193 lines
8.4 KiB
Python
193 lines
8.4 KiB
Python
import itertools
|
|
from hashlib import blake2b
|
|
from typing import List, Dict, Tuple, Set, Optional, Self
|
|
from carnot.carnot import Id, Committee
|
|
from carnot.overlay import EntropyOverlay
|
|
import random
|
|
|
|
|
|
def blake2b_hash(committee: Committee) -> bytes:
|
|
hasher = blake2b(digest_size=32)
|
|
for member in committee:
|
|
hasher.update(member)
|
|
return hasher.digest()
|
|
|
|
|
|
class CarnotTree:
|
|
"""
|
|
This balanced binary tree implementation uses a combination of indexes and keys to easily calculate parenting
|
|
committee relationships. It also has caching on different kind of access to conveniently retrieve the committees
|
|
based on:
|
|
* Member of a committee
|
|
* Committee id (hash)
|
|
|
|
It is composed of `inner_committees`, an array that matches a binary tree node distribution:
|
|
0, 1, 2, 3..
|
|
[c0, c1, c2, c3 ]
|
|
where `cX` is the committee id (hash of the set with the committee members ids)
|
|
The number of leafs in the committee is calculated with:
|
|
total_leafs = (len(inner_committees) + 1) // 2
|
|
Parenting relation can be calculated for a committee index (idx) with:
|
|
parent_committee_idx = committee_idx // 2 - 1
|
|
Children relation is calculated with those indexes (idx) as well:
|
|
left_child, right_child = (committee_idx*2 + 1, committee_idx*2 + 2)
|
|
|
|
Then we have some dictionaries/maps that matches different information to those indexes:
|
|
* `membership_committees`: matches committee idx to the actual committee set of participants
|
|
* `committee_id_to_index`: matches committee id (hash) to committee index (idx) in `inner_committees`
|
|
* `committee_by_member`: matches member id to the committee id that is a member from
|
|
"""
|
|
def __init__(self, nodes: List[Id], number_of_committees: int):
|
|
# useless to build an overlay with no committees
|
|
assert number_of_committees > 0
|
|
# inner_committees: list of tree nodes (int index) matching hashed external committee id
|
|
self.inner_committees: List[Id]
|
|
# membership committees: matching committee idx to the set of members of a committee
|
|
self.membership_committees: Dict[int, Committee]
|
|
self.inner_committees, self.membership_committees = (
|
|
CarnotTree.build_committee_from_nodes_with_size(
|
|
nodes, number_of_committees
|
|
)
|
|
)
|
|
# committee match between tree nodes and external hashed ids
|
|
self.committee_id_to_index: Dict[Id, int] = {c: i for i, c in enumerate(self.inner_committees)}
|
|
# id (int index) of committee membership by member id
|
|
self.committees_by_member: Dict[Id, int] = {
|
|
member: committee
|
|
for committee, v in self.membership_committees.items()
|
|
for member in v
|
|
}
|
|
|
|
@staticmethod
|
|
def build_committee_from_nodes_with_size(
|
|
nodes: List[Id],
|
|
number_of_committees: int,
|
|
) -> Tuple[List[Id], Dict[int, Committee]]:
|
|
committee_size, remainder = divmod(len(nodes), number_of_committees)
|
|
committees = [
|
|
set(nodes[n*committee_size:(n+1)*committee_size])
|
|
for n in range(0, number_of_committees)
|
|
]
|
|
# refill committees with extra nodes,
|
|
if remainder != 0:
|
|
cycling_committees = itertools.cycle(committees)
|
|
for node in nodes[-remainder:]:
|
|
next(cycling_committees).add(node)
|
|
|
|
hashes = [blake2b_hash(s) for s in committees]
|
|
committees = [frozenset(s) for s in committees]
|
|
|
|
return hashes, dict(enumerate(committees))
|
|
|
|
def parent_committee(self, committee_id: Id) -> Optional[Id]:
|
|
# root committee doesnt have a parent
|
|
if committee_id == self.inner_committees[0]:
|
|
return None
|
|
return self.inner_committees[max(self.committee_id_to_index[committee_id] // 2 - 1, 0)]
|
|
|
|
def child_committees(self, committee_id: Id) -> Tuple[Optional[Id], Optional[Id]]:
|
|
base = self.committee_id_to_index[committee_id] * 2
|
|
committees_size = len(self.inner_committees)
|
|
first_child = base + 1
|
|
second_child = base + 2
|
|
first_child = self.inner_committees[first_child] if first_child < committees_size else None
|
|
