275504102553573815570223888590384919752303726860800970",
"17309569111965782732372130116757295842160193489132771344011460471298173784984"
]
]
],
"IC": [
[
"18693301901828818437917730940595978397160482710354161265484535387752523310572",
"17985273354976640088538673802000794244421192643855111089693820179790551470769",
"1"
],
[
"21164641723988537620541455173278629777250883365474191521194244273980931825942",
"998385854410718613441067082771678946155853656328717326195057262123686425518",
"1"
],
[
"21666968581672145768705229094968410656430989593283335488162701230986314747515",
"17996457608540683483506630273632100555125353447506062045735279661096094677264",
"1"
],
[
"20137761979695192602424300886442379728165712610493092740175904438282083668117",
"19184814924890679891263780109959113289320127263583260218200636509492157834679",
"1"
],
[
"10943171273393803842589314082509655332154393332394322726077270895078286354146",
"10872472035685319847811233167729172672344935625121511932198535224727331126439",
"1"
],
[
"13049169779481227658517545034348883391527506091990880778783387628208561946597",
"10083689369261379027228809473568899816311684698866922944902456565434209079955",
"1"
],
[
"19633516378466409167014413361365552102431118630694133723053441455184566611083",
"8059525100726933978719058611146131904598011633549012007359165766216730722269",
"1"
]
]
};
// File generated with https://github.com/iden3/circom
// following the instructions from:
// https://github.com/vacp2p/zerokit/tree/master/rln#compiling-circuits
async function builder(code, options) {
options = options || {};
let wasmModule;
try {
wasmModule = await WebAssembly.compile(code);
}
catch (err) {
console.log(err);
console.log("\nTry to run circom --c in order to generate c++ code instead\n");
throw new Error(err);
}
let wc;
let errStr = "";
let msgStr = "";
const instance = await WebAssembly.instantiate(wasmModule, {
runtime: {
exceptionHandler: function (code) {
let err;
if (code == 1) {
err = "Signal not found.\n";
}
else if (code == 2) {
err = "Too many signals set.\n";
}
else if (code == 3) {
err = "Signal already set.\n";
}
else if (code == 4) {
err = "Assert Failed.\n";
}
else if (code == 5) {
err = "Not enough memory.\n";
}
else if (code == 6) {
err = "Input signal array access exceeds the size.\n";
}
else {
err = "Unknown error.\n";
}
throw new Error(err + errStr);
},
printErrorMessage: function () {
errStr += getMessage() + "\n";
// console.error(getMessage());
},
writeBufferMessage: function () {
const msg = getMessage();
// Any calls to `log()` will always end with a `\n`, so that's when we print and reset
if (msg === "\n") {
console.log(msgStr);
msgStr = "";
}
else {
// If we've buffered other content, put a space in between the items
if (msgStr !== "") {
msgStr += " ";
}
// Then append the message to the message we are creating
msgStr += msg;
}
},
showSharedRWMemory: function () {
printSharedRWMemory();
}
}
});
const sanityCheck = options;
// options &&
// (
// options.sanityCheck ||
// options.logGetSignal ||
// options.logSetSignal ||
// options.logStartComponent ||
// options.logFinishComponent
// );
wc = new WitnessCalculator(instance, sanityCheck);
return wc;
function getMessage() {
var message = "";
var c = instance.exports.getMessageChar();
while (c != 0) {
message += String.fromCharCode(c);
c = instance.exports.getMessageChar();
}
return message;
}
function printSharedRWMemory() {
const shared_rw_memory_size = instance.exports.getFieldNumLen32();
const arr = new Uint32Array(shared_rw_memory_size);
for (let j = 0; j < shared_rw_memory_size; j++) {
arr[shared_rw_memory_size - 1 - j] = instance.exports.readSharedRWMemory(j);
}
// If we've buffered other content, put a space in between the items
if (msgStr !== "") {
msgStr += " ";
}
