44 lines
1.5 KiB
Python
44 lines
1.5 KiB
Python
from unittest import TestCase
|
|
|
|
import numpy as np
|
|
|
|
from .cryptarchia import Leader, Config, EpochState, LedgerState, Coin, phi, TimeConfig
|
|
|
|
|
|
class TestLeader(TestCase):
|
|
def test_slot_leader_statistics(self):
|
|
epoch = EpochState(
|
|
stake_distribution_snapshot=LedgerState(
|
|
total_stake=1000,
|
|
),
|
|
nonce_snapshot=LedgerState(nonce=b"1010101010"),
|
|
)
|
|
|
|
f = 0.05
|
|
config = Config(
|
|
k=10,
|
|
active_slot_coeff=f,
|
|
epoch_stake_distribution_stabilization=4,
|
|
epoch_period_nonce_buffer=3,
|
|
epoch_period_nonce_stabilization=3,
|
|
time=TimeConfig(slot_duration=1, chain_start_time=0),
|
|
)
|
|
l = Leader(config=config, coin=Coin(pk=0, value=10))
|
|
|
|
# We'll use the Margin of Error equation to decide how many samples we need.
|
|
# https://en.wikipedia.org/wiki/Margin_of_error
|
|
margin_of_error = 1e-4
|
|
p = phi(f=f, alpha=10 / 1000)
|
|
std = np.sqrt(p * (1 - p))
|
|
Z = 3 # we want 3 std from the mean to be within the margin of error
|
|
N = int((Z * std / margin_of_error) ** 2)
|
|
|
|
# After N slots, the measured leader rate should be within the interval `p +- margin_of_error` with high probabiltiy
|
|
leader_rate = (
|
|
sum(l.try_prove_slot_leader(epoch, slot) is not None for slot in range(N))
|
|
/ N
|
|
)
|
|
assert (
|
|
abs(leader_rate - p) < margin_of_error
|
|
), f"{leader_rate} != {p}, err={abs(leader_rate - p)} > {margin_of_error}"
|