Docs and format

This commit is contained in:
danielsanchezq 2024-06-12 17:10:37 +02:00
parent facac5a20e
commit d704b010d5
1 changed files with 14 additions and 6 deletions

View File

@ -10,7 +10,7 @@ from da.kzg_rs.roots import compute_roots_of_unity
from da.kzg_rs.utils import is_power_of_two
def toeplitz1(global_parameters: List[G1], polynomial_degree: int) -> List[G1]:
def __toeplitz1(global_parameters: List[G1], polynomial_degree: int) -> List[G1]:
"""
This part can be precomputed for different global_parameters lengths depending on polynomial degree of powers of two.
:param global_parameters:
@ -29,14 +29,14 @@ def toeplitz1(global_parameters: List[G1], polynomial_degree: int) -> List[G1]:
return vector_x_extended_fft
def toeplitz2(coefficients: List[G1], extended_vector: Sequence[G1]) -> List[G1]:
def __toeplitz2(coefficients: List[G1], extended_vector: Sequence[G1]) -> List[G1]:
assert is_power_of_two(len(coefficients))
roots_of_unity = compute_roots_of_unity(PRIMITIVE_ROOT, len(coefficients), BLS_MODULUS)
toeplitz_coefficients_fft = fft(coefficients, roots_of_unity, BLS_MODULUS)
return [bls.multiply(v, c) for v, c in zip(extended_vector, toeplitz_coefficients_fft)]
def toeplitz3(h_extended_fft: Sequence[G1], polynomial_degree: int) -> List[G1]:
def __toeplitz3(h_extended_fft: Sequence[G1], polynomial_degree: int) -> List[G1]:
roots_of_unity = compute_roots_of_unity(PRIMITIVE_ROOT, len(h_extended_fft), BLS_MODULUS)
return ifft_g1(h_extended_fft, roots_of_unity, BLS_MODULUS)[:polynomial_degree]
@ -44,6 +44,14 @@ def toeplitz3(h_extended_fft: Sequence[G1], polynomial_degree: int) -> List[G1]:
def fk20_generate_proofs(
polynomial: Polynomial, global_parameters: List[G1]
) -> List[Proof]:
"""
Generate all proofs for the polynomial points in batch.
This method uses the fk20 algorthm from https://eprint.iacr.org/2023/033.pdf
Disclaimer: It only works for polynomial degree of powers of two.
:param polynomial: polynomial to generate proof for
:param global_parameters: setup generated parameters
:return: list of proof for each point in the polynomial
"""
polynomial_degree = len(polynomial)
assert len(global_parameters) >= polynomial_degree
assert is_power_of_two(len(polynomial))
@ -54,16 +62,16 @@ def fk20_generate_proofs(
# 1.3 u = y * v * roots_of_unity(len(polynomial)*2)
roots_of_unity = compute_roots_of_unity(PRIMITIVE_ROOT, polynomial_degree, BLS_MODULUS)
global_parameters = [*global_parameters[polynomial_degree-2::-1], bls.multiply(bls.Z1(), 0)]
extended_vector = toeplitz1(global_parameters, polynomial_degree)
extended_vector = __toeplitz1(global_parameters, polynomial_degree)
# 2 - Build circulant matrix with the polynomial coefficients (reversed N..n, and padded)
toeplitz_coefficients = [
polynomial.coefficients[-1],
*(BLSFieldElement(0) for _ in range(polynomial_degree+1)),
*polynomial.coefficients[1:-1]
]
h_extended_vector = toeplitz2(toeplitz_coefficients, extended_vector)
h_extended_vector = __toeplitz2(toeplitz_coefficients, extended_vector)
# 3 - Perform fft and nub the tail half as it is padding
h_vector = toeplitz3(h_extended_vector, polynomial_degree)
h_vector = __toeplitz3(h_extended_vector, polynomial_degree)
# 4 - proof are the dft of the h vector
proofs = fft_g1(h_vector, roots_of_unity, BLS_MODULUS)
proofs = [Proof(bls.G1_to_bytes48(proof)) for proof in proofs]