// Then append the value to the message we are creating
msgStr += (fromArray32(arr).toString());
}
}
class WitnessCalculator {
constructor(instance, sanityCheck) {
this.instance = instance;
this.version = this.instance.exports.getVersion();
this.n32 = this.instance.exports.getFieldNumLen32();
this.instance.exports.getRawPrime();
const arr = new Uint32Array(this.n32);
for (let i = 0; i < this.n32; i++) {
arr[this.n32 - 1 - i] = this.instance.exports.readSharedRWMemory(i);
}
this.prime = fromArray32(arr);
this.witnessSize = this.instance.exports.getWitnessSize();
this.sanityCheck = sanityCheck;
}
circom_version() {
return this.instance.exports.getVersion();
}
async _doCalculateWitness(input, sanityCheck) {
//input is assumed to be a map from signals to arrays of bigints
this.instance.exports.init((this.sanityCheck || sanityCheck) ? 1 : 0);
const keys = Object.keys(input);
var input_counter = 0;
keys.forEach((k) => {
const h = fnvHash(k);
const hMSB = parseInt(h.slice(0, 8), 16);
const hLSB = parseInt(h.slice(8, 16), 16);
const fArr = flatArray(input[k]);
let signalSize = this.instance.exports.getInputSignalSize(hMSB, hLSB);
if (signalSize < 0) {
throw new Error(`Signal ${k} not found\n`);
}
if (fArr.length < signalSize) {
throw new Error(`Not enough values for input signal ${k}\n`);
}
if (fArr.length > signalSize) {
throw new Error(`Too many values for input signal ${k}\n`);
}
for (let i = 0; i < fArr.length; i++) {
const arrFr = toArray32(BigInt(fArr[i]) % this.prime, this.n32);
for (let j = 0; j < this.n32; j++) {
this.instance.exports.writeSharedRWMemory(j, arrFr[this.n32 - 1 - j]);
}
try {
this.instance.exports.setInputSignal(hMSB, hLSB, i);
input_counter++;
}
catch (err) {
// console.log(`After adding signal ${i} of ${k}`)
throw new Error(err);
}
}
});
if (input_counter < this.instance.exports.getInputSize()) {
throw new Error(`Not all inputs have been set. Only ${input_counter} out of ${this.instance.exports.getInputSize()}`);
}
}
async calculateWitness(input, sanityCheck) {
const w = [];
await this._doCalculateWitness(input, sanityCheck);
for (let i = 0; i < this.witnessSize; i++) {
this.instance.exports.getWitness(i);
const arr = new Uint32Array(this.n32);
for (let j = 0; j < this.n32; j++) {
arr[this.n32 - 1 - j] = this.instance.exports.readSharedRWMemory(j);
}
w.push(fromArray32(arr));
}
return w;
}
async calculateBinWitness(input, sanityCheck) {
const buff32 = new Uint32Array(this.witnessSize * this.n32);
const buff = new Uint8Array(buff32.buffer);
await this._doCalculateWitness(input, sanityCheck);
for (let i = 0; i < this.witnessSize; i++) {
this.instance.exports.getWitness(i);
const pos = i * this.n32;
for (let j = 0; j < this.n32; j++) {
buff32[pos + j] = this.instance.exports.readSharedRWMemory(j);
}
}
return buff;
}
async calculateWTNSBin(input, sanityCheck) {
const buff32 = new Uint32Array(this.witnessSize * this.n32 + this.n32 + 11);
const buff = new Uint8Array(buff32.buffer);
await this._doCalculateWitness(input, sanityCheck);
//"wtns"
buff[0] = "w".charCodeAt(0);
buff[1] = "t".charCodeAt(0);
buff[2] = "n".charCodeAt(0);
buff[3] = "s".charCodeAt(0);
//version 2
buff32[1] = 2;
//number of sections: 2
buff32[2] = 2;
//id section 1
buff32[3] = 1;
const n8 = this.n32 * 4;
//id section 1 length in 64bytes
const idSection1length = 8 + n8;
const idSection1lengthHex = idSection1length.toString(16);
buff32[4] = parseInt(idSection1lengthHex.slice(0, 8), 16);
buff32[5] = parseInt(idSection1lengthHex.slice(8, 16), 16);
//this.n32
buff32[6] = n8;
//prime number
this.instance.exports.getRawPrime();
var pos = 7;
for (let j = 0; j < this.n32; j++) {
buff32[pos + j] = this.instance.exports.readSharedRWMemory(j);
}
pos += this.n32;
// witness size
buff32[pos] = this.witnessSize;
pos++;