second_child = self.inner_committees[second_child] if second_child < committees_size else None
|
|
return first_child, second_child
|
|
|
|
def leaf_committees(self) -> Dict[Id, Committee]:
|
|
total_leafs = (len(self.inner_committees) + 1) // 2
|
|
return {
|
|
self.inner_committees[i]: self.membership_committees[i]
|
|
for i in range(len(self.inner_committees) - total_leafs, len(self.inner_committees))
|
|
}
|
|
|
|
def root_committee(self) -> Committee:
|
|
return self.membership_committees[0]
|
|
|
|
def committee_by_committee_idx(self, committee_idx: int) -> Optional[Committee]:
|
|
return self.membership_committees.get(committee_idx)
|
|
|
|
def committee_idx_by_member_id(self, member_id: Id) -> Optional[int]:
|
|
return self.committees_by_member.get(member_id)
|
|
|
|
def committee_id_by_member_id(self, member_id: Id) -> Id:
|
|
return self.inner_committees[self.committees_by_member.get(member_id)]
|
|
|
|
def committee_by_member_id(self, member_id: Id) -> Optional[Committee]:
|
|
if (committee_idx := self.committee_idx_by_member_id(member_id)) is not None:
|
|
return self.committee_by_committee_idx(committee_idx)
|
|
|
|
def committee_by_committee_id(self, committee_id: Id) -> Optional[Committee]:
|
|
if (committee_idx := self.committee_id_to_index.get(committee_id)) is not None:
|
|
return self.committee_by_committee_idx(committee_idx)
|
|
|
|
def parent_committee_from_member_id(self, _id):
|
|
if (parent_id := self.parent_committee(
|
|
self.committee_id_by_member_id(_id)
|
|
)) is not None:
|
|
return self.committee_by_committee_idx(self.committee_id_to_index[parent_id])
|
|
|
|
|
|
class CarnotOverlay(EntropyOverlay):
|
|
def __init__(self, nodes: List[Id], current_leader: Id, entropy: bytes, number_of_committees: int):
|
|
self.entropy = entropy
|
|
self.number_of_committees = number_of_committees
|
|
self.nodes = nodes.copy()
|
|
self.current_leader = current_leader
|
|
random.seed(a=self.entropy, version=2)
|
|
random.shuffle(self.nodes)
|
|
self.carnot_tree = CarnotTree(nodes, number_of_committees)
|
|
|
|
def advance(self, entropy: bytes) -> Self:
|
|
return CarnotOverlay(self.nodes, self.next_leader(), entropy, self.number_of_committees)
|
|
|
|
def is_leader(self, _id: Id):
|
|
return _id == self.leader()
|
|
|
|
def leader(self) -> Id:
|
|
return self.current_leader
|
|
|
|
def next_leader(self) -> Id:
|
|
random.seed(a=self.entropy, version=2)
|
|
return random.choice(self.nodes)
|
|
|
|
def is_member_of_leaf_committee(self, _id: Id) -> bool:
|
|
return _id in set(itertools.chain.from_iterable(self.carnot_tree.leaf_committees().values()))
|
|
|
|
def is_member_of_root_committee(self, _id: Id) -> bool:
|
|
return _id in self.carnot_tree.root_committee()
|
|
|
|
def is_member_of_child_committee(self, parent: Id, child: Id) -> bool:
|
|
child_parent = self.parent_committee(child)
|
|
parent = self.carnot_tree.committee_by_member_id(parent)
|
|
return child_parent == parent
|
|
|
|
def parent_committee(self, _id: Id) -> Optional[Committee]:
|
|
self.carnot_tree.parent_committee_from_member_id(_id)
|
|
|
|
def leaf_committees(self) -> Set[Committee]:
|
|
return set(self.carnot_tree.leaf_committees().values())
|
|
|
|
def root_committee(self) -> Committee:
|
|
return self.carnot_tree.root_committee()
|
|
|
|
def is_child_of_root_committee(self, _id: Id) -> bool:
|
|
return self.parent_committee(_id) == self.root_committee()
|
|
|
|
def leader_super_majority_threshold(self, _id: Id) -> int:
|
|
root_committee = self.carnot_tree.inner_committees[0]
|
|
childs = self.carnot_tree.child_committees(root_committee)
|
|
childs_size = sum(
|
|
len(committee) for c in childs
|
|
if (committee := self.carnot_tree.committee_by_committee_id(c)) is not None
|
|
)
|
|
root_committee_size = len(self.root_committee())
|
|
committee_size = root_committee_size + childs_size
|
|
return (committee_size * 2 // 3) + 1
|
|
|
|
def super_majority_threshold(self, _id: Id) -> int:
|
|
if self.is_member_of_leaf_committee(_id):
|
|
return 0
|
|
committee_size = len(self.carnot_tree.committee_by_member_id(_id))
|
|
return (committee_size * 2 // 3) + 1
|