//id section 2
buff32[pos] = 2;
pos++;
// section 2 length
const idSection2length = n8 * this.witnessSize;
const idSection2lengthHex = idSection2length.toString(16);
buff32[pos] = parseInt(idSection2lengthHex.slice(0, 8), 16);
buff32[pos + 1] = parseInt(idSection2lengthHex.slice(8, 16), 16);
pos += 2;
for (let i = 0; i < this.witnessSize; i++) {
this.instance.exports.getWitness(i);
for (let j = 0; j < this.n32; j++) {
buff32[pos + j] = this.instance.exports.readSharedRWMemory(j);
}
pos += this.n32;
}
return buff;
}
}
function toArray32(rem, size) {
const res = []; //new Uint32Array(size); //has no unshift
const radix = BigInt(0x100000000);
while (rem) {
res.unshift(Number(rem % radix));
rem = rem / radix;
}
if (size) {
var i = size - res.length;
while (i > 0) {
res.unshift(0);
i--;
}
}
return res;
}
function fromArray32(arr) {
var res = BigInt(0);
const radix = BigInt(0x100000000);
for (let i = 0; i < arr.length; i++) {
res = res * radix + BigInt(arr[i]);
}
return res;
}
function flatArray(a) {
var res = [];
fillArray(res, a);
return res;
function fillArray(res, a) {
if (Array.isArray(a)) {
for (let i = 0; i < a.length; i++) {
fillArray(res, a[i]);
}
}
else {
res.push(a);
}
}
}
function fnvHash(str) {
const uint64_max = BigInt(2) ** BigInt(64);
let hash = BigInt("0xCBF29CE484222325");
for (var i = 0; i < str.length; i++) {
hash ^= BigInt(str[i].charCodeAt());
hash *= BigInt(0x100000001B3);
hash %= uint64_max;
}
let shash = hash.toString(16);
let n = 16 - shash.length;
shash = '0'.repeat(n).concat(shash);
return shash;
}
/**
* Concatenate Uint8Arrays
* @param input
* @returns concatenation of all Uint8Array received as input
*/
function concatenate(...input) {
let totalLength = 0;
for (const arr of input) {
totalLength += arr.length;
}
const result = new Uint8Array(totalLength);
let offset = 0;
for (const arr of input) {
result.set(arr, offset);
offset += arr.length;
}
return result;
}
const stringEncoder = new TextEncoder();
const DEPTH = 20;
async function loadWitnessCalculator() {
const url = new URL(new URL('assets/rln-fb4d7b4b.wasm', import.meta.url).href, import.meta.url);
const response = await fetch(url);
return await builder(new Uint8Array(await response.arrayBuffer()), false);
}
async function loadZkey() {
const url = new URL(new URL('assets/rln_final-a641c06e.zkey', import.meta.url).href, import.meta.url);
const response = await fetch(url);
return new Uint8Array(await response.arrayBuffer());
}
/**
* Create an instance of RLN
* @returns RLNInstance
*/
async function create$1() {
await init();
init_panic_hook();
const witnessCalculator = await loadWitnessCalculator();
const zkey = await loadZkey();
const vkey = stringEncoder.encode(JSON.stringify(verificationKey));
const zkRLN = newRLN(DEPTH, zkey, vkey);
return new RLNInstance(zkRLN, witnessCalculator);
}
class MembershipKey {
constructor(IDKey, IDCommitment) {
this.IDKey = IDKey;
this.IDCommitment = IDCommitment;
}
static fromBytes(memKeys) {
const idKey = memKeys.subarray(0, 32);
const idCommitment = memKeys.subarray(32);
return new MembershipKey(idKey, idCommitment);
}
}
const proofOffset = 128;
const rootOffset = proofOffset + 32;
const epochOffset = rootOffset + 32;
const shareXOffset = epochOffset + 32;
const shareYOffset = shareXOffset + 32;
const nullifierOffset = shareYOffset + 32;
const rlnIdentifierOffset = nullifierOffset + 32;
class Proof {
constructor(proofBytes) {
if (proofBytes.length < rlnIdentifierOffset)
throw "invalid proof";
// parse the proof as proof<128> | share_y<32> | nullifier<32> | root<32> | epoch<32> | share_x<32> | rln_identifier<32>
this.proof = proofBytes.subarray(0, proofOffset);
this.merkleRoot = proofBytes.subarray(proofOffset, rootOffset);
this.epoch = proofBytes.subarray(rootOffset, epochOffset);
this.shareX = proofBytes.subarray(epochOffset, shareXOffset);
this.shareY = proofBytes.subarray(shareXOffset, shareYOffset);
this.nullifier = proofBytes.subarray(shareYOffset, nullifierOffset);
this.rlnIdentifier = proofBytes.subarray(nullifierOffset, rlnIdentifierOffset);
}
}
function proofToBytes(p) {
return concatenate(p.proof, p.merkleRoot, p.epoch, p.shareX, p.shareY, p.nullifier, p.rlnIdentifier);
}
class RLNInstance {
constructor(zkRLN, witnessCalculator) {
this.zkRLN = zkRLN;
this.witnessCalculator = witnessCalculator;
}
generateMembershipKey() {
const memKeys = generateMembershipKey(this.zkRLN);
return MembershipKey.fromBytes(memKeys);
}
generateSeededMembershipKey(seed) {
const uint8Seed = stringEncoder.encode(seed);
const memKeys = generateSeededMembershipKey(this.zkRLN, uint8Seed);
return MembershipKey.fromBytes(memKeys);
}
insertMember(idCommitment) {
insertMember(this.zkRLN, idCommitment);
}
getMerkleRoot() {
return getRoot(this.zkRLN);
}
serializeMessage(uint8Msg, memIndex, epoch, idKey) {
// calculate message length
const msgLen = writeUIntLE(new Uint8Array(8), uint8Msg.length, 0, 8);
// Converting index to LE bytes
const memIndexBytes = writeUIntLE(new Uint8Array(8), memIndex, 0, 8);
// [ id_key<32> | id_index<8> | epoch<32> | signal_len<8> | signal<var> ]
return concatenate(idKey, memIndexBytes, epoch, msgLen, uint8Msg);
}
async generateRLNProof(msg, index, epoch, idKey) {
if (epoch == undefined) {
epoch = epochIntToBytes(dateToEpoch(new Date()));
}
else if (epoch instanceof Date) {
epoch = epochIntToBytes(dateToEpoch(epoch));
}
if (epoch.length != 32)
throw "invalid epoch";
if (idKey.length != 32)
throw "invalid id key";
if (index < 0)
throw "index must be >= 0";
const serialized_msg = this.serializeMessage(msg, index, epoch, idKey);
const rlnWitness = getSerializedRLNWitness(this.zkRLN, serialized_msg);
const inputs = RLNWitnessToJson(this.zkRLN, rlnWitness);
const calculatedWitness = await this.witnessCalculator.calculateWitness(inputs, false); // no sanity check being used in zerokit
const proofBytes = generate_rln_proof_with_witness(this.zkRLN, calculatedWitness, rlnWitness);
return new Proof(proofBytes);
}
verifyRLNProof(proof, msg) {
let pBytes;
if (proof instanceof Uint8Array) {
pBytes = proof;
}
else {
pBytes = proofToBytes(proof);
}
// calculate message length
const msgLen = writeUIntLE(new Uint8Array(8), msg.length, 0, 8);
return verifyRLNProof(this.zkRLN, concatenate(pBytes, msgLen, msg));
}
verifyWithRoots(proof, msg) {
let pBytes;
if (proof instanceof Uint8Array) {
pBytes = proof;
}
else {
pBytes = proofToBytes(proof);
}
// calculate message length
const msgLen = writeUIntLE(new Uint8Array(8), msg.length, 0, 8);
// obtain root
const root = getRoot(this.zkRLN);
return verifyWithRoots(this.zkRLN, concatenate(pBytes, msgLen, msg), root);
}
verifyWithNoRoot(proof, msg) {
let pBytes;
if (proof instanceof Uint8Array) {
pBytes = proof;
}
else {
pBytes = proofToBytes(proof);
}
// calculate message length
const msgLen = writeUIntLE(new Uint8Array(8), msg.length, 0, 8);
return verifyWithRoots(this.zkRLN, concatenate(pBytes, msgLen, msg), new Uint8Array());
}
}
var rln = /*#__PURE__*/Object.freeze({
__proto__: null,
create: create$1,
MembershipKey: MembershipKey,
Proof: Proof,
proofToBytes: proofToBytes,
RLNInstance: RLNInstance
});
// reexport the create function, dynamically imported from rln.ts
async function create() {
// A dependency graph that contains any wasm must all be imported
// asynchronously. This file does the single async import, so
// that no one else needs to worry about it again.
const rlnModule = await Promise.resolve().then(function () { return rln; });
return await rlnModule.create();
}
export { MembershipKey, RLNDecoder, RLNEncoder, create };